
Monte
Software Development Kit

version 1.0.3

April, 2001

About This Document

This document describes the Monte data editing technology.

1. Introduction
Monte is a library of functions for decomposing packed binary data structures into their
constituent pieces for the puposes of editing, localisation, or meta-data creation.

The Monte library is designed to help developers of data editing and localisation tools
by providing a consistent interface to a wide variety of binary data formats.

Overview

The key features of the Monte library are:

• Object-oriented data description: Monte data translators are specified using a
simple, object-oriented, data description language which supports encapsulation
and inheritance. These features make the Monte data description language
particularly suitable for describing binary structures which contain serialised
objects, such as those used by many popular development frameworks.

• Unicode/ISO 10646 support: Monte understands data structures containing
Unicode/ISO 10646-encoded text.

• Platform-independent internal data representation: Once decomposed, data is
presented to the calling application in a platform independent manner. For
example, all textual data is presented as Unicode/ISO 10646-encoded strings,
regardless of its original, packed, encoding.

• Data Validation: The data-editing features of Monte provide a mechanism
whereby changes to data are validated before being applied. For instance, text
which is too long for its field, or unencodable in the field’s native text encoding, is
prevented from being written to that field. Such measures dramatically reduce
the chance of editing tools inadvertently corrupting the structures they edit.

• High-level data properties: The Monte translator language provides a mechanism
whereby high-level “data properties” can be generated from the unpacked data.
Viewing the data as a collection of properties rather than as a series of individual
fields offers an even greater degree of abstraction to tool-writers.

Unicode/ISO 10646 Support

When decomposing a data structure, the Monte library converts all extracted text into a
standard Unicode/ISO 10646 representation. All subsequent inspection, editing or other
manipulation of the structure’s text is performed through the medium of Unicode/ISO
10646-encoded text. When the data is finally re-packaged into its original format, Monte
will automatically re-encode textual data into the data-structure’s native format.

This use of a common intermediary text encoding is particularly useful when
performing localisation between languages which use different character encodings, as
shown in the example in figure 2 below:

6a23 672c 689d 6587
o

3002

0053 0061 006d 0070 006c
S a m p l e t e x t .

0065 0020 0074 0065 0078 0074 002e

Extract

Modify

Re-pack

0a bc cb a5 b b b1 f8
a4 e5 21 23

0c 53 61 6d 70 6c 65
20 74 65 78 74 2e

editing text using Unicode/ISO 10646figure 1.

(Big 5 encoding)

(Macintosh Roman encoding)

(for the purpose of clarity, some steps have been omitted from the sequence shown in
this diagram).

Data Translators

To get from a packed data block to an editable structure, Monte requires a description
of the data to be decomposed. Traditionally on the Macintosh platform, ResEdit ‘TMPL’
(“template”) resources have been used to describe data structures. However, when
faced with the heterogenous container structures used to specify user interface
elements in modern object-oriented frameworks, the ‘TMPL’ model has proved to be
extremely cumbersome.

For this reason, Monte takes a different approach. To describe a binary data structure,
Monte may use more than one data translator. A data translator is a textual description
of all or part of particular data structure. For any given data format, Monte may use
one or more of these data translators: where more than one translator is used, each
describes a specific part of the entire data structure (for example, items in a list are
described using a different data translator to that used for the entire structure).

As an example of the Monte translator language, figure 2 shows a simple data structure,
and its equivalent Monte data translator:

a simple data structure and its data translatorfigure 2.

+0000

+0002

+0004

+0006

+0008

top
left

right
bottom

text
text length, N

+0009

translator "simple"
sint:16 left
sint:16 top
sint:16 right
sint:16 bottom
pstr:8:8 text

16 bits

16 bits

16 bits

16 bits

8 bits

8xN bits

The format of the translator language is described in more detail in Chapter 2 (“Writing
Data Translators”).

Object-oriented data description

In a departure from traditional data description mechanisms (eg., Rez, ResEdit
templates), Monte takes a more fine-grained approach to the data being described.
Instead of being a standalone definition of an entire data structure, a Monte data
translator may describe only a part of the data to be processed. For all but the simplest
data structures, several data translators are combined to describe the entire data
structure. This approach reduces the amount of repetition required to describe closely
related data types.

In addition, Monte allows translators to be specified as being variants of other, more
basic, types. A variant translator may also have an identifying rule which Monte will
use to choose between possible variants when translating packed data blocks, as
illustrated in figure 3.

translator "v2" :
"Base"(hello == 8)

pstr:8:8 text

data decomposition using translator variantsfigure 3.

translator "Base" hello

BaseBase Translator
Unpacked Data Tree

uint:8 hello
= 8

Packed Data

translator "v1" :
"Base"(hello == 19)

uint:16 number

hello

v2Chosen Variant Translator

Unpacked Data Tree

= 8

Packed Data

text = "abcd"

translator "v2" :
"Base"(hello == 8)

pstr:8:8 text
Rule matches read data

Possible Variant 1 Possible Variant 2

Rule does not match read data

08 04 61 62
63 64 0e 0d
ff ed cb 27

08 04 61 62
63 64 0e 0d
ff ed cb 27

2. Writing Data Translators
This chapter provides an informal guide to the Monte data translator language. This language is
formally described in Appendix B.

Introduction
A data translator is a text-based description of a data structure. Monte uses one or more
data translators to convert a packed block of data into an editable, unpacked, data tree.
This chapter provides information to allow you to write data translators.

File Encoding
Because Monte is a Unicode-based technology, its data-translators must also be Unicode
compliant. This means that a “regular” 8-bit Mac-encoded text file cannot be used as a
Monte data translator.
All translator files used by Monte must be Unicode or ISO 10646 UCS-2 compliant. This
format is described in detail in Appendix B, but as a summary:

• Files must use the Unicode/ISO-10646 character encoding scheme.
• Files must begin with a Unicode byte-order-mark (character code U+FEFF)
• Files may be UTF-8, UTF-2BE (high-byte:low-byte) or UTF-2LE (low-byte:high-

byte) format. UTF-2BE is preferred for PowerPC platforms.
There are several third-party text editors available which conform to these
requirements.

Structure of Translator Files
A Monte data translator file has the following format:

• A header, containing version information, then
• Zero or more included files, followed by
• Zero or more translator definitions

File Headers
Before Monte can interpret a data translator file’s contents, it must first know which
version of the translator language the file is written in. Thus, all data translator files
must begin with the ‘monte’ keyword followed by a version number, as shown below:

monte 1.0

Currently, there is only one version of the Monte translator language, but in future
there may be others. By insisting on a language version declaration, newer versions of
Monte will still be able to use older translators.
If the ‘monte’ keyword is omitted, Monte reports an error.
The following is the shortest valid translator file:

monte 1.0

Alternatively, comments may be added before or after the version declaration, as
shown below:

/*
veryShort.mtpl

*/
monte 1.0 // that’s it!

Comments
From the example above, it can be seen that Monte allows comments to be included in
data translator files. A comment can be a multi-line comment, delimited by the
character sequences ‘/*’ and ‘*/’, as shown below:

/* This is a multi-line comment
and spans two lines */

/* another comment, that happens to be on only one line! */

Single-line comments can also be added to data translator files by using the character
sequence ‘//’. All remaining text on the line is taken to be a comment:

uint:16 hello // this is a comment!
// so is this

Note that, unlike languages such as C or C++, Monte does not permit comments to
occur where spaces can occur. Comments in Monte translators must end with a new
line. Thus, the following three comments are all illegal:

uint:16 /*can’t replace spaces*/ hello

/* can’t precede instructions */ uint:16

/* multi-line comments
are not allowed to end on the same
line as an instruction */ uint:16

Translator Worlds
Monte allows translators to be grouped into separate namespaces, known as translator
worlds. This allows more understandable names to be used for the translators within a
world.
To place translators within a particular world, use the ‘world’ directive:

world world-specification

The world specification is similar in structure to a UNIX file path: a series of worlds are
specified, each separated by a forward-slash character. This allows users of Monte to
ask for translators in a particular world, such as in “mac/rsrc/MacApp/MyApp2.0”, or to
specifiy a more general world, such as “mac”, which will cause Monte to search in
subordinate translator worlds for the requested translator.
World names are case sensitive: “Macintosh” and “MacIntosh” are two separate worlds.

Including Other Files
If a translator needs to use other translators in order to work, these may be included
using the ‘include’ directive:

include "(file name here)"

The file specified by ‘include’ must reside in the same directory as the file including it.
Monte does not permit path specifications of any sort in include directives.

Defining Translators
A data translator file can contain any number of data translators. Each of these is
defined by using a ‘translator’ instruction, followed by any number of data instructions.
The end of the translator definition is marked by the next ‘translator’ instruction, or the
end of the file.
The syntax for the translator instruction is as follows:

translator "(translator name here)"

Export Translators
A Translator can be marked as an “export” translator by preceding its ‘translator’
instruction with the ‘export’ keyword, as shown below:

export translator "(translator name here)"
Applications which use the Monte library can discriminate between export and private
(those without the ‘export’ tag) when presenting translator lists to their users, or when
choosing translators themselves.
Generally, an export translator should refer to a complete data type, while any
translators which are used by that export translator should be left private. So, for
example, the ‘DITL’ translator would be an export translator, but ‘CheckboxDITLItem’
probably would not.

Variants
Many data structures in modern software make use of inheritance, whereby a new
structure is defined as being an existing structure with some additional fields.To
accomodate this, Monte allows translators to be specified as being variants of existing
translators.
To specify that a translator is a variant translator, place a colon after the new
translator’s name, and follow it with the name of the translator from which you wish to
derive, as shown below.

translator "(new translator’s name)" : "(existing translator’s name)"

For example, a structure “Extra”, which is extends an existing structure “Basic”, can be
specified as follows:

translator "Basic"
sint:16 aElement

translator "Extra" : "Basic"
uint:32 extraElement

Note In this example, “Extra” has been defined as the default variant for “Basic”.
This means that unpacking a structure with translator “Basic” will always
result in translator “Super” being used as well. The reason for this is
described below.

Variant Rules
When unpacking data structures, Monte uses a scheme called “greedy inheritance” to
match the input data against the user-specified data translator. In effect, Monte will
always try to use a variant of the translator it was given if one exists.
This is a difference from the way many high-level languages handle inheritance, but is
more useful in decomposing packed data.
What this means for the example above is that whenever a user of Monte requests that
a data block should be unpacked using the translator “Basic”, it will in fact be unpacked
using “Basic”, then the translator “Extra”. This is because, when the translator “Extra”
was defined, no rule governing when the translator should be used was specified.
A translator, like “Extra”, which contains no governing rule, is known as a default
variant, as it is used by default whenever its base translator is used. A given translator is
allowed to have only one default variant.
It is far more useful to specify variant translators which are used only sometimes, for
example, when a field which has beeen read from the packed data block is found to
have a certain, special value. As an example of this, the following should be familiar to
many MacOS programmers:

// General stub dialog item. Variants extend this as
// appropriate.

translator "DITLItem"
fill:32
sint:16 left/"left edge"
sint:16 top/"Top edge"
sint:16 right/"Right edge"
sint:16 bottom/"Bottom edge"
uint:1 enable/"Enabled? (1 for yes)"
uint:7 type/"Item type"

// Button
translator "Button" : "DITLItem" ({type}==4)

pstr:8:8 title/"Button title"
align:16

The important thing to note in the above example is the rule specification (“(
{type}==4)”) in the second translator, “Button”. This states that, while “Button” is a
variant of “DITLItem”, it is a variant which should only be used when the value read
for the field ‘type’ (the last field in the “DITLItem” translator) is 4.
A base translator, such as “DITLItem”, may have any number of variant translators of
this kind, provided that their rules are all different.
Although shown with a numeric field above, it is also possible to specify variant rules
which refer to textual elements:

translator "BaseText"
pstr:8:8 hello

translator "ExtraText" : "BaseText"({hello}="%")
pstr:8:16 uniHello

In this example, if the 8-bit Pascal-style string ‘hello’, is found to read “%”, then Monte
will use the “ExtraText” translator to attempt to read a Pascal-style string with 16-bit
characters from the packed data block.
(The pstr instruction, which represents Pascal-style strings, is described later)

Instructions
Instructions are the basic building blocks of Monte data translators. It is the instructions
within a translator definition which actually describe the data to be unpacked.
In version 1.0, Monte provides nineteen instructions. These are:

uint sint char string
cstr pstr listcount zerolistcount
sizeof offset location align
fill skip insert sub
list repeat prop

Instruction Labels
Each instruction in a data translator can be given a label. This label, which is an
unquoted text string, is used in variant rule definitions (see previously) and property
defintions. The syntax for specifying a label is as follows:

uint:8 (label goes here)
Labels must start with a letter. Digits and the characters ‘.’ (U+002E, full stop/period)
and ‘_’ (U+005F, underscore) are also permitted in labels, but only as second or
subsequent characters.

Note Because Monte data translators are Unicode/ISO-10646 based, “letter” here
means any letter or character of any script system, excluding punctuation.
Non-arabic-roman digits (ie., 0..9) are also permitted, although not strictly
“letters”. Be aware that Chinese/Japaese/Korean ideographs can—and
probably will—be used in element labels.

Instruction Descriptions
Instruction labels are intended primarily for cross-referencing elements within a data
translator. However, this means that instruction labels are largely unsuitable for
presenting to an end user as a field description. To get around this problem, Monte
allows a descriptive name to be given to an instruction’s field. This is specified as
follows:

uint:8 (label goes here)/"(descriptive text)"
An instruction must posess a label before it can be given a description. The description
is intended as a field label for editor applications rather than reminders for the
translator author. The descriptive text of an instruction is equivalent to the textual
description field of a ‘TMPL’ resource item.

Numeric Data Instructions

Numeric Types
Monte supports signed and unsigned integer data types of up to 64 bits in length. To
specify elements of this type, the ‘sint’ and ‘uint’ commands are used. ‘sint’ represents a
signed integer value; ‘uint’, an unsigned value.

uint(:optional-data-size) (label, etc.)
sint(:optional-data-size) (label, etc.)

For example, consider the C-language structre ‘myStruct’ shown below:
struct myStruct

{
short w;
unsigned long x;
unsigned short y;
};

This structure can be represented using the following data translator1
translator "myStruct translator"

sint: 1 6 w
uint: 3 2 x
uint: 1 6 y

Numeric data elements can be any size between 1 and 64 bits. This can be useful when
dealing with structures in which several different fields are packed into a memory word
or longword.
As an example, the MacOS (Carbon) Control Manager often specifies on-screen controls
using a ‘CDEF’ (Control definition) number and variation code. These two values are
packed into a 16-bit word in which the upper 12 bits hold the CDEF number and the
lower four the variant code. In Monte, this arrangement can be expressed using the
following instruction:

uint: 1 6 cdefAndVariation // upper 12 bits are ‘CDEF’ ID
…however, it is more useful to split the physical 16-bit value into its component fields to
allow each to be edited more easily, as shown below:

uint: 1 2 controlCDEFid
uint: 4 controlVariation

When writing data translators, you should try to break compound data elements (such
as the ‘cdefAndVariant’) into their individual parts wherever possible.

Constant Numeric Values
Often, a data format will by definition contain some constant value elements. These
may be placeholders, marker fields, “magic numbers”, format version identifiers or any
other type of fixed-value items. Monte allows these to be specified as follows:

translator "everything is constant"
sint: 3 2 version = $100
sint: 3 2 minusOne = -1
uint: 1 7 answer = 42
uint: 1 5 filler = 0

1 Assuming that the size of ‘short’ is 16 bits, and the size of ‘long’ is 32 bits, as is the case on virtually
all Macintosh C compilers.

Note how hexadecimal constants can be specified using the $ symbol. Constant values
may also be specified using packed characters, octal or binary as shown in the table
below:

constant specified as… constant value is…
$xxxxx… (x=0…9, a…f or A…F) Hexadecimal
\xxxxx… (x=0…7) Octal
%xxxxx… (x=0 or 1) Binary
'xxxxx…' (x=any character) Packed characters
xxxxx… (x=0…9) Decimal

note Packed character constants are subject to a few rules. First, the data in a
packed character constant is assumed to be made of 8-bit characters. In
version 1.0 of Monte, only characters found in the MacOS Roman character
set are permitted in packed character constants.
Second, although the MacOS Roman character encoding is used to calculate
the value of the constant, the constant is specified using Unicode/ISO10646
encoding in the translator file. For example, the constant 'í' is stored in the
translator file as its Unicode/ISO10646 character value of U+00ED, but the
value of the constant is calculated from the MacOS Roman encoding’s value
for 'í', which is EA (hexadecimal).
If you use a Unicode-compliant editor, then all of these machinations will be
completely hidden from you.

If, when reading data, Monte encounters a different value in a field which was marked
as constant, an error message will be passed to the user. Using constant-value items
thus allows Monte to detect badly-formed data, or even data of the wrong format.

Representing Text

String Instructions
Monte offers a range of instructions to describe text elements. The simplest of these is
the ‘string’ instruction:

string(:optional-character-size) (label, etc.)

This represents an unbounded string of characters, as for example in the MacOS
(Carbon) ‘TEXT’ resource type

translator "TEXT"
s t r i n g theText

The example above represents a string containing 8-bit-wide characters. However,
Monte allows other character widths to be used: the size of the characters in a string
can be specified by placing a size-specifier after the ‘string’ keyword, as shown below:

translator "packed ASCII text"
string: 7 theText

In the example above, each character is packed into seven bits. While this example is
hardly commonplace, the same mechanism can be used to represent wide-character
strings, which are far more useful:

translator "utxt"
string: 1 6 theText

For character-widths greater than 8 bits, Monte will assume that the Unicode/ISO10646
text encoding scheme is being used for character values.
For strings whose characters less than or equal to 8 bits in size, Monte will use a user-
specified text encoding scheme to conver the smaller characters into Unicode/ISO10646:
this text encoding is specified outside of the data translator to allow the same translator
to be used for a data structure regardless of the encoding of its textual elements.

C-style Strings
C-style strings are made up of a finite sequence of characters, the last of which has the
value 0. This zero-value character must always be present to terminate the string. To
specify a C-style string in a translator, use the ‘cstr’ instruction:

cstr(:optional-character-size) (label, etc.)
The following translator shows the use of the ‘cstr’ instruction without a character-size
field.

translator "standardCStringPair"
c s t r hello
c s t r goodbye

The example above represents two C-style strings containing 8-bit-wide characters. As
for ‘string’, other character widths can used with C-style strings: the size of the
characters in the string can be specified by placing a size-specifier after the cstr
keyword, as shown below:

translator "packed ASCII Greetings"
cstr: 7 hello

Note that because the terminator value is just another character in a C-style string, the
terminator will be the same length as the other characters in the strings (in this case,
seven bits).

Naturally, wider characters are also possible: the example below shows how 16-bit
Unicode/ISO10646-encoded C-style strings may be represented in a Monte translator.

translator "wideCStringPair"
cstr:1 6 hello
cstr:1 6 goodbye

Note Because its terminator is actually character, any C-style string with 16-bit
characters will have a 16 bit wide zero-value as a terminator.

Pascal-style Strings
Pascal-style strings are made up of a string-length field, followed by a finite sequence of
characters. The number of characters in the string is specified by the value in the string-
length field. Monte allows both the size of this length field and that of the characters in
the string to be specified independently of each other.
To represent Pascal-style strings, Monte provides the ‘pstr’ keyword. The syntax for
Pascal-style strings is:

pstr(:optional-length-field-size:character-size) (label, etc.)
The translator below shows the use of the ‘pstr’ instruction without specifying character
or length-field sizes:

translator "standardPascalStringPair"
p s t r hello
p s t r goodbye

The example above represents two Pascal-style strings containing 8-bit-wide characters.
The length counter value is also eight bits. Pascal-style strings of this type are by far the
most common way of representing text on the MacOS (Classic) platform.
The limitation of such strings is that because an 8-bit value is being used to hold the
character count, the string is limited in length to 255 characters (255 being the largest
number which can be represented using 8 bits). This limitation is often overcome by
applications using a larger length field — sixteen or thirty-two bits, for example.
Luckily, Monte can also understand these kinds of string:

translator "wordPascalString" // pstr with 16-bit length field
pstr:16: 8 hello

translator "longPascalString" // pstr with 32-bit length field
pstr:32: 8 hello

Although the length fields of the strings represented above are 16 and 32 bits,
respectively, both strings still use 8-bit characters. Monte can, however, represent
strings with any size of character up to 16 bits:

translator "uPascalString" // pstr with 16-bit characters
pstr:32:1 6 hello

Fixed-length Strings
Often, data structures will contain as string field which is of fixed-length, regardless of
the length of the field’s text. To represent these, Monte allows any string instruction to
be used in a fixed-length form. The syntax for this is:

string-instruction(:optional-character-size)[character-count] (label, etc.)
... where character-count is the fixed length of the string. Examples of fixed-length strings
are shown below

translator "SomeStrings"
string:8[32] thirtyTwoBytes
pstr:8:8[27] twentyEightBytes

Note that for Pascal-style strings the length-counter field is not included in the string’s
character count. This is for the simple reason that Monte allows the length field of a
Pascal-style string to be of a different size than that of the string’s characters.
String lengths are specified in encoded characters. Thus, if the characters in the string
are larger than eight bits, the space occupied by the string will be correspondingly
larger, as the examples below show:

translator "moreStrings"
cstr:16[10] twentyBytes
cstr:8[10] tenBytes

Also, because the length of a fixed-length string is specified in encoded characters,
which Monte converts to Unicode/ISO10646 internally, there will often be no direct
correspondance between the size of the string in the original data, and its length in
characters when editing it with Monte. Monte will, however, ensure that no changes are
made to a fixed-length string which would cause its encoded text to exceed the
maximum length specified in the data translator.

Terminating Strings
Sometimes a structure contains variable-length strings without “normal” terminators
or length counts. Fortunately, Monte can deal with these: if a string instruction is
followed by a constant-value integer instruction, then Monte will terminate the string
when that constant-value is found in the input data.

For example, for a string ending with the 16-bit value “-1”:
translator "terminatedString"

string: 8 text
sint: 1 6 terminator = -1

The terminator may also be the first instruction in a following substructure, if that
instruction is a constant numeric instruction. This is shown below:

translator "substructure"
sint: 1 6 terminator = -1

translator "terminatedString II"
string: 8 text
sub("substructure")

The ‘sub’ instruction, which is described fully later, is used to insert one translator’s data
elements into another.

Constant Strings
Just as constant numeric instructions can be specified, so can constant strings. The
syntax for specifying constant value strings is:

(string instruction) = constant-value
The constant value must be a quoted string, as shown below:

translator "constStringStructure"
sint: 4 a
sint: 4 b
pstr:8:8 hello="Hi There!"
string: 8 goodbye/"text used to say goodbye"="Slán!"

Any type of string instruction can be given a constant value in this way.
Note that the text of the constant value comes after the instruction’s label or description
text.

Structures
Monte provides two instructions for building new data translators from existing
translators. The ‘sub’ instruction is used to create sub-containers in the decomposed
data tree, whereas the ‘insert’ instruction provides a simple “macro-expansion”
mechanism for Monte data translators.

Insertion
To insert the contents of one translator into another, use the ‘insert’ instruction:

insert("name-of-translator")
The name-of-translator parameter, a quoted text string, should be the name of the
translator whose elements you wish to insert into the current translator.

Note It is not possible to assign a label or description to ‘insert’ instructions, simply
because the ‘insert’ instruction does not itself create an entry in the unpacked
data tree.

The example below shows how the insert instruction is used.
translator "rectangle"

sint: 1 6 left
sint: 1 6 top
sint: 1 6 right
sint: 1 6 bottom

translator "button"
insert("rectangle")
pstr:16:16 text

translator "icon"
insert:("rectangle")
sint: 1 6 iconID

In this example, the elements from the ‘rectangle’ translator are inserted into both the
‘button’ and ‘icon’ translators. This way, additional rectangle-related information (such
as properties, see later) may be specified once, in the ‘rectangle’ translator, without
need for repetition in all translators which use rectangles.
Insertion is invaluable when describing multiply-inherited data structures: this topic is
dealt with in more detail in the section “Translator Variants” below.

Encapsulation
To describe substructures within the packed data tree, as opposed to just using a preset
sequence of items, Monte provides the ‘sub’ instruction:

sub("name-of-translator") label, description, etc.

The ‘sub’ instruction creates a container in the output decomposed data tree, and fills
that container with items translated by the specified sub-translator.
As for ‘insert’, previously, name-of-translator is the translator which will describe the
substructure. Unlike ‘insert’, however, it is possible to assign a label and description to
the results of the ‘sub’ instruction.

Encapsulation vs. Insertion
The main difference between the ‘sub’ and ‘insert’ instructions is that the ‘sub’
instruction will create a sub-container for its results in the unpacked data tree, whereas
the ‘insert’ instruction does not. This behaviour is shown in figure 5. overleaf:
Figure 5a. shows the result of using a ‘sub’ instruction to include the ‘rectange’
translator. In the diagram of the packed data tree (Figure 5a., right), the elements from
the “rectangle” translator have been placed within a separate container, called
“bounds” (the label of the ‘sub’ instruction).
In contrast, figure 5b. shows the action of the insert instruction on the same translator.
Note that the insert instruction creates no elements in the unpacked data tree, but
rather causes the elements fromthe “rectangle” translator to be placed directly into the
unpacked data tree. From figure 5b. it should also be obvious why the ‘insert’
instruction cannot be given a label: there is nothing to label.

behaviour of sub and insert instructionsfigure 5.

translator "SubTest"
sub("rectangle") bounds
pstr:8:8 text

bounds

top

left

right

bottom

text

SubTest

translator "Sub"
sint:16 left
sint:16 top
sint:16 right
sint:16 bottom

translator "InsertTest"
insert("rectangle")
pstr:8:8 text

top

left

right

bottom

text

InsertTest

translator "Sub"
sint:16 left
sint:16 top
sint:16 right
sint:16 bottom

b.

a.

Translators

Unpacked Data Tree

Unpacked Data Tree

Translators

Lists
To describe lists of items, Monte provides the ‘list’ and ‘repeat’ keywords. The former
describes a list with any number of items, which may or may not be counted; the latter
describes lists in which the number of items is fixed.

Variable-length Lists
By far the more common type of list is the list with a variable number of items. This is
represented by the ‘list’ instruction:

list(name-of-translator) label, description, etc.

The ‘list’ instruction creates a container—the “list container”— then fills it with further
containers, each of which is described by the specified translator.
The parameter name-of-translator is the name of the translator which will describe the
items of the list. Note that if this translator has variants, then the list can contain items
of different types (ie., a heterogenous list): the variants of the selected translator will
describe each possible list type.
The default behaviour of the ‘list’ instruction is to keep reading as many items as
possible until the input data runs out. This behaviour can be changed, however, by the
use of list counters (see below).

List Counters
To allow more control over lists of items, Monte implements two kinds of list counter,
the ‘zerolistcount’ and ‘listcount’ instructions.

zerolistcount:size(list-label) label, description, etc.
listcount:size(list-label) label, description, etc.

The size parameter is identical to that of the ‘uint’ and ‘sint’ instructions and describes
the width of the list counter field, in bits. The list-label parameter is the label of a
subsequent ‘list’ instruction, and indicates which list’s items are being counted by this
list count instruction.
The ‘listcount’ instruction counts the items of the list from zero (an empty list) to n
(however many items).
Several existing data structures (most notably the MacOS Classic ‘DITL’ resource), adopt
a different numbering for counters, in which the value zero means the list has one item.
To accomodate these, Monte provides the ‘zerolistcount’ instruction.

Fixed-length Lists
In some cases, a data structure may contain a fixed number of objects. Such structures
can be described using the ‘repeat’ instruction:

repeat[number-of-items](name-of-translator) label, description, etc.

As its name implies, the ‘repeat’ instruction creates a list container, then fills it with a
fixed number of whose contents are described by the specified translator. The number-of-
items parameter is used to specify how many items should be present in the list.

As for the ‘list’ instruction, name-of-translator specifies the translator to be used to describe
the list’s items. Note that even though the number of items in the list is fixed, there is no
reason why the type of these items must be the same: if the specified translator has
variants, then these variants may be used to describe the list’s items.

Data Alignment and Structuring
Sometimes, data structures contain data which is necessary to preserve the data
structure itself, rather than convey any information. Items must sometimes be aligned
to a specific multiple of bytes, structures may contain empty fields, or the location or
size of specific elements within the structure needs to be recorded. Fortunately, Monte
can cater for all of these situations.

Aligning Structures
To align following data to a specific bit-multiple, Monte provides the ‘align’ instruction:

align:word-size(:bit-offset) label, description, etc.

When reading data, the ‘align’ command causes a number of bits of data to be ignored
such that the next element read is aligned to a multiple of word-size bits. If a data
structure needs to be aligned to a specific bit within this larger word size, the bit-offset
parameter can be used to specify which bit (0, the default value, means the first bit in
the word).
As an example, to align to an “odd-byte”, use the following:

align:16:8

Locations
To record the position of another element in the data structure, use the ‘location’
instruction:

location:size(target-label) label, description, etc.

The target-label parameter identifies the element whose location is to be recorded (the
“target element”). The location of this element will be expressed as a number of bytes
(not bits!) from the beginning of the packed data block.
When the packed data is being read, the value corresponding to a ‘location’ instruction
is ignored by the current version of Monte. When data is to be re-packed, the correct
location value will be generated and written to the output.

Note If a target element spans more than one byte (ie., a misaligned field), the
location instruction records the location of the first byte containing a any of
the data.

Offsets
Wheras the ‘location’ instruction specifies the absolute position of an element, it is also
possible to represent the relative position of an item, using the ‘offset’ instruction:

offset:size(target-label) label, description, etc.

Unlike ‘location’ (above) which calculates the position of its target from the beginning
of the packed data block, ‘offset’ records the number of bytes between the first byte of
the ‘offset’ instruction’s data and the first byte of the target element’s data (the target
element being that element whose label is target-label).
When the packed data is being read, the value corresponding to an ‘offset’ instruction is
ignored by the current version of Monte. When data is to be re-packed, however, the
correct offset value will be generated and written to the output.

Note The size of the ‘offset’ field itself is also included when the offset is calculated.
For example, the following shows a use of the ‘offset’ instruction:

translator "jumpItem"
offset:32(itemEnd) offsetToResID // value will be 8
uint:32 type
sint: 1 6 resID

Sizeof
To determine the size, in bytes, of an element (which may also be a substructure or list),
the ‘sizeof’ instruction is used:

sizeof:size(target-label) label, description, etc.
sizeof:size label, description, etc.

If present, the parameter inside the brackets is the label of the element whose size is to
be measured. This can be any element at the same level in the data tree as the ‘sizeof’
command. If no target element is specified, then the element to be measured is the
container in which the ‘sizeof’ instruction itself occurs.
‘sizeof’ instructions can be used to explicitly size unterminated strings (see previouslty)
or ‘skip’ fields (see below). If the string or skip field is the subject of a ‘sizeof’
instruction, then the value read for that ‘sizeof’ will be used to calculate the length of the
string, or the amount of data to skip. This holds true even if the ‘sizeof’ field refers not
to the skip or string itself, but to a container which holds the skip or string. The
following example illustrates both cases:

translator "textItem"
uint:16 typeSize
string: 8 theText // unterminated, but see below.

translator "sizeofDemo"
sizeof:16(theItem) // terminates string in container
sub("textItem") theItem
sizeof:16(alternateText) // terminates string at this level
string: 8 alternateText

Incidentally, the last two lines of the “sizeofDemo” translator are equivalent to:
pstr:16:8 alternateText

Unused Fields
The ‘fill’ instruction is used to represent an empty data field:

fill:size label, description, etc.

Data corresponding to a ‘fill’ field is ignored when reading the packed data block, and
written as a series of zero-bits when recreating the packed data.

Skipping Data
The ‘skip’ instruction is used to ignore data in the packed data block:

skip(:size) label, description, etc.

Unlike ‘fill’ (above), the ‘skip’ instruction remembers the data which was read, and
writes it back verbatim when the data block is being recreated.
If the size field of the ‘skip’ instruction is omitted, the remainder of the packed data
block is skipped, unless the ‘skip’ instruction (or its parent container) is the target of a
preceding ‘sizeof’ instruction, in which case the amount of data to be skipped is
calculated based on the value read for the ‘sizeof’ field.

Properties
In order to facilitate a higher-level representation of the input data than that afforded
by the simple decomposition of each data field, Monte provides a set of standard data
properties to which values may be assigned by the data tranlsator. This allows the
decomposed data to be viewed at a higher level, as a set of standard properties, rather
than as a complex list of data fields.
Property values are assigned by the translator, using the ’prop’ instruction:

prop (label) = target-label
prop (label) = "(property definition)"

For example, the translator for ‘DITL’-resource buttons may define the “LocaleText”
(Localisable or user-visible text) property of a given Button sub-object to be the same as
the “title” field of that decomposed Button object, as shown below:

translator "Button" : "DITLItem" ({type}==6)
pstr title
align: 1 6
prop LocaleText = title
prop Name = "Button {Index1} ""{title}"""

…or for a string list, where the element representing the localisable text is different:

translator "StringEntry"
pstr text
prop LocaleText = text

This allows user of the Monte API to change the localisable text for a more than one
type of structure consistently by simply asking to change the “LocaleText” property of
each object. However, to be modified in this way, a property must correspond to the
value (text or numeric) of one data field only: it is not possible to define modifiable
properties using expressions involving more than one data field.

Non-Modifiable Properties
Certain properties of a decomposed data structure correspond directly to data fields in
the decomposed data structure (for instance “LocaleText”). Because of this direct
correspondence, such properties may be modified by callers of the Monte API just as
the data fields themselves can. Properties like this are called Modifiable Properties.
However, there is another kind of property description, such as “Name”, which is
usually built up from one or more other properties or data elements. For example:

translator "Button" : "DITLItem" ({type}==6)
pstr title
align: 1 6
prop LocaleText = title
prop Name = "Button {Index1} ""{title}"""

In this case, changing the value of the property could have no predictable effect on the
underlying data, as it is in many cases impossible to determine which underlying data
elements must change—or by how much— to generate the new value for the property.

Because of this difficulty, Monte considers properties which refer to more than one
data-element to be non-modifiable: once defined, a non-modifiable property cannot be
changed in the way a data-element can. However, a non-modifiable property will
remain coherent with the state of its constituent data elements: a change in a data-
element used by a non-modifiable property will be reflected in the property (changing
the value of “Title” or “LocaleText” will cause the text of the Button’s “Name” property
to change).
Non-modifiable properties are still useful for tools which do not need to modify
structured data, and can also provide additional information to those that do.

Element Insertion in Properties
If a non-modifiable property is created, elements are specified in the quoted string as
shown below:

prop MyProperty = "One: {element1}. Two: {element2}"
Element names in braces (curly brackets) will be replaced by the value of the specified
elements once data has been decomposed. To specify braces themselves, the brace
characters can be doubled up:

prop CoOrdinates = "{{({x1},{y1}),({x2},{y2})}}"
// would read as "{(10,10),(13,20)}"

Property names may be used interchangeably with element names in property
defintions:

pstr:8:8 string
prop Name = "Item {Index1} : {string}"

// would read as "Item 1 : Hello"

Note Because element and property names are interchangeable in this manner, it
is not possible to use the same label for a property and another instruction.

It is also possible to perform self-references in order to extend a property string:
prop Counties = "Limerick, Waterford, Cork, Tipperary"
…
prop Counties = "{Counties}, Kerry, Clare"

A self-reference to a property which has not been previously defined is not an error: an
empty string is used to represent the undefined property in such cases.
Note that property defintions are hierarchical – a sub-tree inherits the property
definitions of its parent. Thus if one container had the property “Path” defined as
“abc/def/g”, then in a subcontainer of that container, the definition:

prop Path = "{Path}/z"
…would redefine Path as “abc/def/g/z” for that sub-container. Although shown using
a self-reference here, this rule applies even when the property definiton is not self-
referential.

Implied Properties
Certain properties become assigned to objects simply because the objects are in a
particular situation. For instance, all items of a list are given an “Index” property which
records the object’s position within the list. In fact, two Index properties are generated:
one, called Index0, starts counting items from zero; the other – Index1 – starts counting
items from one. Thus for the first item, ‘Index1’ is 1 and ‘Index0’ is 0; for the second,
‘Index1’=2 and ‘Index0’=1, and so on.
Properties such as Index1 in this example are called implied properties, because they do
not need to be explicitly set in a translator.

3. Sample Code

Strings
For compatibility, Monte uses MacOS memory handles to pass Unicode/ISO10646-
encoded text strings into and out of the API.
The following functions show how to convert these handles into C++ Standard
Template Library wide-strings (std::wstring).

First, to convert the text of a std::wstring object into an already-allocated handle:
void StringToHandle(const std::wstring& source, Handle dest)

{
long size = static_cast<long>(source.size()) << 1;

SetHandleSize(dest, static_cast<long>(size));

if (size>0 && GetHandleSize(dest) == size)
{
HLock(dest);
BlockMove(source.data(), *dest, size);
HUnlock(dest);
}

}

Second, to convert the contents of a handle back to a std::wstring object:
void HandleToString(Handle source, std::wstring& dest)

{
unsigned long characters

= static_cast<unsigned long>(GetHandleSize(source)) >> 1;

if (characters>0)
{
HLock(source);
dest.assign(reinterpret_cast<wchar_t*>(*source),

 characters);
HUnlock(source);
}

else
dest.clear();

}

ReportingErrors

Error Codes
Error codes (type Error) are used by many of the Monte APIs. The following code
snippet shows how to interpret the fields of the Error structure.

void DumpErrorCode(Error error)
{

// only report if error is present
if (error.l != 0L)

{
gConsoleOutput << std::dec;

// report error severity
switch (error.e.severity)

{
case kInformationOnly:

gConsoleOutput << "{ Information: ";
break;

case kWarning:
gConsoleOutput << "{ Warning: ";
break;

case kErrorSuggestTerminate:
gConsoleOutput << "{ Fatal Error: ";
break;

case kErrorSuggestAbort:
gConsoleOutput << "{ Serious Error: ";
break;

case kError:
gConsoleOutput << "{ Error: ";
break;

}
// dump OS error code and private (Monte) code

std::cout << "(OS Code " << error.e.osError
<<") Error Code " << error.e.privateCode << " }";

}
}

Error Logs
The following code produces a textual error dump from the contents of a Monte
ErrorLog:

void DumpErrors(ErrorLogRef errors)
{

// Only report if an error exists in log
if (ErrorOccurred(errors))

{
short count, i;
count = CountErrors(errors);
Handle file, lineText;
file = NewHandle(0);
lineText = NewHandle(0);
unsigned long lineNumber;
unsigned long errorPosition;
std::wstring line, filename;

for (i= 0; i< count; i++)
{
std::cout << std::endl << std::dec;

// report the error severity
switch (GetIndErrorSeverity(errors, i))

{
case kInformationOnly:

std::cout << "{ Information: ";
break;

case kWarning:
std::cout << "{ Warning: ";
break;

case kErrorSuggestTerminate:
std::cout << "{ Fatal Error: ";
break;

case kErrorSuggestAbort:
std::cout << "{ Serious Error: ";
break;

case kError:
std::cout << "{ Error: ";
break;

}
// report OS error code and private (Monte) code

std::cout <<"(OS Code "<<GetIndErrorCode(errors, i)
<<") Error Code "
<<GetIndPrivateErrorCode(errors, i)

 <<" }";

// Check for a parser error - these have more
// information than normal errors

if (IsIndErrorParserError(errors, i))
{
// extract filename, line and other information
// for parser error
GetIndParserErrorInfo(errors, i, file,

&lineNumber, lineText, &errorPosition);
HandleToString(lineText, line);
HandleToString(file, filename);

// highlight error position on line
if (line.size()>0)

{
if (errorPosition< line.size()-1)

line.insert(errorPosition+1,
std::wstring("<-- "));

else
line.append(std::wstring("<-- "));

line.insert(errorPosition, String(" -->"));
}

std::cout << std::endl << " " << filename
<< " line "<< std::dec << lineNumber
<<std::endl << " “"<<line<<"”";

}
}

// clear supplied error log

FlushErrorLog(errors);

DisposeHandle(file);
DisposeHandle(lineText);
}

Decomposing Binary Data

void ExtractResource(const std::wstring& translatorName,
unsigned long resType, short resID)

{
Handle tworld = NewHandle(0);
Handle tname = NewHandle(0);

// look for translator in “mac/rsrc” world
StringToHandle(translatorName, tname);
StringToHandle(std::wstring("mac/rsrc"), tworld);

// Get the resource to be unpacked
Handle res = Get1Resource(resType, resID);

// only continue if resource was found
if (res != 0L)

{
TranslatorRef theTranslator = 0L;
NodeRef tree;
Error error;

HLock(res);

GetTranslator(tworld, tname, eAnyTranslator,
&theTranslator, &error);

// dump information about call
std::cout << std::endl << "GetTranslator: ";
DumpErrorCode(error);

// create error log object to hold decomposition errors
ErrorLogRef errors = NewErrorLog();

// Unpack the data
DecomposeDataBlock(theTranslator, *res,

GetHandleSize(res), kTextEncodingMacRoman, &tree,
errors);

// dump error information
std::cout << std::endl << "DecomposeDataBlock: ";
DumpErrors(errors);

// don’t need error log anymore
DisposeErrorLog(errors);

// Dump contents of data tree (see later)
DumpDataTree(tree, 1);

// Dispose of data tree
DisposeDataTree(tree, &error);
std::cout << std::endl << "DisposeDataTree: ";

DumpErrorCode(error);

// Release data translator
ReleaseTranslator(&theTranslator, &error);

std::cout << std::endl << "ReleaseTranslator: ";
DumpErrorCode(error);

HUnlock(res);
ReleaseResource(res);
}

DisposeHandle(tname);
DisposeHandle(tworld);
}

Data Trees
The following examples show how to navigate and inspect a decomposed data tree, as
produced by the ‘DecomposeDataBlock’ API call.

Node Information
The following function, ‘DumpNodeInfo’ produces a textual dump of the contents of a
node of the decomposed data tree:

void DumpNodeInfo(NodeRef theNode, short indentLevel)
{
Error error;
ENodeType type;
ENodeDataType dType;
Handle text = NewHandle(0);
std::wstring conv;
Numeric num;
unsigned long val;
Boolean sign, con;

// Cosmetic stuff - ensure that the output is indented
// correctly. Indentation is used by “DumpDataTree”
// function (see later)

if (indentLevel<1)
indentLevel=1;

String indent("\n");
indent.append(String("\r"));
indent.append(indentLevel << 2, Character(' '));
String shortIndent("\n");
shortIndent.append(String("\r"));
shortIndent.append((indentLevel << 2) -3, Character(' '));

// Output the node’s label
std::cout << shortIndent << std::dec << " • ";
GetNodeLabel(theNode, text, &error);
DumpErrorCode(error);
HandleToString(text, conv);
std::cout << "“"<< conv <<"”";

// output the node’s descriptive text
std::cout << " (description=";
GetNodeDescription(theNode, text, &error);

DumpErrorCode(error);
HandleToString(text, conv);
std::cout << "“"<< conv <<"”)";

// Find and report the kind of node this is
GetNodeType(theNode, &type, &error);
DumpErrorCode(error);
switch (type)

{
case eEmptyNode:

std::cout << "[empty, ";
break;

case eDataNode:
std::cout << "[data, ";
break;

case eSubcontainerNode:
std::cout << "[subcontainer, ";
break;

case eContainerNode:
std::cout << "[container, ";
break;

case eListItemNode:
std::cout << "[item, ";
break;

case eConstValueNode:
std::cout << "[const, ";
break;

case eAutomaticNode:
std::cout << "[generated value, ";
break;

case eListNode:
std::cout << "[list, ";
break;

case ePropertyNode:
std::cout << "[property, ";
break;

default:
std::cout << "[**unknown type**, ";
break;

}

GetNodeDataType(theNode, &dType, &error);
DumpErrorCode(error);

if (dType&eReadOnlyData)
{
std::cout << "read-only ";
}

switch (dType&(~eReadOnlyData))
{
case eNoData:

std::cout << "no data]";
break;

case eTextData:
std::cout << "textual data]";
break;

case eNumericData:
IsNodeSigned(theNode, &sign, &error);
DumpErrorCode(error);
if (sign==true)

std::cout << "signed ";
else

std::cout << "unsigned ";
std::cout << "numeric data]";
break;

default:
std::cout << "**unknown data**]";
break;

}

// TEXTUAL NODES
// Get node’s text, display it.
// Report size of text, as Unicode chars and encoded words
// If node’s text is of limited size, report that size

if (dType == eTextData || dType==eReadOnlyTextData)
{

// Get text of node
std::cout << ":" << indent << "Text value=";
GetNodeTextualData(theNode, text, &error);
if (error.l != 0L)

{
DumpErrorCode(error);
}

else
{
HandleToString(text, conv);
std::cout << "“" << conv <<"”";
}

// Get size of text in unicode characters
std::cout << indent << "Text size " << std::dec;
GetNodeTextCharacterCount(theNode, &val, &error);
if (error.l != 0L)

{
DumpErrorCode(error);
}

else
{
std::cout << val <<" unicode chars ";
}

// Get size of text in encoded words - may
// differ substantially from “character count” above

std::cout << "(=";
GetNodeTextEncodedCharacterCount(theNode, &val,

&error);
if (error.l != 0L)

{
DumpErrorCode(error);
}

else
{
std::cout << val <<" encoded words)";
}

// Determine whether or not node’s text is
// constrained by some upper size limit

std::cout << indent << "Limited text size? ";
IsNodeTextConstrained(theNode, &con, &error);
if (error.l != 0L)

{
DumpErrorCode(error);
}

else
{
std::cout << (con? "yes" : "no");
}

// Get character limit and display it
// (even “non-constrained” text nodes have a text
// size limit)

std::cout << " text size limit=";
GetNodeTextMaxEncodedCharacterCount(theNode, &val,

&error);
if (error.l != 0L)

{
DumpErrorCode(error);
}

else
{
std::cout << val << " encoded word(s)";
}

}

// NUMERIC NODES
// Get numeric value, then ask node for
// this value presented as text.

if (dType == eNumericData)
{

// Get node value, display it as hex
std::cout << indent << "Numeric value = ";
GetNodeNumericData(theNode, &num, &error);
if (error.l != 0L)

{
DumpErrorCode(error);
}

else
{
std::cout << std::hex << num.unsignedValue << std::dec;

// Get node’s value as text, by asking the node
// (format may be binary, hex, octal or decimal)
// note that this is the same call as used for
// textual nodes above

std::cout << " (presented as text = ";
GetNodeTextualData(theNode, text, &error);
if (error.l != 0L)

{
DumpErrorCode(error);
}

else
{
HandleToString(text, conv);
std::cout << "“" << conv <<"”)";
}

}
}

// Has node any children? (specifically for containers,
// but all nodes will respond correctly to the request)

GetNodeChildCount(theNode, &val, &error);
DumpErrorCode(error);
if (val>0)

{

gConsoleOutput << indent << " -> " << val << " children";
}

DisposeHandle(text);
}

Properties
Property information is attached to container nodes. The following function shows how
this information can be extracted and displayed:

void DumpPropertyInfo(NodeRef container, short indentLevel)
{
Error error;
Handle text = NewHandle(0);
PropertyRef prop;
std::wstring conv;
Boolean mod;

// cosmetic indentation
if (indentLevel<1)

indentLevel=1;
String indent("\n");
indent.append(String("\r"));
indent.append(indentLevel << 2, Character(' '));

// Find first property, then iterate through properties
// until none are left

GetFirstProperty(container, &prop, &error);
DumpErrorCode(error);
while ((prop.l1|prop.l2) != 0L)

{
std::cout << indent << "property ";
GetPropertyName(prop, text, &error);
DumpErrorCode(error);
HandleToString(text, conv);
std::cout << conv ;

// report whether property is modifiable or not
IsPropertyModifiable(prop, &mod, &error);
DumpErrorCode(error);
if (mod)

{
std::cout << " (modifiable) ";
}

else
{
std::cout << " (non-modifiable) ";
}

// get and display property’s value
GetPropertyValue(prop, text, &error);
DumpErrorCode(error);
HandleToString(text, conv);
gConsoleOutput << " = " << conv;

GetNextProperty(prop, &prop, &error);
}

DisposeHandle(text);
}

Navigating Data Trees
The following code shows how to navigate a decomposed data tree using the Monte
API:

void DumpDataTree(NodeRef root, short indentLevel)
{
NodeRef current = { 0L, 0L};
Error error;
unsigned long count =0;

// Dump properties attached to the root node
DumpPropertyInfo(root, indentLevel);

// Get first child of the root node

 GetChildNode(root, ¤t, &error);

// for each child, dump the information for that node
while ((current.l1|current.l2) != 0L)

{
gConsoleOutput << std::endl;
DumpNodeInfo(current, indentLevel); // see above.

// If this node has children, dump their info too
GetNodeChildCount(current, &count, &error);
if (count)

{
DumpDataTree(current, indentLevel+1);
}

// move to next node
GetNextNode(current, ¤t, &error);
}

}

Re-packing Data Trees
The following code shows how to reproduce a packed data block from a decomposed
data tree:

void RepackData(NodeRef tree)
{
ErrorLogRef errors = NewErrorLog();

FlushErrorLog(errors);
Handle myHand = NewHandle(0L);
std::cout << std::endl << "PackDataBlockToHandle: ";
PackDataBlockToHandle(tree, myHand, errors);
std::cout << "done. ";
DumpErrors(errors);

DisposeErrorLog(errors);
}

4. Programmers’ Reference

Data Types

Numeric
typedef union

{
unsigned long long unsignedValue;
signed long long signedValue;
} Numeric;

All numeric data types in Monte are represented using the 64-bit Numeric data type.
Values of type Numeric may be signed or unsigned depending on context. (See
IsNodeDataSigned function).

Textual data
All textual data in Monte is passed or returned using MacOS memory handles. The text
itself is encoded as Unicode/ISO10646 characters in UTF-2 format (one 16-bit word per
character, or two 16-bit words for surrogate character pairs).
Byte-order of the characters is platform native: for PowerPC based systems, character
words are presented with Most Significant Bytes first in memory.
To find the length of a string, use the Memory Manager GetHandleSize function and
divide the result by two:

long stringCharCount = GetHandleSize(theTextHandle) >>1;

TranslatorRef
typedef unsigned long TranslatorRef;

The opaque TranslatorRef type is used to store a reference to a data translator.
TranslatorRef objects should be initialised to 0, which represents “no translator”.
Certain translator management functions may return a zero-value TranslatorRef.

NodeRef
typedef struct

{
unsigned long l1;
unsigned long l2;
} NodeRef;

The NodeRef type is used to store a reference to a particular node of the decomposed
data tree. NodeRef is an opaque type and should not be modified directly by users of
the Monte API.
A null NodeRef is one in which both long values are zero. This can be detected as
follows:

if ((myNodeRef.l1 | myNodeRef.l2) ==0L)
{
// NULL node...
}

Checking for a null node-reference is the only condition where callers of the Monte API
should access the internal members of NodeRef. Under no circumstances should callers
modify the internal members of a NodeRef value.

PropertyRef
typedef NodeRef PropertyRef;

The PropertyRef type is used to represent properties in the decomposed data tree. The
same rules apply to PropertyRef objects as to NodeRef (above).

ErrRecord
struct ErrRecord

{
unsigned int severity:3, privateCode:13;
signed int osError:16;
};

The ErrRecord structure is used throughout the Monte API to encode error or status
information. The fields of the ErrRecord structure have the following meanings:

ErrRecord Field Meaning
severity severity of the error (see below)
privateCode MonteAPI error code (see Errors for details)
osError Closest equivalent OS Error code.

If no error, warning or other information was returned by an API call, all of these fields
will be zero. Only when all fields are zero has no error occurred: do not test the fields in
isolation to determine if an error has occurred!

Severity codes are used by Monte to distinguish between errors, warnings and mere
informational messages. The possible severity codes are:

Error Severity Meaning/Suggested Action
kInformationOnly This is an information message: no action should

be taken.
kWarning A warning. Should be logged, but there is no need

to act.
kError Error, but benign enough just to be noted for later

remedial action.
kErrorSuggestAbort Serious error: caller should abort their current

operation
kErrorSuggestTerminate Fatal error: caller should quit before bad things

happen.

The privateCode member contains the internal, Monte-specific error code which
describes the error condition. These codes are listed in the section “Errors” (below).
Note that some erroneous operations will set the osError member of the ErrRecord
structure in preference to the privateCode member.
The osError member contains the MacOS error code which occurred. This field may or
may not be zero when an error occurs.

Error
typedef union

{
unsigned long l;
struct ErrRecord e;
} Error;

The Error type is the main means of obtaining the status of calls to the Monte API. The
l member of the Error structure provides a quick means of checking for a no-error
condition:

if (theError.l ==0L)
{
// No error...
}

ErrorLogRef
typedef void* ErrorLogRef;

The ErrorLogRef type is used for calls which can produce multiple errors. ErrorLogRef
represents an Error Log. Error Logs must be created before they are used, and should
be disposed of when no longer needed (See Error Reporting).
Any call requesting an ErrorLogRef parameter may also be passed the special
kNoErrorLogging constant which will supress logging of errors.

Error Codes

General Errors

code meaning
kErrUnknownFault Should never occur. Indicates an

internal fault.

Translator Archiving and Retrieval Errors

code meaning
kErrBadTranslatorReference TranslatorRef does not point to a

valid translator.
kErrUnknownTranslatorWorld Tried to specify a world which is not

present in the translator archive.
kErrUnknownTranslatorName Caller asked for a translator which is

not in archive.
kErrTranslatorIsNotOfCorrectType Caller asked for a translator which is

in archive, but the archive’s version
had different “export” or “loaded”
flags.

kErrTranslatorIsInUse Caller tried to remove a translator
from the archive while it was still
being used. Bear in mind that the
decomposed data tree requires its
corresponding data translators.

kErrNotABaseTranslator Caller passed a variant translator
reference to a base-translator specific
function.

kErrNotAVariantTranslator Caller passed a base translator
reference to a variant-translator
specific function.

kErrTranslatorNotFound Requested translator could not be
found.

kErrWorldIndexOutOfRange Caller passed an invalid world index
to GetIndWorld.

Translator Syntax Errors

code meaning
kErrUnknownVariantHeadTranslator Translator file tried to declare a

variant of a non-existant translator.

kErrMultipleDefaultVariants Translator file tried to declare two or
more default variants (ie., ones with
no rule) for a given translator.

kErrExpectedMonte Translator file did not begin with the
‘monte’ keyword.

kErrExpectedTranslator Expected a translator definition.
kErrKeywordNotValidInHeader Translator file contained a keyword

in the header section (ie., that before
the first ‘translator’ definition) which
was not valid there.

kErrMissingWorldSpecifier The ‘world’ keyword was not
followed by a world specification.

kErrBadWorldSpecifier The ‘world’ keyword was followed
by a badly-formed world
specification.

kErrMissingTranslatorKeyword The keyword ‘translator’ was
expected.

kErrBadTranslatorName A badly-formed translator name
followed the ‘translator’ keyword.

kErrBadVariantSpecification Monte encountered a badly-formed
variant specification.

kErrExpectedInstruction An instruction was expected.
kErrBadRule A translator variant description

contained a badly-formed variant
rule specification.

kErrBadEqualityRule Monte encountered a badly-formed
equality rule in a translator varant
description.

kErrMissingLiteralValue Equality rule specifications must
contain a literal value.

kErrPresentationNotValidHere The data-presentation keywords
(‘oct’, ‘bin’, ‘hex’, ‘dec’) were placed
in front of an instruction which
cannot use them.

kErrBadIntegerInstruction A badly-formed integer instruction
was encountered

kErrIncompleteNoLabel Expected an element name defintion.
kErrIncompleteNoDescription Expected an element description.
kErrInvalidLabel Specified instruction label is badly-

formed or illegal in this position.

kErrInvalidDescription Specified descriptive text is badly-
formed or illegal.

kErrSyntaxError Syntax error.
kErrBadIntegerConstant Translator contained a badly-formed

integer constant definition.
kErrMalformedCharInstruction Translator contained a badly-formed

character instruction.
kErrBadCharacterConstant Translator contained a badly-formed

character constant definition.
kErrMissingSizeSpecifier Instruction must take a size specifier,

but this was omitted in the
translator.

kErrMissingElementReference Instruction must take an element
referece, but this was omitted in
translator.

kErrMissingPstrSizeSpecifier Pascal-string instruction was missing
a size specifier.

kErrMissingSquareBracket Square bracket expected (for ‘repeat’,
fixed-length strings, etc.)

kErrMissingTranslatorName Expected name of translator (for sub-
structures, insertion, lists, etc)

kErrIncompleteStringInstruction String definition was expected
kErrIntSizeSpecBracket Expected size specification or label.
kErrOptionalQuotedString Expected a descriptive text string.
kErrEof End of file reached prematurely.
kErrMissingTranslatorVersion Translator file is missing a translator-

language version.
kErrExpectedLinefeed Expected new line.
kErrMissingCloseParenthesis Missing close-bracket ‘)’.
kErrMissingEquals Missing equals sign ‘=’.
kErrMissingCloseBrace Missing close-curly-bracket ‘}’.
kErrMissingQuotedString Missing quoted string.
kErrMissingSizeSpec Missing data-size specification.
kErrMissingLabel Missing label.
kErrMissingPositiveInteger Missing numeric value
kErrMissingCloseSquareBracket Missing close-square-bracket ‘]’.
kErrMissingAssignment Missing assignment in instruction.

kErrUnrecognisedCharacter Invalid character found in file.
kErrMultiCommentEnd Instructions may not follow on the

same line as the end of a multi-line
comment.

kErrIllegalLineBreakInString Strings may not contain line-breaks.
kErrIllegalLineBreakInPackedArray Packed-character arrays may not

contain line-breaks.
kErrBadUnaryMinus Unary minus not valid in this

position.
kErrTranslatorVersionIsUnsupported The version of the translator

language in the file is not supported
by this version of Monte.

kErrUnsupportedPascalStringSize Character-size specified in a pascal-
style string instruction is not
supported in this version of Monte.

kErrCouldNotOpenFile A file specified by an ‘include’
instruction could not be found, or if
found, could not be opened.

Data Decomposition Errors

code meaning
kErrNotEnoughData Translator did not finish

decomposition before data stream
ran out: either the wrong translator
was used, or the input data is
damaged or not of the format
expected by the data translator.

kErrMismatchedConstantValue The data translator specified a
constant numeric or text value, but
the supplied data didn't contain that
value.

Data Repacking Errors

code meaning
kErrOutputBufferTooSmall Overflow of caller’s output buffer

occurred when repacking.

Navigation and Inspection Errors

code meaning

kErrBadNodeReference Supplied NodeRef does not point to
a valid node.

kErrNodeIsNotAContainer Function was expecting a NodeRef
for a container node.

kErrNodeIsNotAList Function was expecting a NodeRef
which referred to a list.

kErrNodeIsNotWritable The supplied NodeRef referred to a
read-only node.

kErrNodeIsNotNumeric Function expected to be passed a
numeric data node.

kErrNodeIsNotWritableNumeric Supplied NodeRef is numeric, but
not writable (some numeric nodes
generate their own values, and are
thus read-only).

kErrNodeIsNotTextNode Function requires a textual data
node.

kErrNodeHasNoData The supplied node has no data (it
may be a container, or a filler node).

kErrNotRootNode Function call required root node of
the decomposed data tree, but some
child node was passed to it.

Property Errors

code meaning
kErrBadPropertyReference Supplied PropertyRef does not point

to a property
kErrPropertyIsNotModifiable Tried to change the value of non-

modifiable property.

Data Modification Errors

code meaning
kErrValueTooLarge Attempted to set the value of an

integer node to a value which is too
big for the node.

kErrNodeCannotEncodeSuppliedText Attempted to set the value of a text
node to text which cannot be
encoded in the data tree’s current
destination text encoding.

kErrTextIsTooLong Attempted to exceed a textual node’s
maximum text length (remember
that the maximum length is in
encoded words).

kErrCodePointOutOfRange The supplied text contained out-of-
range encoded characters. This
occurs when the text itself is
encodable in the destination
encoding, but the encoded values are
too big to fit in the destination words
(eg. trying to squeeze 8-bit
characters into a 7-bit string).

Warning Codes

Translator Archiving Warnings

code meaning
kWarningAtEndOfTranslatorList Caller tried to move past end of

translator list.

Data Decomposition Warnings

code meaning
kWarningTooMuchData Translator did not have to read all of

the data in supplied stream in order
to create data tree.

Data Inspection Warnings

code meaning
kWarningAtEndOfNodeList Caller tried to move past end of the

node list.
kWarningAtEndOfPropertyList Caller tried to move past end of

property list.
kWarningNodeHadNoParent Caller attempted to get the parent

node of the root node of a tree.
kWarningTargetNotFound For offset/sizeof/location nodes:

could not find the node to be
measured when asked to calculate
node value.

Data Modification Warnings

code meaning
kWarningNodeTextNotEncodable After changing encoding of the data

tree, this node’s text is no longer
encodable.

Error Management Functions
Some functions in the Monte API are capable of returning more than one error or
warning message. To deal with this, the Monte API uses error logs. An error log is a list
of error, warning or status messages as generated by one or more API calls.
Error logs are opaque objects, represented by the ErrorLogRef data type.
The following functions are used to create, manage and inspect error logs:

NewErrorLog
pascal ErrorLogRef NewErrorLog(void);

Creates a new Error Log. Use the returned ErrorLogRef to pass to functions which may
return more than one warning or error.
Errors below the severity "kError" will not be logged to this log.
This function returns kNoErrorLog if an error occurs. The most likely cause of an error
is a low-memory condition.

NewErrorLogThreshold
pascal ErrorLogRef NewErrorLogThreshold(enum EErrorSeverity

lowerThreshold);
Creates a new error log. The returned ErrorLogRef can be passed to functions which
may return more than one warning or error.
Errors below the severity specified in lowerThreshold will not be logged to the new
error log. This function is useful for operations where the end user wishes to receive
warnings as well as errors (by default, error logs as created with NewErrorLog will
accept on messages of greater severity than kError).
This function returns kNoErrorLog if an error occurs. The most likely cause of such a
failure is a low-memory condition.

DisposeErrorLog
pascal void DisposeErrorLog(ErrorLogRef errors);

This function disposes of an error log, and releases the memory used internally for the
log’s items.
The input ErrorLogRef should not be used again after calling DisposeErrorLog.

FlushErrorLog
pascal void FlushErrorLog(ErrorLogRef errors);

This function removes all errors, warnings and messages from an error log, but keeps
the internal log object for further use.

ErrorOccurred
pascal Boolean ErrorOccurred(ErrorLogRef errors);

This function returns true if log contains at least one entry whose severity is kError or
higher.

ErrorLevelOccurred
pascal Boolean ErrorLevelOccurred(ErrorLogRef errors, enum

EErrorSeverity severity);
This function returns true if the log “errors” contains a message at least as serious as the
severity code“severity”.
A false result from ErrorLevelOccured does not mean that the error log is empty: there
may be messages in the log whose severity was below the selected level.

CountErrors
pascal short CountErrors(ErrorLogRef errors);

This function returns the number of entries in the error log. Testing the result of
CountErrors against zero (or a previous known error count) is an acceptable method of
determining whether a function call has produced errors.

GetIndErrorCode
pascal OSErr GetIndErrorCode(ErrorLogRef errors, short index);

Use this function to return the MacOS error code for an individual entry in an error log.
Be aware that not all entries in the log will return an OS error code: a warning, for
instance, could simply return noErr.
index should be between zero and the result of CountErrors (see above) minus one.

GetIndPrivateErrorCode
pascal short GetIndPrivateErrorCode(ErrorLogRef errors, short index);

This function returns the internal Monte error code for an individual entry in an error
log. Be aware that not all entries in the log will return an Monte error code, although
most do. Sometimes, the OS error code is sufficient to indicate the problem.
index should be between zero and the result of CountErrors (see above) minus one.

GetIndErrorSeverity
pascal enum EErrorSeverity GetIndErrorSeverity(ErrorLogRef errors,

short index);
This function is used to determine how severe a given log message is (see “ErrRecord”
in “Data Types” above for the severity codes).
index should be between zero and the result of CountErrors (see above) minus one.

IsIndErrorParserError
pascal Boolean IsIndErrorParserError(ErrorLogRef errors, short index

);
This function returns true if an entry in the error log is a parser error. Parser errors
contain additional information which can be extracted using GetIndParserErrorInfo (see
below).
index should be between zero and the result of CountErrors (see above) minus one.

GetIndParserErrorInfo
pascal void GetIndParserErrorInfo(ErrorLogRef errors, short index,

Handle filename, unsigned long* lineNumber, Handle lineText,
unsigned long* errorPosition);

This function returns additional information for parser errors. The return values are as
follows:

parameter name description
filename will be filled with name of file containing error
lineNumber will contain line number of error
lineText will be filled with the text of the offending line
errorPosition will contain the location of the error.

Note that the handles lineText and filename should be created by the caller before
calling GetIndParserErrorInfo: GetIndParserErrorInfo will resize and fill these handles
as appropriate, but they remain the property of the caller (ie., the caller is responsible
for their disposal).
index should be between zero and the result of CountErrors (see above) minus one.

IsIndErrorNodeError
pascal Boolean IsIndErrorNodeError(ErrorLogRef errors, short index);

This function returns true if an entry in the error log has an attached node reference
(for example, the node in the tree at which the error occurred). This additional node
reference can be obtained by calling GetIndNodeErrorInfo (below).
index should be between zero and the result of CountErrors (see above) minus one.

GetIndNodeErrorInfo
pascal void GetIndNodeErrorInfo(ErrorLogRef errors, short index,

NodeRef* returnedNode);
This function returns the node reference associated with an error log entry. The
returned node reference may be used just as any other node reference.
index should be between zero and the result of CountErrors (see above) minus one.

LogError
pascal void LogError(ErrorLogRef whereTo, OSErr macErrorCode, short

privateErrorCode, enum EErrorSeverity severity);
The LogError function allows an error message to be written into an error log.
While this function is provided primarily for authors of feeder and flush functions (for
data decomposition and repacking, respectively), it may also be of use in other areas.

General Functions

InitMonte
pascal void InitMonte(void);

This function must be called before using any other Monte API call. Failure to do so will
cause severe memory corruption.

TerminateMonte
pascal void TerminateMonte(void);

This function disposes of the Monte library’s internal data structures. Calling
TerminateMonte is only necessary if the calling process is not also terminating.

Translator Management Functions

AddTranslators
pascal void AddTranslators(const FSSpec* where, ErrorLogRef error);

The AddTranslators function adds translators in the file specified in the parameter
‘where’ to the internal transaltor archive. Once added to the archive, translators may be
accessed and used by other Monte API functions.

DisposeAllTranslators
pascal void DisposeAllTranslators();

Call this function to remove all translators from the internal translator archive. After
calling this function, no translators will be available for use by the Monte library unless
a subsequent call to AddTranslators (above) is made.

DisposeNamedTranslators
pascal void DisposeNamedTranslator(Handle world, Handle name, Error*

error);
Use this function to remove a particular translator from the translator archive.

DisposeTranslatorsInFile
pascal void DisposeTranslatorsInFile(const FSSpec* theFile, Error*

error);
This function is used to remove from the archive all translators which originated in the
file specified in ‘theFile’. This function is useful if the caller detects (or implicitly knows)
that the file has been moved, deleted, or otherwise modified.

DisposeTranslatorsInWorld
pascal void DisposeTranslatorsInWorld(Handle world, Error* error);

This function is used to remove from the archive all translators which belong to the
translator world specified in the world with the name specified in ‘world’ (as a sequence
of Unicode/ISO 10646 characters).

GetWorldCount
pascal short GetWorldCount(Error* error);

Returns the number of translator worlds in the translator archive.

GetIndWorld
pascal void GetIndWorld(short index, Handle retunedWorld,

Error* error!);
Given an index into the list of worlds in the translator archive, this function returns the
name of the world at that index. This returned world may be passed to any other
translator management function which requires a world specification.
‘index’ should be between zero and the value returned by GetWorldCount minus one.

GetTranslator
pascal void GetTranslator(Handle world, Handle name, enum

ETranslatorType typeToFind, TranslatorRef* returnedTranslatorRef,
Error* error);

This function is used to retrieve a translator from a given translator world within the
translator archive. The translator is specified by name. If a translator is found, its
TranslatorRef is returned in the ‘returnedTranslatorRef’ parameter. Note that it is the
responsibility of the caller to release this translator reference when it is no longer
required.

‘typeToFind’ is used to reject certain translators, as shown below:

typeToFind meaning
ePrivateLoadedTranslator Translator must be loaded and not

be an ‘export’ translator.
eExportLoadedTranslator Translator must be loaded and must

be a public (‘export’) translator.
ePrivateUnloadedTranslator Translator must not be loaded and

must not be an ‘export’ translator
eExportUnloadedTranslator Translator must not be loaded and

must be an ‘export’ translator.
eAnyTranslator Any translator of the correct name,

whether in memory or not, or
export or private.

eAnyLoadedTranslator Any translator, so long as it is
already in memory.

eAnyUnloadedTranslator Any translator, so long as it is not
already in memory.

eAnyExportTranslator Translator must be an ‘export’
translator.

eAnyPrivateTranslator Translator must not be an ‘export’
translator.

note: GetTranslator will attempt to release the existing translator object pointed to
by ‘returnedTranslatorRef’ if the value of ‘returnedTranslatorRef’ is not 0L
when this function is called. Thus, if this is the first time calling GetTranslator,
the ‘returnedTranslatorRef’ TranslatorRef must be initialised to 0L.

GetFirstTranslator
pascal void GetFirstTranslator(Handle world, enum ETranslatorType

typeToFind, TranslatorRef* returnedTranslatorRef, Error* error);
Returns the first translator in the world whose name is specified in ‘world’ and is of the
type specified by ‘typeToFind’ (see GetTranslator for meaning of ‘typeToFind’ values).

note: GetFirstTranslator will attempt to release the existing translator object
pointed to by ‘returnedTranslatorRef’ if its value is not 0L when this function
is called. Thus, if this is the first time calling GetFirstTranslator, the
‘returnedTranslatorRef’ TranslatorRef must be initialised to 0L.

GetNextTranslator
pascal void GetNextTranslator(TranslatorRef thisTranslator, enum

ETranslatorType typeToFind, TranslatorRef* returnedTranslatorRef,
Error* error);

Returns the next translator in the archive after the translator specified by
‘thisTranslator’ whose type specified by ‘typeToFind’ (see GetTranslator for meaning of
‘typeToFind’ values).

ReleaseTranslator
pascal void ReleaseTranslator(TranslatorRef* theTranslator, Error*

error);
Call ReleaseTranslator when a translator is no longer required. Doing so will allow
Monte to perform internal garbage-collection and save memory.

note: Never pass an invalid TranslatorRef to this function. Doing so may seriously
corrupt Monte’s internal data structures.

GetTranslatorName
pascal void GetTranslatorName(TranslatorRef theTranslator, Handle

returnedName, Error* error);
Returns the name of the translator specified in ‘theTranslator’. The ‘returnedName’
handle must be a valid memory handle (do not pass in NULL), which Monte will resize
and fill as appropriate.

IsTranslatorLoaded
pascal void IsTranslatorLoaded(TranslatorRef theTranslator, Boolean*

isLoaded, Error* error);
Returns true if the translator specified has been loaded into memory. For efficiency
reasons, translators are not loaded and parsed until they are actually required to
decompose data.
Very few applications will need to call this function.

GetTranslatorLocation
pascal void GetTranslatorLocation(TranslatorRef theTranslator, FSSpec*

returnedLocation, Error* error);
Returns the location of the file in which the specified translator resides.

GetTranslatorType
pascal void GetTranslatorType(TranslatorRef theTranslator, enum

ETranslatorType* returnedType, Error* error);
Returns the type of the specified translator - loaded or unloaded, export or private. The
returned type may be inspected by AND-masking with the
ePrivateOrExportTranslatorState or eLoadedOrUnloadedTranslatorState masks, as
illustrated in the code sample below:

GetTranslatorType(myTranslator, &type, &error);
switch (type&ePrivateOrExportTranslatorState)

{
case ePrivateTranslator:

// private (non-’export’ translator)

case eExportTranslator:
// export translator

}
switch (type & eLoadedOrUnloadedTranslatorState)

{
case eLoadedTranslator:

// translator is in memory

case eUnloadedTranslator:
// translator is not in memory.

}

Most applications will never need to call the GetTranslatorType function.

GetFirstTranslatorVariant
pascal void GetFirstTranslatorVariant(TranslatorRef headTranslator,

TranslatorRef* returnedVariantTranslator, Error* error);
This function returns the first variant of the translator specified in ‘headTranslator’. The
first variant of that translator will be returned in ‘returnedVariantTranslator’. It is the
responsibility of the caller to release this returned reference when it is no longer
required.

note: GetFirstTranslatorVariant will attempt to release the existing translator
object pointed to by ‘returnedVariantTranslator’ if the value of
‘returnedVariantTranslator’ is not 0L when this function is called (see
ReleaseTranslator). TranslatorRef objects must be initialised to 0L before
attempting to use them.

If the translator specified in ‘headTranslator’ has no variants, then the returned variant
translator reference will be null.

GetVariantHeadTranslator
pascal void GetVariantHeadTranslator(TranslatorRef variantTranslator,

TranslatorRef* returnedHeadTranslator, Error* error);
This function is used to find the base translator of a given variant translator. The base,
or variant head, translator will be returned in ‘returnedHeadTranslator’. It is the
responsibility of the caller to release this returned reference when it is no longer
required.

note: GetVariantHeadTranslator will attempt to release the existing translator
object pointed to by ‘returnedHeadTranslator’ if the value of
‘returnedHeadTranslator’ is not 0L when this function is called (see
ReleaseTranslator). For this TranslatorRef objects must be initialised to 0L
before attempting to use them.

Data Extraction & Creation Functions

DecomposeDataBlock
pascal void DecomposeDataBlock(TranslatorRef translator, void *

dataBlock, unsigned long dataLength, TextEncoding dataTextEncoding,
NodeRef* returnedTreeRoot, ErrorLogRef errors);

This function is used to decompose a block of data into a decomposed data tree.
The parameter ‘translator’ should be a valid TranslatorRef (see GetTranslator) referring
to a data translator which describes the data to be decomposed.
‘dataTextEncoding’ is a MacOS Text Encoding Manager constant which indicates how 8-
bit text is encoded in the packed data block. For example, when decomposing Japanese
text, this constant would be kTextEncodingMacJapanese; for English and most Western
European languages, it would be kTextEncodingMacRoman.
The root data node of the decomposed tree is returned in the NodeRef pointed to by
‘returnedTreeRoot’. Note that even if errors occur, the returned NodeRef may be valid,
and hence will need disposal.
The parameter ‘dataBlock’ should point to the beginning of the block to be
decomposed, and ‘dataLength’ should contain the length of the packed data block in
full.
Errors in decomposition will be logged into the error log ‘errors’. To supress logging of
errors, the constant kNoErrorLogging may be passed in place of a valid ErrorLogRef.

CreateEmptyDataTree
pascal void CreateEmptyDataTree(TranslatorRef translator, NodeRef*

returnedTreeRoot, ErrorLogRef errors);
The CreateEmptyDataTree function is used to create a default-value data tree which
corresponds to the translator ‘translator’. A reference to the returned tree’s root node is
passed back in the NodeRef pointed to by the parameter ‘returnedTreeRoot’.
The data tree created by this function will usually have all of its data nodes set to their
default values, as listed below:

node type default value
non-constant numeric zero
non-constant strings empty string

constant numeric constant value
constant string constant value
list (“list” instruction) empty list (no items)
fixed-length list (“repeat” instruction) n items, each of which is an empty

data tree corresponding to the list’s
item translator.

substructures (“sub” instruction) an empty data tree corresponding to
the substructure’s translator

The translator ‘translator’ may also be a variant translator: in this case, the created data
tree will have some data nodes set to whichever values are necessary for the created
data structure to conform with the variant translator’s rules.

Data-tree Navigation Functions

GetNextNode
pascal void GetNextNode(NodeRef thisNode, NodeRef *returnedNextRef,

Error* error);
This function returns the next node at same level of the data tree as ‘thisNode’.
GetNextNode will skip empty nodes (those with no data, such as alignment or padding
fields). To iterate over empty nodes as well as data nodes, use GetNextNodeByType.

GetChildNode
pascal void GetChildNode(NodeRef thisNode, NodeRef *returnedChildRef,

Error* error);
This function returns the first child node of the container node ‘thisNode’.
GetChildNode will skip empty nodes (those with no data, such as alignment or padding
fields). To iterate over empty nodes as well as data nodes, use GetChildNodeByType.

GetParentNode
pascal void GetParentNode(NodeRef thisNode, NodeRef

returnedParentRef, Error error);
This function returns parent node of the node ‘thisNode’. By defintion, the node in
‘returnedParentRef’ will be a container node of some type (unless of course,
GetParentNode is called for a node with no parent, such as the root node of the data
tree).

GetNextNodeByType
pascal void GetNextNodeByType(NodeRef thisNode, enum ENodeType

includeThese, NodeRef *returnedNextRef, Error* error);
Use this function to iterate over all nodes at a given level of the data tree. The
enumeration ‘includeThese’ represents the type of nodes to be included. Possible values
are:

‘includeThese’ value meaning
eAllNodes Any node
eEmptyNode Any node without editable data
eContainerNode Any type of container node.
eNonEmptyNode Any node with some kind of data

(also includes container nodes).

GetChildNodeByType
pascal void GetChildNodeByType(NodeRef thisNode, enum ENodeType

includeThese, NodeRef *returnedChildRef, Error* error);
Returns the first child of the node ‘thisNode’ whose data type is of the class
‘includeThese’. Values of ‘includeThese’ are as for GetNextNodeByType above.

Data-tree Inspection

GetNodeType
pascal void GetNodeType(NodeRef thisNode, enum ENodeType*

returnedType, Error* error);
Returns the type of the data-tree node ‘thisNode’. ‘returnedType’ is a combination of
one or more of the following flags:

‘returnedType’ node type
eDataNode Text or numeric data node.
eSubcontainerNode Node represents a subcontainer (for

example, the result of the ‘sub’
instruction).

eListItemNode Node represents a list item. Bear in
mind that list item nodes are also
container nodes.

eConstValueNode Node represents a constant value.
eAutomaticNode Node’s value is automatically

generated (eg. result of ‘sizeof’,
‘offset’ or ‘location’ instructions).

eListNode Node represents a list. This node will
have zero or more child nodes of
type ‘eListItemNode’.

GetNodeLabel
pascal void GetNodeLabel(NodeRef thisNode, Handle returnedLabel,

Error* error);
This function returns the label attached to the data-tree node ‘thisNode’. The label,
which is a text-string, normally comes from the data translator instruction which
generated the node, except for list element nodes, whose label is the name of the
translator describing the list element.
Not all nodes will have a label: those that do not will simply empty the handle
‘returnedLabel’.
Note that the handle ‘returnedLabel’ and its contents remain the property of the caller
of this function, and thus the caller must eventually dispose of this handle.

GetNodeDescription
pascal void GetNodeDescription(NodeRef thisNode, Handle

returnedDescription, Error* error);
This function returns the descriptive text attached to the data-tree node ‘thisNode’. This
description comes from the data translator instruction which generated the node. The
descriptive text is intended for user-interface purposes, and should be used in
preference to a node’s label in situations where a description of the node is required (for
example, the caption for an editable-text field for editing the node’s value).
Not all nodes have descriptive text attached to them. In such situations, the
‘returnedDescription’ handle is emptied. On dectecting this, a user-interface module
may fall-back to using the node’s label text, if present.
Note that the handle ‘returnedDescription’ and its contents remain the property of the
caller of this function, and thus the caller must eventually dispose of this handle.

GetNodeChildCount
pascal void GetNodeChildCount(NodeRef thisNode, unsigned long

returnedChildCount, Error error);
This function returns the number of nodes contained as children of the node ‘thisNode’.
GetNodeChildCount will return the number of child nodes in ‘returnedChildCount’.
Zero is returned for nodes which are not containers (or for containers which just don’t
have any child-nodes).

GetNodeDataType
pascal void GetNodeDataType(NodeRef thisNode, enum ENodeDataType*

returnedType, Error* error);
GetNodeDataType returns the kind of data which is contained in the node ‘thisNode’.
This is not to be confused with the type of the node itself (see GetNodeType). Possible
return values, in ‘returnedType’, are:

‘returnedType’ value meaning
eNoData Node contains no data. Note that this

doesn’t necessarily make the node an
empty node: container nodes, for
example, will return ‘eNoData’.

eTextData Node’s data is text.
eNumericData Node’s data is numeric.
eReadOnlyNumericData Nodes’s data is numeric, but may not

be modified.
eReadOnlyTextData Node’s data is textual, but may not

be modified.

GetNodeNumericData
pascal void GetNodeNumericData(NodeRef thisNode, Numeric*

returnedValue, Error* error);
This function returns the numeric data of a data node, providing of course that the node
contains numeric data. ‘returnedValue’ is a 64-bit value representing the node’s value.
For signed data nodes (see IsNodeSigned) with negative values, ‘returnedValue’ will be
sign-extended to 64 bits, regardless of the data node’s actual width.

IsNodeSigned
pascal void IsNodeSigned(NodeRef thisNode, Boolean* isSigned, Error*

error);
This function reports whether or not the numeric node ‘thisNode’ contains signed data.
The result ‘isSigned’ is true if the data is a 2’s-complement signed value, and false if the
value of the node is a simple unsigned magnitude.

GetNodeTextualData
pascal void GetNodeTextualData(NodeRef thisNode, Handle returnedValue,

Error* error);
This function returns the value of the data node ‘thisNode’ in a textual form. If
‘thisNode’ is a numeric node, the node’s value is converted to a text string according to
the node’s data presentation.

GetNodeTextCharacterCount
pascal void GetNodeTextCharacterCount(NodeRef thisNode, unsigned long

returnedLength, Error error);
This function returns the length of a node’s text in Unicode/ISO10646 characters. Note
that this character count may be smaller that the number of characters required to
encode the node’s text using the data tree’s text encoding scheme. The number of
encoded characters required to represent the node’s text can be obtained by calling
GetNodeTextEncodedCharacterCount (qv).
Nodes containing no textual data will return the error kErrNodeIsNotTextNode.

GetNodeTextEncodedCharacterCount
pascal void GetNodeTextEncodedCharacterCount(NodeRef thisNode, unsigned

long *returnedLength, Error* error);
This function returns the number of characters required to represent a node’s text when
encoded using the data tree’s text encoding scheme.
If used with nodes which do not represent textual data, this function will return the
error kErrNodeIsNotTextNode.

IsNodeTextConstrained
pascal void IsNodeTextConstrained(NodeRef thisNode, Boolean

isConstrained, Error error);
This function is used to report whether or not the textual data represented by a node
(‘thisNode’) must be less than a certain length.
If the node’s text is limited, IsNodeTextConstrained returns a “true” value in the
Boolean variable pointed to by ‘isConstrained’; otherwise, the value at ‘isConstrained’
will be set to zero.
Note that all Pascal-style strings are by definition constrained to a maximum length (the
maximum value which can be contained in their “length” field). Thus, nodes
representing Pascal-style strings will return a value of “true” in ‘isConstrained’.
If used with nodes which do not represent textual data, this function will return the
error kErrNodeIsNotTextNode.

GetNodeTextMaxEncodedCharacterCount
pascal void GetNodeTextMaxEncodedCharacterCount(NodeRef thisNode,

unsigned long *returnedLength, Error* error);
For nodes whose text is constrained in length, this function will return the maximum
number of encoded words allowed for the node’s text. The long pointed to by
‘returnedLength’ will contain this maximum character count.

Note that this function will return a correct upper character count even for textual data
nodes which are not explicitly constrained in length. For these nodes, the value 231-1 is
returned, which is the largest possible length for a string in Monte.
If used with nodes which do not represent textual data, this function will return the
error kErrNodeIsNotTextNode.

GetFirstProperty
pascal void GetFirstProperty(NodeRef thisContainerNode, PropertyRef

returnedProperty, Error error);
The GetFirstProperty function returns a property reference (the PropertyRef pointed
to by ‘returnedProperty’) for the first property of the container node
‘thisContainerNode’. If the container has no properties attached to it, a null property
reference is returned.
This function may only be called with container nodes; calling with a non-container
NodeRef will result in the kNodeIsNotContainer error being returned. Bear in mind
that list items are also containers, and thus will posses properties.

GetNextProperty
pascal void GetNextProperty(PropertyRef thisProperty, PropertyRef

returnedNextProperty, Error error);
When passed a property reference belonging to a container node (such as that returned
by GetFirstProperty, above), this function returns a reference to the next property of
the container. If there are no more properties attached to the container, a null property
reference is returned, along with the warning kWarningAtEndOfPropertyList.

GetPropertyByName
pascal void GetPropertyByName(NodeRef thisContainerNode, Handle name,

PropertyRef *returnedProperty, Error* error);
This function is used to find a property attached to a container by its name. The name of
the required property is passed in the handle ‘name’. If the container does not posses
the required property then a null property reference is returned.
Note that the handle ‘name’ and its contents remain the property of the caller of this
function, and thus the caller must eventually dispose of this handle.

GetPropertyName
pascal void GetPropertyName(PropertyRef thisProperty, Handle

returnedName, Error* error);
Given a property reference, this function returns the name of that property in the
handle ‘returnedName’.
Note that the handle ‘returnedName’ and its contents remain the property of the caller
of this function, and thus the caller must eventually dispose of this handle.

GetPropertyValue
pascal void GetPropertyValue(PropertyRef thisProperty, Handle

returnedValue, Error* error);
Given a property reference, this function returns the value of that property in the
handle ‘returnedValue’.
All property values are textual: numeric values will be converted to text according to
their originating data node’s data presentation.
Note that the handle ‘returnedValue’ and its contents remain the property of the caller
of this function, and thus the caller must eventually dispose of this handle.

IsPropertyModifiable
pascal void IsPropertyModifiable(PropertyRef thisProperty, Boolean*

isModifiable, Error* error);
This function determines whether or not a property may be directly modified.
Modifiable properties are those which correspond directly to a data node within the
container. This data node containing the property’s value may be found by calling
GetPropertyValueSource (below).

GetPropertyValueSource
pascal void GetPropertyValueSource(PropertyRef thisProperty, NodeRef*

returnedNodeRef, Error* error);
The GetPropertyValueSource function returns a reference to the data node which
contains the value of the property ‘thisProperty’. This function can only provide this
information for modifiable property nodes (see IsPropertyModifiable, above).
If the property ‘thisProperty’ is not a modifiable property, the error
kErrPropertyIsNotModifiable is returned, and the node reference at ‘returnedNodeRef’
is set to a null node reference.

GetDataTreeTextEncoding
pascal void GetDataTreeTextEncoding(NodeRef rootNode, TextEncoding
returnedEncoding, Error error);
This function returns the text-encoding scheme which the specified data-tree uses to
encode text with a character width of 8 bits or smaller. Unless subsequently changed
(see SetDataTreeTextEncoding, below), this function will return the same text encoding
value as originally passed to DecomposeDataBlock.

This function can return one of the following errors:

error cause
kErrNotRootNode The supplied node reference does

not refer to the root of a data tree:
only the root node of a data tree
contains the text encoding
information for the data tree.

kErrBadNodeReference The supplied node reference does
not refer to a valid node.

CalculatePackedDataSize
pascal void CalculatePackedDataSize(NodeRef dataTreeRoot, unsigned

long* calculatedSize, Error* error);
This function is used to determine the packed size of a decomposed data tree.
‘dataTreeRoot’ is a reference to the root node of the tree whose size is to be calculated.
The calculated size, in bytes, is returned in the longword pointed to by ‘calculatedSize’.
Note that it is not necessary to call this function before PackDataBlockToHandle (qv), as
the PackDataBlockToHandle function performs the size calculation anyway.

Data Modification Functions

SetNodeNumericData
pascal void SetNodeNumericData(NodeRef thisNode, Numeric newValue,

Error* error);
This function is used to set the value of a data node to the value in the Numeric variable
‘newValue’. The node ‘thisNode’ must be a writable numeric data node
This function can return one of the following error codes:

error cause
kErrNodeIsNotWritableNumeric The supplied node reference does

not refer to a writable numeric data
node.

kErrBadNodeReference The supplied node reference does
not refer to a valid node.

SetNodeTextualData
pascal void SetNodeTextualData(NodeRef thisNode, Handle newValue,

Error* error);
This function is used to set the value of a data node to the value in the handle
‘newValue’. The node ‘thisNode’ must be a writable data node, but may be textual or
numeric. For numeric nodes, the text in ‘newValue’ is converted a number according to
the rules below:

newValue text value is…
$xxxxx… (x=0…9, a…f or A…F) Hexadecimal
\xxxxx… (x=0…7) Octal
%xxxxx… (x=0 or 1) Binary
xxxxx… (x=0…9) Decimal

Negative numeric values can be indicated by a leading ‘-’ character (eg. “-$20”, “-32”,
“-\40”, “-%10000”).
Note that the handle newValue remains the property of the caller, and thus the caller is
responsible for its eventual disposal.
This function can return any of the following error codes:

error cause
kErrValueTooLarge The supplied numeric value is too

large to be represented by the data
node.

kErrNodeCannotEncodeSuppliedText The supplied text cannot be encoded
in the data tree’s current destination
text encoding.

kErrTextIsTooLong The supplied text, when encoded,
exceeds the textual node’s maximum
text length (remember that the
maximum length is always expressed
in encoded words).

kErrCodePointOutOfRange The supplied text contained out-of-
range encoded characters. This
occurs when the supplied text is itself
encodable in the destination
encoding, but the encoded values are
too big to fit in the destination words
(eg. trying to squeeze 8-bit
characters into a string of 7-bit
characters).

kErrNodeIsNotWritable The supplied NodeRef referred to a
read-only node.

kErrBadNodeReference The supplied NodeRef doesn’t refer
to a valid node.

SetPropertyValue
pascal void SetPropertyValue(PropertyRef thisProperty, Handle

newValue, Error* error);
The SetPropertyValue function changes the value of the modifiable property
‘thisProperty’. Actually, it is the data node which provides the property’s value that is
changed (see GetPropertyValueSource).
For numeric-value properties, the text in ‘newValue’ is converted to a number
according to the rules below:

newValue text value is…
$xxxxx… (x=0…9, a…f or A…F) Hexadecimal
\xxxxx… (x=0…7) Octal
%xxxxx… (x=0 or 1) Binary
xxxxx… (x=0…9) Decimal

Negative numeric values can be indicated by a leading ‘-’ character (eg. “-$20”, “-32”,
“-\40”, “-%10000”).
Note that the handle newValue remains the property of the caller, and thus the caller is
responsible for its eventual disposal.
This function can return any of the following error codes:

error cause
kErrValueTooLarge The supplied numeric value is too

large to be represented by the data
node.

kErrNodeCannotEncodeSuppliedText The supplied text cannot be encoded
in the data tree’s current destination
text encoding.

kErrTextIsTooLong The supplied text, when encoded,
exceeds the textual node’s maximum
text length (remember that the
maximum length is always expressed
in encoded words).

kErrCodePointOutOfRange The supplied text contained out-of-
range encoded characters. This
occurs when the supplied text is itself
encodable in the destination
encoding, but the encoded values are
too big to fit in the destination words
(eg. trying to squeeze 8-bit
characters into a string of 7-bit
characters).

kErrPropertyIsNotModifiable The supplied PropertyRef refers to a
read-only property.

kErrBadPropertyReference The supplied PropertyRef doesn’t
refer to a valid property.

SetDataTreeTextEncoding
pascal void SetDataTreeTextEncoding(NodeRef rootNode, TextEncoding

newEncoding, ErrorLogRef errors);
This function is used to change the text-encoding scheme to be used when re-packing
the data tree whose root node is referred to by ‘rootNode’. The new, desired, text
encoding is specified in ‘newEncoding’ – the values for ‘newEncoding’ correspond
directly to those used by the MacOS Text Encoding Converter library.
Any items whose text is found to be unrepresentable under the new text encoding will
be logged in the error long ‘errors’. To extract the node references of the nodes with
unencodable text, use the IsIndErrorNodeError and GetIndNodeErrorInfo functions
described previously.
SetDataTreeTextEncoding only reports unencodable text nodes; it does not modify the
text of these nodes. It is the responsibility of the caller to remedy any unencodable text
before attempting to re-pack a data block.

Data Packing and Disposal Functions

PackDataBlockToHandle
pascal void PackDataBlockToHandle(NodeRef dataTreeRoot, Handle

destination, ErrorLogRef errors);
To convert a decomposed data tree back into a packed data block, use the
PackDataBlockToHandle function. ‘dataTreeRoot’ is the root node of the tree to be
packed.
‘destination’ is an already-allocated handle to a memory block in which the packed data
structure will be placed. It is not necessary for the caller to calculate the size of the
packed data, or to set the handle size, before calling this function, as
PackDataBlockToHandle will resize the supplied handle to fit the resulting data block.
Note that the handle ‘destination’ remains the property of the caller. It is the caller’s
responsibility to dispose of this handle when it is no longer required.
Any errors encountered during packing are logged to the error log ‘errors’. This log
may contain the following errors:

error code cause
kErrOutputBufferTooSmall The packed data overran the buffer.

This error indicates an internal
failure.

kErrNotRootNode Supplied node reference is not the
root of the data tree.

kErrBadNodeReference Supplied node reference does not
point to a valid node.

DisposeDataTree
pascal void DisposeDataTree(NodeRef theTree, Error* error);

To dispose of a decomposed data tree, use the DisposeDataTree function. ‘theTree’ is
the root node of the data tree to be disposed of.

Appendix A. Keyword Quick Reference

Keywords in the monte translator language are listed here in alphabetical order.
Parameters are shown in italics, required parameters are shown in boldface. Some
instructions have more than one form, in which case all possible forms are shown.

align
align:bitMultiple:bitOffset
Represents untranslated data, used to align subsequent elements – differs from the fill
instruction in that the alignment field’s size may vary depending on the sizes of
preceding fields.
The bitOffset field, if present indicates which bit of the bitMultiple-sized word the input
should be aligned to. For example, to align to the odd-byte of a 16-bit word, use
align:16:8. If omitted, bitOffset defaults to zero.

bin
bin numeric-instruction
Must precede a numeric instruction (sint, uint, etc.). Indicates that the numeric data
should be presented as binary (base-2). Monte presents binary numbers with a leading
“%”symbol.

cstr
cstr:charSize
cstr:charSize[count]
Represents a string of characters, terminated by a zero character value, analogous to
those used by the ANSI C library. If count is sepecified, then the string will always
occupy that many characters in the packed data (with unused characters being set to
zero on output). The terminator character is included in this count! For example, a C-style
string which must be 256 characters or less (including terminator) will be specified as
cstr[256]. If unspecified, charSize defaults to 8 bits.

dec
dec numeric-instruction
Must precede a numeric instruction (sint, uint, etc.). Indicates that the numeric data
should be presented as decimal. This is the default presentation for numeric
instructions, and so is rarely used explicitly.

export
… see translator.

fill
fill:size
An unimportant filler field – ignored on input, and zeroed on output. Typically used to
represent the “reserved” fields in data structures.

hex
hex numeric-instruction
Must precede a numeric instruction (sint, uint, etc.). Indicates that the numeric data
should be presented as hexidecimal (base-16). Monte presents hexadecimal numbers
with a leading “$”symbol.

insert
insert(translator-name)
The named translator is used to decompose data. When that translator has finished,
decomposition continues from the instruction following the “insert” instruction. Note
that translator-name may refer to the head of a translator variant family, in which case the
eligible variants of translator-name will be given a chance to decompose the data.
insert is typically used when defining inherited data structures – especially those which
use muliple base structures.
Data elements produced by the translator are placed at the same level of the data tree
as the insert instruction (compare with action of sub, below).

list
list(translator-name)
The named translator is used repeatedly to create a number of elements in a list. The
number of elements can be controlled by a previous listcount (see below) instruction
which refers to this list instruction. If no listcount instruction referring to this list
exists, then list items are read until the end of the input data is reached (ie., a free-form
list). However, if an instruction following the list instruction specifies a constant integer
value, then that value, if encountered, will terminate the list before the end of data is
reached.
Note that translator-name may be the head of a variant family, in which case it is
possible for each item in the list to be described by a different variant of that head
translator (ie., a heterogenous list).

listcount
listcount:size(ListLabel)
The number of items in a following list (see list, above). If omitted, size defaults to 16.

location
location:size(Label)
Contains the location (in bytes from the beginning of the packed data block) of the
element with the name Label. The element specified by Label must exist at the same tree-
level as the location command (ie., Label cannot reside in a sub-translator included in
the current translator). If omitted, size defaults to 32. In other respects, location can be
treated as a specialised uint instruction.

monte
monte version-number
The monte keyword must be present in a translator file, and it must be the first
instruction in the file. This keyword identifies the file as a Monte data translator, and
provides information about which version of the language was used to write the
translator.
The version-number parameter is the version of Monte required to use this translator. For
translators described in this document, version-number should be 1.0

oct
oct numeric-instruction
Must precede a numeric instruction (sint, uint, etc.). Indicates that the numeric data
should be presented as octal (base-8). Monte presents octal numbers with a leading
“\”symbol.

offset
offset:size(Label)
Contains the offset (in bytes!) to the first byte representing the element specified by
Label, calculated from the beginning of the offset data field. The element specified by
Label must exist at the same tree-level as the offset command (ie., Label cannot reside in
a sub-translator included in the current translator). If omitted, size defaults to 32. In
other respects, offset can be treated as a specialised uint instruction.

packed
packed numeric-instruction
Must precede a numeric instruction (sint, uint, etc.). Indicates that the numeric data
should be presented as an array of 8-bit characters. Monte presents packed character
integers as one or more characters surrounded by single quotes (“'”).
On the MacOS platform, packed-character integer values are presented (and modified)
using characters from the Mac Roman text encoding only.

pstr
pstr:lSize:charSize
pstr:lSize:charSize[count]
Represents an explicitly-sized string of characters, analogous to a Pascal string. The
length of the string is stored before the characters in an unsigned word which is lSize
bits wide. Each character is then charSize bits wide.
The count parameter controls how many characters will be allocated in the data-file for
the string. If the count parameter is defined, then that number of characters will always
be read from or written to the output: extra characters will be written as zero-value
code words.
Note that the count parameter excludes the length word. For example, a name which
must be 31 eight-bit characters or less has the definiton pstr:8:8[31], and will occupy
32 bytes of the packed data (one for the length, and always 31 for the string). Monte
keeps track of this size limit and will warn if the decomposed version of the string is
made longer than this limit through editing. If not specified, charSize and lSize both
default to 8.

repeat
repeat[repeat-count](translator-name)
The named translator is used repeatedly to create a number of elements in a list. The
number of elements is specified in the repeat-count field. The resulting list is of fixed
length: it cannot have items removed from, or added to, it.
As for list (see above) translator-name may refer to the head of a variant family, to allow
heterogenous lists to be specified.

sint
sint:size
signed numeric value, may be any bit width from 1 to 64 bits. size defaults to 16

sizeof
sizeof:size
sizeof:size(Label)
Contains the packed-size (in bytes!) of the sub-structure with the name Label. If the
element name Label is present, then the structure or element specified by Label must exist
at the same tree-level as the sizeof command (ie., Label cannot reside in a sub-translator
included in the current translator). If Label is omitted, then the sizeof command refers
to the size of the entire container which contains the sizeof command.
size defaults to 32 if omitted. In other respects, sizeof can be treated as a specialised
uint instruction.

skip
skip

skip:size
Represents data to be preserved, but not processed: data in a skip field is remembered
at input time, and is written back verbatim on output.
If size is omitted, then the skip command will read in all data up to the end of the packed
data block, or up to the end of the current container, if that container’s size can be
determined, for example if the container is the subject of a previous sizeof (qv)
instruction.

string
string:charsize
string:charsize[count]
Represents a string of characters. If omitted, charSize defaults to 8 bits. If the count
parameter is specified, then the string will occupy count number of code words; shorter
strings will be padded with zero-value code words. If the count parameter is not
specified, the string data is assumed to run all the way to the end of the data structure,
unless the next instruction after string in the translator is a constant-value integer, in
which case that integer’s value, if found, will terminate the string.

sub
sub(translator-name)
Like insert above, the named translator is used to decompose packed data. However,
unlike insert, a container is created at the current level of the decomposed data tree,
and the results from this translator are placed in that container.

translator
translator translator-name
translator translator-name : base-name
translator translator-name : base-name ({label} == value)
export translator translator-name
export translator translator-name : base-name
export translator translator-name : base-name ({label} == value)
Marks the beginning of a new data translator. translator-name is the name by which the
new translator is to be known: this name may be referred to by list, sub, insert or
repeat instructions, as well as by further translator definitions.

If base-name is specified, then the new translator is taken to be a variant of the translator
called base-name. If no rule (“{label} == value”) is specified, then the new translator will
be the default variant of the translator base-name. Note that only one default variant of
any given base translator is allowed: attempting to specify a default translator for a
base translator which already has one will result in an error.
If the “{label} == value” rule is included, then the translator translator-name will be a
variant of the translator base-name: a variant which will only be used in situations
where the item with the label label (this item will be defined in base-name or one of its
antecedents) has the value value.
Translator definitions preceded with the keyword export will be included in the set of
“exportable” translators. Exportable translators are those which the end-user of a
Monte-based tool will deal with (eg., DITL, Layout, Control, Button, Pane), rather than
the translators which are required to define these (eg., DITLItem, QDBoundingBox,
PPobRecord).
Note that the export keyword is simply a flag attached to a translator, for the benefit of
users of Monte: it does not constitute a separate namespace, and Monte does not
distinguish between export and private translators when looking up translators
internally.

uint
uint:size
Represents an unsigned numeric value of any bit width from 1 to 64 bits. If not
explicitly specified, size defaults to 16.

world
world world-specification
Only allowed in file header (ie., before the first translator definition), the world directive
is used to group translators into namespaces. Thus, translators specifically for
traditional Macintosh resources can be placed in the “mac/rsrc” world, those for Mac
OS X structures could be placed in the “mac/osx” world, and so on.
The world specification is similar in structure to a UNIX file path: a series of worlds are
specified, each separated by a forward-slash character. This allows users of Monte to
ask for translators in a particular world, such as in “mac/rsrc/MacApp/MyApp2.0”, or to
specifiy a more general world, such as “mac”, which will cause Monte to search in
subordinate translator worlds for the requested translator.
World names are case sensitive: “Macintosh” and “MacIntosh” are two separate worlds.

Appendix B. Formal Grammar of Translator Language
This appendix provides a formal description of the Monte data translator language.
The translator format is described using Extended Backus-Naur notation. Productions
are numbered for reference only.

B.1. General Format

B.1.1. Encoding
Translator Files must use the Unicode/ISO 10646 text encoding scheme, either as UTF-8
or UTF-16 (in either its Big- or Little-Endian forms). Monte will detect the correct format
by inspecting the beginning of the file.
Monte prefers UTF-16 with character byte-pairs stored as More-Significant, Less-
Significant (for example, the text ‘abc’ is represented as 0061 0062 0063, and not 6100
6200 6300), although support for the other representation is provided.

B.1.1.1. Encoding Detection
Translator file streams are expected to be encoded in Unicode/ISO 10646. UTF-8 or
UTF-16 are currently supported; no support for UCS-32 is planned. No support is
provided for legacy Macintosh encodings.
To differentiate between different encodings (UTF-8 versus UTF-16), Monte relies on
the presence of a Unicode byte-order mark. This is the character U+FEFF (Zero Width
Non-Breaking Space). Using this information, it is possible to determine the encoding of
the stream:

file starts with... encoding scheme
ef bb ef ... UTF-8
fe ff ... UTF-16, big-endian
ff fe ... UTF-16, little-endian

Translator streams which do not meet these criteria are rejected as being invalid.

B.1.2. Packaging

B.1.2.1. MacOS HFS / HFS+ File Systems
Translator Files must be placed in the data fork of a file. Where allowed by the file-
system, the file should have the file-type code ‘mtpl’. The file-creator field can be any
value, perhaps representing the tool used to create the file.
For cross-platform interchange, the file-extension ‘.mtpl’ (preferred) or ‘.mtp’ (where
forced by file-system constraints) should be used to identify Monte translator files.

B.1.2.1. Non-MacOS HFS/HFS+ File Systems
On non-MacOS platforms, the file should have the file-type ‘mtpl’. The creator-type can
be anything.
For cross-platform interchange, the file-extension ‘.mtpl’ (preferred) or ‘.mtp’ (where
forced by file-system constraints) should be used to identify Monte translator files.

B.1.2.2. Non HFS File Systems
On file-systems which do-not support the file-type/file-creator model, the filename
extension ‘.mtpl’ (preferred) or ‘.mtp’ (where forced by file-system constraints) should
be used to identify Monte translator files.

B.2. Header
1 TranslatorFile ::= NewLine? Header Translator*

Every translator file must contain a valid Header section. The header section may be
preceded by any number of spaces, newlines or comments. Following this, there may
be any number2 of Translator definitions (§B.3).

2 Header ::= ‘monte’ SPACE MonteVersion NewLine Directive*
The header for a translator must be the first code line in the translator file. Comments
are allowed before the first line of the header.

B.2.1. Version Declarations
3 MonteVersion ::= ‘1.0’

The MonteVersion declaration declares which version of the translator format this is.
Currently, only ‘1.0’ is allowed here.
Note that this is the version of the translator format and not necessarily the version of
Monte.

B.2.2. Directives
4 Directive ::= WorldDirective | IncludeDirective

Following the header is a set of one or more directives. These are instructions intended
for the translator parser itself.

2 zero is a number too.

B.2.2.1. world
5 WorldDirective ::= ‘world’ SPACE WorldSpec

The world directive is used to categorise translators into logical groups. For instance,
translators for non-MacOS types generally are not used with those for MacOS types.
Appendix C lists the currently recommended groupings.

6 WorldSpec ::= (LETTER | DIGIT)+ (SLASH (LETTER | DIGIT)+)*
SLASH?

A world is defined using a simple path, as in the examples: “mac” “mac/rsrc” “mac/nib”
“qt”, etc. Although a trailing slash is allowed, there is no semantic difference between,
for example, “mac/rsrc/” and “mac/rsrc”.

B.2.2.2. include
7 IncludeDirective ::= ‘include’ SPACE FileName

The include directive is used to pull in definitions from other translator files. Unlike the
C/C++ #include directive, included files for Monte are read after the entire header has
been read, but still before the first translator definition. included files are read in the
order of the include directives which specified them.

B.3. Comments

B.3.1. Comment Position
8 NewLine ::= (SPACE? Comment? SPACE? LINEFEED)+

Comments are allowed only where a new-line can occur. This is different from C/C++
which allows comments anywhere spaces can occur.

B.3.1.1. Comment Types
9 Comment ::= SingleLineComment | MultiLineComment

Two kinds of comment are allowed in Monte: a single-line comment and a multi-line
comment.

10 SingleLineComment ::= ‘//’ CHARACTER*
11 MultiLineComment ::= ‘/*’ ([^*]|*[^/])* ‘*/’

A side-effect of the rule that comments are only allowed where new-lines can occur is
that multi-line comments in Monte translators must end on a line on their own – no
instruction data can follow on the same line as the end of a multi-line comment. For
example, the following is invalid:

translator "wxyz"/* Multi-line comment here!
This is the wxyz translator

end of comment*/ sint:16 //instruction is invalid here!

…the correct arrangement is:
translator "wxyz"/* Multi-line comment here!

This is the wxyz translator
end of comment*/

sint: 1 6 //instruction now valid, as it’s on its own line

B.4. Translator Definitions
12 Translator ::= (‘export’ SPACE)? ‘translator’ SPACE

TranslatorName (SPACE? DerivativeSpec)? NewLine
(Instruction NewLine)*

B.4.1. Exported and Private Translators
If the definition of the translator is preceded by the keyword ‘export’, then the
translator is externally visible. Translators wihout the ‘export’ keyword will not be
immediately visible to users of Monte (although it will still be possible to select them if
required). This mechanism is required because of the potentially large number of
translators which can be used to describe a structure – having two categories of
translator (export and non-export) avoids cluttering the user-visible translator set with
all of these specialised translators. Both categories of translator (exported and private)
live in the same namespace.

B.4.2. Translator Names
13 TranslatorName ::= QuotedString

Translator names are quoted strings rather than Element names in order to allow
legacy data type names (from MacOS resource types) which may contain symbols (such
as spaces) not permitted in Element names.

B.4.3. Specifying Derivation
14 DerivativeSpec ::= ‘:’ SPACE? TranslatorName

(SPACE ‘(’ SPACE? Rules SPACE? ‘)’)?
A translator is specified as being a derivative of another by use of a single colon
followed by the name of the translator from which it the translator is derived.
Currently, only one parent type is allowed (single inheritance only).
Rules, if required, are specified after the parent type, and enclosed in parentheses. For
example:

translator "Icon" : "DITLItem" ({type}==32)

B.4.4. Rules
15 Rules ::= EqualityRule

Currently, only one rule per derivative is allowed. Also, only equality rules are
implemented in Monte.

B.4.4.1. Equality Rules
16 EqualityRule ::= ElementValueRef SPACE? ‘==’ SPACE? Literal

Equality rules are specified as a reference to the value of an element, a double equals
sign (as in C/C++) and a literal value which that element value must match.

B.4.4.2. Element Value References
17 ElementValueRef ::= ‘{’ ElementName ‘}’

An reference to the value of an element (as opposed to the element itself) is indicated
by enclosing the element’s name in braces (curly brackets). Value references are only
resolved when data is being decomposed.

B.5. Instructions
18 Instruction ::= UIntInstruction | SIntInstruction |

SkipInstruction |
FillInstruction | AlignInstruction |
ListCountInstruction |
ZeroListCountInstruction
OffsetInstruction | LocationInstruction |
SizeofInstruction | PStringInstruction |
CStringInstruction | StringInstruction |
ListInstruction | RepeatInstruction |
InsertInstruction | SubInstruction |
PropertyInstruction

B.5.1. Data Instructions
19 UIntInstruction ::= (Presentation SPACE)? ‘uint’ ISizeSpec?

(SPACE ElementNameDef)?
(SPACE IConstValueSpec)?

20 SIntInstruction ::= (Presentation SPACE)? ‘sint’ ISizeSpec?
(SPACE ElementNameDef)?
(SPACE IConstValueSpec)?

…For uint and sint, a size specifier is optional: these commands default to 16 bits. If a
presentation keyword is omitted, the data presentation defaults decimal.

B.5.2. Skip, Fill, Align
22 SkipInstruction ::= ‘skip’ ISizeSpec? (SPACE ElementNameDef)?
23 FillInstruction ::= ‘fill’ ISizeSpec (SPACE ElementNameDef)?
24 AlignInstruction ::= ‘align’ AlignSizeSpec

(SPACE ElementNameDef)?
…unlike sint, uint or char, the fill and align instructions must take a size
specifier.However, skip is not required to take an explicit size specifer: if the size of a
skip command is omitted, Monte will skip to the end of the current container (or end of
the input data if the end of the current container cannot accurately be determined).

B.5.3. Element References
25 ListCountInstruction ::= Presentation? ‘listcount’ (ISizeSpec)?

‘(’ SPACE? ElementName SPACE? ‘)’
(SPACE ElementNameDef)?

25b ZeroListCountInstruction ::= Presentation? ‘zerolistcount’
(ISizeSpec)? ‘(’ SPACE? ElementName SPACE? ‘)’
(SPACE ElementNameDef)?

26 OffsetInstruction ::= Presentation? ‘offset’ ISizeSpec?
‘(’ SPACE? ElementName SPACE? ‘)’
(SPACE ElementNameDef)?

27 LocationInstruction ::= Presentation? ‘location’ ISizeSpec?
‘(’ SPACE? ElementName SPACE? ‘)’
(SPACE ElementNameDef)?

28 SizeofInstruction ::= Presentation? ‘sizeof’ ISizeSpec?
(‘(’ SPACE? ElementName SPACE? ‘)’)?
(SPACE ElementNameDef)?

…the listcount, offset and location instructions all take as an argument the name of
another element surrounded by parentheses. Note that this argument is optional for
sizeof (in which case the target of the command is the container containing the sizeof
command).
These productions are illustrated in the examples below:

listcount:16(items) itemCount // “1” would mean 1 item.
zerolistcount:16(items) itemCount // “0” would mean 1 item.
offset(noteList) notesOffset // default size is 32
sizeof:16(note) noteSize
location(note) thisNote // default size is 32
sizeof:32 containerSize // size of this and its siblings

B.5.4. Strings
29 PStringInstruction ::= ‘pstr’ (ISizeSpec CSizeSpec)?

(‘[’ SPACE? PositiveInteger SPACE? ‘]’)
(SPACE ElementNameDef)?
(SPACE SConstValueSpec)?

30 CStringInstruction ::= ‘cstr’ CSizeSpec?
(‘[’ SPACE? PositiveInteger SPACE? ‘]’)
(SPACE ElementNameDef)?
(SPACE SConstValueSpec)?

31 StringInstruction ::= ‘string’ (CSizeSpec)?
(‘[’ SPACE? PositiveInteger SPACE? ‘]’)?
(SPACE ElementNameDef)?
(SPACE SConstValueSpec)?

The size of pstr and cstr data can be fixed using an optional character count, specified
inside square brackets. This informs Monte to always read that number of characters
for the string, regardless of the length of the string. For example:

translator "ftag"
uint:8 ftagVersion = 2;
uint:8 fileMajorVersion
uint:8 fileMinorVersion
uint:8 developmentStage
uint:8 release
pstr:8:8[31] filename // will always occupy 32 bytes

// (one for length, 31 for string data)
fill: 8
uint candidate/"Release candidate number"

The string instruction also takes an optional character count, inside square brackets,
but the meaning differs slightly. If this count is present, it represents the fixed number
of characters in the string; if absent, the string is of indeterminate length, and continues
to the end of the input data stream (or to the end of the current container if the size of
this can be accurately determined):

translator "HighScoreRecord"
string:8[3] initials // string is always 3 characters long
fill: 8
uint: 3 2 score

translator "TEXT"
string:8 theText

// theText continues to end of data stream

translator "STR "

sizeof: 8 // refers to size of whole data block
string:8 theText

B.5.5. Lists
32 ListInstruction ::= ‘list’ ‘(’ SPACE? TranslatorName SPACE? ‘)’

(SPACE ElementNameDef)?
33 RepeatInstruction ::= ‘repeat’ ‘[’ SPACE? PositiveInteger SPACE?

‘]’ SPACE? ‘(’ TranslatorName SPACE? ‘)’
(SPACE? ElementNameDef)?

The repeat instruction takes a repetition count as an argument: the structure described
by TranslatorName will be repeated that number of times. Examples of list and repeat:

repeat[16]("PaletteEntry") // 16 entries described by
PaletteEntry
list("DialogItem") theItems/"Dialog item list"

// n items described by DialogItem

B.5.6. Substructures
34 InsertInstruction ::= ‘insert’ ‘(’ SPACE? TranslatorName SPACE?

‘)’
35 SubInstruction ::= ‘sub’ ‘(’ TranslatorName SPACE? ‘)’

(SPACE? ElementNameDef)?
Note that insert instructions do not take an element name specifier. This is simply
because the insert instruction doesn’t represent anything which can be named: it simply
causes the data read by the named translator to be “dumped” into the current data
container.
Examples:

insert("QDRect") // Quickdraw rectangle macro
sub(PPobject) theObject // place a PPobject in a container

// called “theObject”

B.5.7. Properties
36 PropertyInstruction ::= ‘prop’ SPACE PropertyName SPACE? ‘=’

 SPACE? (ElementName | QuotedString)
Properties may be assigned using an element name (for modifiable properties) or using
a quoted string (for non-modifiable properties).
Property names and element names live in the same namespace: thus it is not possible
to use the same name to describe a property and an element.

B.5.9. Presentation keywords
37 Presentation ::= ‘oct’ | ‘bin’ | ‘dec’ | ‘hex’ | ‘packed’

Monte allows data elements to be presented as octal (oct), binary (bin), decimal (dec),
hexadecimal (hex) or as a packed-character array (packed). Where no presentation is
specified, decimal is assumed.

B.5.10 Data Size fields
38 CSizeSpec ::= ISizeSpec
39 AlignSizeSpec ::= ISizeSpec ISizeSpec?
40 ISizeSpec ::= ‘:’ PositiveInteger

Data sizes are specified using a colon followed by a number. Note that no spaces are
permitted in size specifications.

B.5.11. Constant Value Specifications
41 IConstValueSpec ::= ‘=’ SPACE? Integer | PackedCharArray
42 SConstValueSpec ::= ‘=’ SPACE? QuotedString

For those elements which are allowed to take a constant value, this is specified using a
single equals sign and a literal value (appropriate to the element’s type). For instance:

translator Control : DITLItem ({type}==7)
sint:8 = 2 // size of following data ...

For named elements, the constant value specifier comes after the name:
sint:8 label=21 // comment

For named elements with descriptions, the constant value specifier comes after the
description:

sint:8 label/"signed byte"=21 // comment

B.6. Literals
Literals are used for rules (§B.4.4), for property definitions, and for specifying constant
values for elements (§B.5.1.2).

43 Literal ::= Integer | QuotedString | PackedCharArray
44 Integer ::= (MINUS)? PositiveInteger | HexInteger | OctInteger

| BinInteger
45 PositiveInteger ::= DIGIT DIGIT*
45a HexInteger ::= ‘$’ HEXDIGIT HEXDIGIT*
45b OctInteger ::= ‘\’ OCTDIGIT OCTDIGIT*
45c BinInteger ::= ‘%’ BINDIGIT BINDIGIT*
46 QuotedString ::= ‘"’ (CHARACTER - ["\] | ‘""’ | ‘\’ |

‘\’ HEXDIGIT HEXDIGIT HEXDIGIT HEXDIGIT)* ‘"’
47 PackedCharArray ::= ‘'’ (CHARACTER - ['\] | ‘''’ | ‘\\’ |

‘\’ HEXDIGIT HEXDIGIT)+ ‘'’

Quoted string literals are delimited by double quote (", U+0022) characters. Within a
string the character ‘"’ can be obtained by doubling-up the quote character, as in:

pstr:8:8 = " Just to say ""Hi!"""
Carriage returns, tabs and other non-printing characters are not permitted directly
within strings, but may be specified using a backslash (\, U+005C) followed by a four-
digit hexadecimal code representing the character’s Unicode code point:

pstr:8:8 return = "\000d"
Should a backslash itself be required, it can be obtained by doubling-up the backslash
character:

pstr:8:8 hint = "Carriage return = \\000d"

Packed character arrays can be specified in a similar manner to strings, but using single
quotes as delimiters. For example:

packed uint:32 resType = 'PICT'
packed uint:32 token = '''hi''' // value is 'hi'
packed sint:16 crlf = '\0D\0a':8

Unlike strings, packed character arrays are limited to being composed of 8 bit wide
characters. Also, the text encoding used for packed character arrays on the Macintosh
platform is always MacOS Roman (West European).
Where a character in a packed character is specified in hexadecimal (eg. “\000D” above),
the character codes are not from the Unicode/ISO10646 character set, but rather from
the basic character set of the platform (Mac Roman for the Macintosh platform).
By convention, Monte places the last character in a packed character array sequence
into the lowest-order word of the data element in question (thus, crlf above would
have the hexadecimal value 0d0a).

note In a change from normal behaviour, packed character arrays are converted
to integers by assuming that the characters within them are encoded in the
platform’s most basic encoding. For MacOS, this means that character values
are taken to be in the MacOS Roman (West European) encoding.

note In nearly all cases, string:8[4] = “abcd” is a better choice for textual data
than uint:32 = ‘abcd’, as the former allows editing of the value to include
non-Roman characters (uint values can only be presented).

Packed character arrays are provided for the convenience of translator writers who
have to deal with the class and resource IDs which are commonplace in Mac Classic and
Carbon object formats. Packed character arrays should never be used for textual data.

B.7. Names

B.7.1. Labels
48 PropertyName ::= ElementName
49 ElementNameDef ::= ElementName

 (SPACE? SLASH SPACE? ElementDescription)?
49a ElementDescription ::= QuotedString
50 ElementName ::= (LETTER)(LETTER | DIGIT | [_.] |

COMBININGCHAR | EXTENDERCHAR)*
Names of elements must begin with a letter character. After this initial character there
may be one or more digits, letters, combining or extending characters. The underscore
and full-stop (period) characters are also allowed in names, but only as a second or
subsequent character. Quoted strings are not permissable as element names.
Where an element name is being defined (rather than just used), an additional Element
Description may be specified by following the element name with a slash character and
the descriptive text (a quoted string).
Name resolution is case sensitive: for example DITL and DitL are not the same symbol.

B.7.2. File Names
51 FileName ::= QuotedString

Filename validation is not performed by the Monte translator parser. The use of
relative paths is forbidden in filename specifiers, but this prohibition is enforced by
Monte using platform-dependent checks rather than by a stricter filename specification.

B.8. Character Types

B.8.1. Whitespace
52 SPACE ::= (#x0020 |!#x0009)+

Whitespace is defined as any sequence or any number of TAB (U+0009) or space
(U+0020) characters. Note that newlines are not permitted as spaces.

53 LINEFEED ::= (#x000D |!#x000A)+
Monte accepts both CR and LF, or any combination thereof, as a line-feed.

B.8.2. General Character
54 CHARACTER ::= [#x20-#xD7FF] |![#xE000-#xFFFD]

Monte defines a character as any Unicode code, excluding legacy control characters
(U+0000 to U+001F), surrogate pairs (U+D800 to U+DFFF) and the reserved code points
U+FFFE and U+FFFF.

B.8.3. Letters
55 LETTER3 ::= BASECHAR | (BASECHAR COMBININGCHAR) | IDEOGRAPH

A letter is defined as any of the Unicode base characters or ideographics. Thus, Monte
translators may contain labels or names in non-Roman scripts.

56 BASECHAR ::= [#x0041-#x005A] |![#x0061-#x007A] |![#x00C0-#x00D6]
|![#x00D8-#x00F6] |![#x00F8-#x00FF] |![#x0100-#x0131]
|![#x0134-#x013E] |![#x0141-#x0148] |![#x014A-#x017E]
|![#x0180-#x01C3] |![#x01CD-#x01F0] |![#x01F4-#x01F5]
|![#x01FA-#x0217] |![#x0250-#x02A8] |![#x02BB-#x02C1] |!#x0386
|![#x0388-#x038A] |!#x038C |![#x038E-#x03A1] |![#x03A3-#x03CE]
|![#x03D0-#x03D6] |!#x03DA |!#x03DC |!#x03DE |!#x03E0
|![#x03E2-#x03F3] |![#x0401-#x040C] |![#x040E-#x044F]
|![#x0451-#x045C] |![#x045E-#x0481] |![#x0490-#x04C4]
|![#x04C7-#x04C8] |![#x04CB-#x04CC] |![#x04D0-#x04EB]
|![#x04EE-#x04F5] |![#x04F8-#x04F9] |![#x0531-#x0556] |!#x0559
|![#x0561-#x0586] |![#x05D0-#x05EA] |![#x05F0-#x05F2]
|![#x0621-#x063A] |![#x0641-#x064A] |![#x0671-#x06B7]
|![#x06BA-#x06BE] |![#x06C0-#x06CE] |![#x06D0-#x06D3] |!#x06D5
|![#x06E5-#x06E6] |![#x0905-#x0939] |!#x093D |![#x0958-#x0961]
|![#x0985-#x098C] |![#x098F-#x0990] |![#x0993-#x09A8]
|![#x09AA-#x09B0] |!#x09B2 |![#x09B6-#x09B9] |![#x09DC-#x09DD]
|![#x09DF-#x09E1] |![#x09F0-#x09F1] |![#x0A05-#x0A0A]
|![#x0A0F-#x0A10] |![#x0A13-#x0A28] |![#x0A2A-#x0A30]
|![#x0A32-#x0A33] |![#x0A35-#x0A36] |![#x0A38-#x0A39]
|![#x0A59-#x0A5C] |!#x0A5E |![#x0A72-#x0A74] |![#x0A85-#x0A8B]
|!#x0A8D |![#x0A8F-#x0A91] |![#x0A93-#x0AA8] |![#x0AAA-#x0AB0]
|![#x0AB2-#x0AB3] |![#x0AB5-#x0AB9] |!#x0ABD |!#x0AE0
|![#x0B05-#x0B0C] |![#x0B0F-#x0B10] |![#x0B13-#x0B28]
|![#x0B2A-#x0B30] |![#x0B32-#x0B33] |![#x0B36-#x0B39] |!#x0B3D
|![#x0B5C-#x0B5D] |![#x0B5F-#x0B61] |![#x0B85-#x0B8A]
|![#x0B8E-#x0B90] |![#x0B92-#x0B95] |![#x0B99-#x0B9A] |!#x0B9C
|![#x0B9E-#x0B9F] |![#x0BA3-#x0BA4] |![#x0BA8-#x0BAA]
|![#x0BAE-#x0BB5] |![#x0BB7-#x0BB9] |![#x0C05-#x0C0C]
|![#x0C0E-#x0C10] |![#x0C12-#x0C28] |![#x0C2A-#x0C33]
|![#x0C35-#x0C39] |![#x0C60-#x0C61] |![#x0C85-#x0C8C]
|![#x0C8E-#x0C90] |![#x0C92-#x0CA8] |![#x0CAA-#x0CB3]
|![#x0CB5-#x0CB9] |!#x0CDE |![#x0CE0-#x0CE1] |![#x0D05-#x0D0C]
|![#x0D0E-#x0D10] |![#x0D12-#x0D28] |![#x0D2A-#x0D39]
|![#x0D60-#x0D61] |![#x0E01-#x0E2E] |!#x0E30 |![#x0E32-#x0E33]
|![#x0E40-#x0E45] |![#x0E81-#x0E82] |!#x0E84 |![#x0E87-#x0E88]
|!#x0E8A |!#x0E8D |![#x0E94-#x0E97] |![#x0E99-#x0E9F]
|![#x0EA1-#x0EA3] |!#x0EA5 |!#x0EA7 |![#x0EAA-#x0EAB]
|![#x0EAD-#x0EAE] |!#x0EB0 |![#x0EB2-#x0EB3] |!#x0EBD

3 These definitions are modified versions of those in Appendix B of the XML specification.

|![#x0EC0-#x0EC4] |![#x0F40-#x0F47] |![#x0F49-#x0F69]
|![#x10A0-#x10C5] |![#x10D0-#x10F6] |!#x1100 |![#x1102-#x1103]
|![#x1105-#x1107] |!#x1109 |![#x110B-#x110C] |![#x110E-#x1112]
|!#x113C |!#x113E |!#x1140 |!#x114C |!#x114E |!#x1150
|![#x1154-#x1155] |!#x1159 |![#x115F-#x1161] |!#x1163 |!#x1165
|!#x1167 |!#x1169 |![#x116D-#x116E] |![#x1172-#x1173] |!#x1175
|!#x119E |!#x11A8 |!#x11AB |![#x11AE-#x11AF] |![#x11B7-#x11B8]
|!#x11BA |![#x11BC-#x11C2] |!#x11EB |!#x11F0 |!#x11F9
|![#x1E00-#x1E9B] |![#x1EA0-#x1EF9] |![#x1F00-#x1F15]
|![#x1F18-#x1F1D] |![#x1F20-#x1F45] |![#x1F48-#x1F4D]
|![#x1F50-#x1F57] |!#x1F59 |!#x1F5B |!#x1F5D |![#x1F5F-#x1F7D]
|![#x1F80-#x1FB4] |![#x1FB6-#x1FBC] |!#x1FBE |![#x1FC2-#x1FC4]
|![#x1FC6-#x1FCC] |![#x1FD0-#x1FD3] |![#x1FD6-#x1FDB]
|![#x1FE0-#x1FEC] |![#x1FF2-#x1FF4] |![#x1FF6-#x1FFC] |!#x2126
|![#x212A-#x212B] |!#x212E |![#x2180-#x2182] |![#x3041-#x3094]
|![#x30A1-#x30FA] |![#x3105-#x312C] |![#xAC00-#xD7A3]

57 IDEOGRAPH::= [#x4E00-#x9FA5] |!#x3007 |![#x3021-#x3029]

58 COMBININGCHAR ::= [#x0300-#x0345] |![#x0360-#x0361] |![#x0483-
#x0486] |![#x0591-#x05A1] |![#x05A3-#x05B9] |![#x05BB-#x05BD]
|!#x05BF |![#x05C1-#x05C2] |!#x05C4 |![#x064B-#x0652] |!#x0670
|![#x06D6-#x06DC] |![#x06DD-#x06DF] |![#x06E0-#x06E4]
|![#x06E7-#x06E8] |![#x06EA-#x06ED] |![#x0901-#x0903] |!#x093C
|![#x093E-#x094C] |!#x094D |![#x0951-#x0954] |![#x0962-#x0963]
|![#x0981-#x0983] |!#x09BC |!#x09BE |!#x09BF |![#x09C0-#x09C4]
|![#x09C7-#x09C8] |![#x09CB-#x09CD] |!#x09D7 |![#x09E2-#x09E3]
|!#x0A02 |!#x0A3C |!#x0A3E |!#x0A3F |![#x0A40-#x0A42]
|![#x0A47-#x0A48] |![#x0A4B-#x0A4D] |![#x0A70-#x0A71]
|![#x0A81-#x0A83] |!#x0ABC |![#x0ABE-#x0AC5] |![#x0AC7-#x0AC9]
|![#x0ACB-#x0ACD] |![#x0B01-#x0B03] |!#x0B3C |![#x0B3E-#x0B43]
|![#x0B47-#x0B48] |![#x0B4B-#x0B4D] |![#x0B56-#x0B57]
|![#x0B82-#x0B83] |![#x0BBE-#x0BC2] |![#x0BC6-#x0BC8]
|![#x0BCA-#x0BCD] |!#x0BD7 |![#x0C01-#x0C03] |![#x0C3E-#x0C44]
|![#x0C46-#x0C48] |![#x0C4A-#x0C4D] |![#x0C55-#x0C56]
|![#x0C82-#x0C83] |![#x0CBE-#x0CC4] |![#x0CC6-#x0CC8]
|![#x0CCA-#x0CCD] |![#x0CD5-#x0CD6] |![#x0D02-#x0D03]
|![#x0D3E-#x0D43] |![#x0D46-#x0D48] |![#x0D4A-#x0D4D] |!#x0D57
|!#x0E31 |![#x0E34-#x0E3A] |![#x0E47-#x0E4E] |!#x0EB1
|![#x0EB4-#x0EB9] |![#x0EBB-#x0EBC] |![#x0EC8-#x0ECD]
|![#x0F18-#x0F19] |!#x0F35 |!#x0F37 |!#x0F39 |!#x0F3E |!#x0F3F
|![#x0F71-#x0F84] |![#x0F86-#x0F8B] |![#x0F90-#x0F95] |!#x0F97
|![#x0F99-#x0FAD] |![#x0FB1-#x0FB7] |!#x0FB9 |![#x20D0-#x20DC]
|!#x20E1 |![#x302A-#x302F] |!#x3099 |!#x309A

59 EXTENDERCHAR ::= #x00B7 |!#x02D0 |!#x02D1 |!#x0387 |!#x0640 |!#x0E46
|!#x0EC6 |!#x3005 |![#x3031-#x3035] |![#x309D-#x309E]
|![#x30FC-#x30FE]

B.8.3. Digits
60 DIGIT ::= [#x0030-#x0039]

Monte supports decimal digits from the Arabic-Indic (ie., “European”) set only.

61 MINUS ::= #x002d
The minus character is defined as character U+002d (‘-’)

62 SLASH ::= #x002f
The forward-slash character as used in world defintions (§B.2.2.1) and Element
Description specifications (§B.7.1) is U+0002f (‘/’)
Digits used for hexadecimal, octal or binary numbers are as follows:

63 HEXDIGIT ::= DIGIT | [A-F] | [a-f]
64 OCTDIGIT ::= [#x0030-#x0037]
65 BINDIGIT ::= #x0030 | #x0031

Appendix C. Standard Names
This appendix list the recommended names for properties and translator world
definitions. These names are not keywords or reserved words in the Monte language,
they are simply suggestions for translator writers.

C.1. Properties

C.1.1. Item Bounds
Item boundaries should always be expressed in pixels, according to the MacOS
Quickdraw co-ordinate convention (figure C.1).

Name Data type Description
Bounds.x1 numeric Left edge of item bounding box (see figure C.1)
Bounds.y1 numeric Top edge of item bounding box (see figure C.1)
Bounds.x2 numeric Right-hand edge of item bounding box

(see figure C.1)
Bounds.y2 numeric Bottom edge of item (see figure C.1)
Bounds.w numeric Width of item (see figure C.1)
Bounds.h numeric Height item (see figure C.1)

Bounds.y1

Bounds.y2

Positional properties and their meaningsfigure C.1.

Bounds.w

Bounds.hItemItemItemItemItemItem

Bounds.x2Bounds.x1

Not all translators will define all of these properties, nor do they have to – sometimes it
will be necessary for applications to look for their preferred property (perhaps
“Bounds.x2”), and if it is not found, to generate it from a less desirable one
(“Bounds.w”).

C.1.2. Item Indices
The following properties are automatically attached to items in lists by Monte.

Name Data type Description
Index0 numeric Index number of a list item, first item is “0”
Index1 numeric Index number of a list item, first item is “1”

C.1.3. Item Text

Name Data type Description
LocaleText text User-visible text, potentially localisable. This

property should directly point to a textual data
element. Note that just because a LocaleText
property exists for a structure, this does not mean
that the particular item should unconditionally be
localised.

C.1.3. Identification

Name Data type Description
Name text Name of structure

C.1.4. Cross-referencing

Name Data type Description
ResRef text Used to indicate a reference to, or dependency on,

another Classic/Carbon MacOS resource. Should
take the form:
 '(four character code)' (numericID)
(Note the single-quote characters)
This property is only meaningful to tools which
manipulate Classic/Carbon MacOS resources, and
thus should only be defined in MacOS resource
translators.

C.2. Translator Groups
Translator authors may organise their translators into any groups they see fit using the
world directive (§B.2.2.1). However, the groups defined here must be used only for the
purposes shown, in order to facilitate easier organisation of translators.

C.2.1. MacOS support

world Description
mac translators for the MacOS platform

C.2.1.1. MacOS Resource Groups

world Description
mac/rsrc translators for MacOS resources
mac/rsrc/installer translators for resources used by Apple’s

Installer/Updater application.
mac/rsrc/classic translators for Classic-specific resources
mac/rsrc/carbon translators for MacOS Carbon-specific resources
mac/rsrc/macapp translators for custom resources used by Apple

Computer’s MacApp programming framework
mac/rsrc/powerplant translators for the ‘PPob’ resource type used by

the Metrowerks Powerplant framework

C.2.2. MacOS X Support

world Description
mac/osx translators for data formats used on the

MacOS X platform
Currently, no sub-groupings have been defined for MacOS X translators, although this
will undoubtedly change.

C.2.2. Other Platforms
Third-party translator authors are free to use any appropriate unassigned world name
for their translators which do not fit into the above groupings.

