
Apple Computer, Inc.

QuickTime 2.0 SDK:

Toolbox Changes

 Apple Computer, Inc.

Apple, the Apple logo, Finder, and Macintosh are registered trademarks of Apple Computer, Inc.,
registered in the U.S.A. and other countries. Workgroup Server systems is a trademark of Apple Computer,
Inc.

Mention of non-Apple products is for information purposes and constitutes neither an endorsement nor a
recommendation. Apple assumes no responsibility with regard to the selection, performance, or use of these
products. All understandings, agreements, or warranties, if any, take place directly between the vendors and
the prospective users. Product specifications are subject to change without notice.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page iii

TABLE OF CONTENTS

Table of Contents .. iii

About this guide ... vii

Chapter 1 Movie Toolbox ... 1
Preloading Tracks .. 1
Hints ... 1
Data References ... 2

Track References.. 2
Timecode Media Handler... 2

Data Handler Components ... 3
Movie Toolbox Reference ... 3

Functions for Getting and Playing Movies .. 3
Movie Functions .. 3
Movie Functions .. 8
Enhancing Movie Playback Performance .. 8
Working with Progress and Cover Functions .. 11

Functions That Modify Movie Properties .. 12
Working With Movie Spatial Characteristics .. 12
Locating a Movie’s Tracks and Media Structures 14
Working With Track References ... 15

Functions for Editing Movies .. 19
Adding Samples to Media Structures... 19

Media Functions... 21
Selecting Data Handlers ... 21
Timecode Media Handler Functions .. 22

Chapter 2 Image Compression Manager .. 35
Image Compression Manager Reference ... 35

Image Compression Manager Routines ... 35
Working With Sequences... 35

Chapter 3 Image Compressor Components.. 41
Image Compressor Components Reference ... 42

Data Types ... 42
The Compressor Capability Structure .. 42
The Decompression Parameters Structure ... 42

Functions .. 44
Indirect Functions .. 44

Image Compression Manager Utility Functions .. 46

Chapter 4 Sequence Grabber Components .. 49
Sequence Grabber Components Reference .. 49

Sequence Grabber Component Functions .. 49
Configuring Sequence Grabber Components .. 49
Controlling Sequence Grabber Components.. 55
Working With Channel Characteristics ... 55
Working with Sequence Grabber Outputs ... 57

QuickTime 2.0 SDK: Toolbox Changes

Page iv December 21, 1994

Chapter 5 Sequence Grabber Channel Components ... 67
Sequence Grabber Components Reference .. 67

Sequence Grabber Channel Component Functions ... 67
Configuration Functions for All Channel Components 67

Chapter 6 Video Digitizer Components .. 69
Video Digitizer Components Reference .. 69

Video Digitizer Component Functions .. 69
Controlling Digitization ... 69
Utility Functions .. 71

Chapter 7 Movie Data Exchange Components... 73
Direct Importation .. 73
Audio CD Import Component.. 73
Movie Data Exchange Components Reference ... 74

Importing Movie Data.. 74

Chapter 8 Derived Media Handler Components ... 75
Derived Media Handler Components Reference ... 75

Functions .. 75
Managing Your Media Handler Component ... 75
Graphics Data Management ... 76
Base Media Handler Utility Functions... 77

Chapter 9 Data Handler Components... 79
About Data Handler Components .. 81

Data Handler Components ... 81
Using Data Handler Components .. 84

Selecting a Data Handler.. 85
Selecting by Component Type Value .. 85
Interrogating a Data Handler’s Capabilities... 86

Managing Data References .. 87
Retrieving Movie Data ... 87
Storing Movie Data .. 88
Managing the Data Handler ... 88

Creating a Data Handler Component ... 89
General Information ... 89
Macintosh Data Handler Components ... 90

Sample Macintosh Data Handler ... 90
Windows Data Handler Components... 100

Sample Windows Data Handler ... 100
Reference to Data Handler Components.. 128

Functions .. 128
Selecting a Data Handler.. 128
Working With Data References ... 134
Reading Movie Data .. 139
Writing Movie Data ... 146
Managing Data Handler Components .. 153
Completion Function.. 155

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page v

Chapter 10 QuickTime Music Architecture ... 157
QuickTime Music Architecture Overview... 157
General Terminology ... 159
Advantages of QuickTime Music Architecture .. 162
Components of QuickTime Music Architecture .. 163

Tune Player .. 163
Note Allocator .. 164
Music Component .. 165

Event Sequence Format ... 168
General Event... 170
Note Event.. 171
Extended Note Event ... 172
Rest Event .. 173
End Marker Event .. 174
Controller Event ... 175
Extended Controller Event ... 176
Knob Event .. 177

Component Interfaces .. 178
Tune Player .. 178

Sequence Data .. 179
Sequence Control ... 182

Note Allocator .. 190
Note Channel Allocation and Use.. 190
Miscellaneous Interface Tools ... 208
System Configuration .. 213

Music Component Interface ... 220
Synthesizer Access... 220
Instrument Control ... 230
Part Access ... 242
Synthesizer Timing .. 252

Conversion of Standard MIDI.. 254
Music Configuration Utility ... 255

Appendix ... 257
General MIDI Instrument Numbers ... 257
General MIDI DrumKit Numbers .. 259
General MIDI Kit Names... 259

Index ... 261

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page vii

ABOUT THIS GUIDE

This is the delta guide for QuickTime 2.0 for the Macintosh. This document describes
how developers can take advantage of the new features in QuickTime 2.0. Before reading
this document, you should be familiar with QuickTime and with the existing QuickTime
technical documentation.

This document is organized much like the Inside Macintosh books on QuickTime. There
are separate chapters for each part of QuickTime—the chapter titles correspond to
chapters in the current books. Within these chapters, the section headings also correspond
to existing sections wherever possible. In some cases, this document contains new
chapters and sections to address completely new areas of functionality.

Briefly, this document contains the following chapters:

• Chapter 1, “The Movie Toolbox,” describes new Movie Toolbox features in
QuickTime 2.0, including new support for track references and timecode tracks.

• Chapter 2, “Image Compression Manager,” discusses new Image Compression
Manager functionality, especially the new support for scheduled asynchronous
decompression operations.

• Chapter 3, “Image Compressor Components,” describes how compressor and
decompressor components have changed in order to support the new image-
compression features of QuickTime 2.0.

• Chapter 4, “Sequence Grabber Components,” provides information about new
sequence-grabber features; in particular, QuickTime 2.0 introduces the concept of a
sequence grabber output.

• Chapter 5, “Sequence Grabber Channel Components,” describes how sequence
grabber channel components have changed in order to support new sequence-
grabber functionality.

• Chapter 6, “Video Digitizer Components,” discusses new video digitizer component
features, including support for timecode tracks.

• Chapter 7, “Movie Data Exchange Components,” presents information about new
data import and export features of QuickTime 2.0.

• Chapter 8, “Derived Media Handler Components,” discusses changes that affect
derived media handler components.

• Chapter 9, “Data Handler Components,” describes the interface that must be
supported by QuickTime data handler components. While data handler components
have been a part of QuickTime since its inception, this is the first time that Apple
has described the interface supported by these components.

QuickTime 2.0 SDK: Toolbox Changes

Page viii December 21, 1994

• Chapter 10, “QuickTime Music Architecture,” describes QuickTime's new support
for music in QuickTime movies. This is an entirely new part of QuickTime. With
the QuickTime Music Architecture your application can allow users to play, edit,
cut, copy and paste movie music data in the same way they work with text and
graphic elements today.

• Appendix, displays the General MIDI Kit Names, DrumKit Numbers,
and Instrument Numbers.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 1

CHAPTER 1 MOVIE TOOLBOX

This chapter discusses the changes to the Movie Toolbox. The following sections discuss
major new areas of functionality. The reference section provides the details of how to use
these new features.

PRELOADING TRACKS

There are occasions when it may be useful for you to preload some or all of a track into
memory. For example, if you are developing an application that plays several movies at
once, you may want to load the smaller movies into memory in order to reduce CD-ROM
seek activity. Text tracks, which are typically rather small, are also good candidates for
preloading; in many cases you can load a movie’s entire text track into memory. Another
good use of preloading is to preload small music tracks that play over scene changes,
giving the movie a more continuous feel.

QuickTime 2.0 expands your options for preloading tracks. In the past, applications could
use the Load...IntoRAM functions to preload a movie, track, or media. Now, you can
establish preloading guidelines as part of a track’s definition. The Movie Toolbox then
automatically preloads the track, according to those guidelines, every time the movie is
played, and without any special effort by applications. You establish these preloading
guidelines by calling the new SetTrackLoadSettings function (see “Enhancing Movie
Playback Performance,” later in this chapter, for more information about this function).
Note that the preloading information is preserved in flattened movies.

HINTS

QuickTime 2.0 defines several new movie and media playback hints:

hintsDontPurge Instructs the Movie Toolbox not to dispose of
movie data after playing it. The Movie Toolbox
leaves the data in memory, in a purgeable handle.
This can enhance the playback of small movies that
are looping. However, it may consume large
amounts of memory and affect the performance of
the Memory Manager. Use this hint carefully.

hintsInactive Tells the Movie Toolbox that the movie is not in an
active window. This can allow the Movie Toolbox
to more efficiently allocate scarce system resources.
The movie controller component uses this hint for
all movies it manages.

These new hints work with the SetMoviePlayHints and SetMediaPlayHints functions.

QuickTime 2.0 SDK: Toolbox Changes

Page 2 December 21, 1994

DATA REFERENCES

The Movie Toolbox now fully supports a media that refers to data in more than one file.
In the past, a media was restricted to a single data file. By allowing a single media to refer
to more than one file, the Movie Toolbox allows better playback performance and easier
editing, primarily by reducing the number of tracks in a movie. Use the new
SetMediaDefaultDataRefIndex function to control which of a media’s files you access
when you add new samples. See “Adding Samples to Media Structures,” later in this
chapter, for a complete description of this new function.

Track References

While QuickTime has always allowed you to create movies that contain more than one
track, you have not been able to specify relationships between those tracks. Track
references are a new feature of QuickTime that allow you to relate a movie’s tracks to
one another. The QuickTime track-reference mechanism supports many-to-many
relationships. That is, any movie track may contain one or more track references, and any
track may be related to one or more other tracks in the movie.

Track references can be useful in a variety of ways. In QuickTime 2.0, track references
are used to relate timecode tracks to other movie tracks (see “Timecode Media Handler,”
elsewhere in this chapter, for more information about timecode tracks). You might
consider using track references to identify relationships between video and sound tracks,
identifying the track that contains dialog and the track that contains background sounds,
for example. Another use of track references is to associate one or more text tracks that
contain subtitles with the appropriate audio track or tracks.

Every movie track contains a list of its track references. Each track reference identifies
another, related track. That related track is identified by its track identifier. The track
reference itself contains information that allows you to classify the references by type.
This type information is stored in an OSType data type. You are free to specify any type
value you want—note, however, that Apple has reserved all lower-case type values.

You may create as many track references as you want, and you may create more than one
reference of a given type. Each track reference of a given type is assigned an index value.
These index values start at 1 for each different reference type. The Movie Toolbox
maintains these index values so that they always start at 1 and count by 1.

See “Working With Track References,” later in this chapter, for detailed descriptions of
the Movie Toolbox functions that allow you to work with track references.

Timecode Media Handler

QuickTime 2.0 introduces support for timecode tracks. Timecode tracks allow you to
store external timecode information, such as SMPTE timecode, in your QuickTime
movies. QuickTime now provides a new timecode media handler that interprets the data
in these tracks.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 3

See “Timecode Media Handler Functions,” later in this chapter, for detailed descriptions
of the timecode media handler.

DATA HANDLER COMPONENTS

QuickTime 2.0 includes a new, memory-based data handler. This data handler component
works with movie data that is stored in memory, in a handle, rather than in a file. This
data handler has a component subtype value of HandleDataHandlerSubType ('hndl').

To create a movie that uses the handle data handler, set the data reference type to
HandleDataHandlerSubType when you call the NewTrackMedia function. Note that the
movie data in memory is not automatically saved with the movie. If you want to save the
data that is in memory, use the FlattenMovie or InsertTrackSegment functions to copy
the data from memory to a file.

The handle data handler does not use aliases, and therefore does not use alias handles.
Rather, it uses 4-byte memory handles. If you pass a handle value of nil, the data handler
allocates and manages the handle for you. If you pass a non-nil handle value, the data
handler uses your handle. It is then your responsibility to manage the handle, and dispose
of it when appropriate. Note that a single handle may be shared by several data handler
components. Whenever necessary, the data handler resizes the handle to accommodate
new data.

Although data handler components have been existing since QuickTime 1.0, their
interface is publicly defined for the first time in QuickTime 2.0. If you are interested in
developing a data handler, refer to the chapter “Data Handler Components” later in this
document.

MOVIE TOOLBOX REFERENCE

This section contains reference material on new or changed Movie Toolbox functions.

Functions for Getting and Playing Movies

Movie Functions

NewMovieFromUserProc

The NewMovieFromUserProc function creates a movie in memory from
data that you provide. Your application defines a function that delivers the
movie data to the Movie Toolbox. The Movie Toolbox calls your function,
specifying the amount of data required and the location for the data.

QuickTime 2.0 SDK: Toolbox Changes

Page 4 December 21, 1994

pascal OSErr NewMovieFromUserProc (Movie *theMovie,
short newMovieFlags,
Boolean *dataRefWasChanged,
GetMovieUPP getProc,
void *refCon,
Handle defaultDataRef,
OSType dataRefType);

theMovie Contains a pointer to a field that is to receive the
new movie’s identifier. If the function cannot load
the movie, the returned identifier is set to nil.

newMovieFlags Controls the operation of the
NewMovieFromUserProc function. The following
flags are valid (be sure to set unused flags to 0):

newMovieActive Controls whether the new movie is
active. Set this flag to 1 to make the
new movie active. You can make a
movie active or inactive by calling
the SetMovieActive function.

newMovieDontResolveDataRefs
Controls how completely the Movie
Toolbox resolves data references in
the movie resource. If you set this
flag to 0, the toolbox tries to
completely resolve all data
references in the resource. This may
involve searching for files on remote
volumes. If you set this flag to 1, the
Movie Toolbox only looks in the
specified data reference.

If the Movie Toolbox cannot
completely resolve all the data
references, it still returns a valid
movie identifier. In this case, the
Movie Toolbox also sets the current
error value to
couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs
Controls whether the Movie Toolbox
asks the user to locate files. If you set
this flag to 0, the Movie Toolbox
asks the user to locate files that it
cannot find on available volumes. If
the Movie Toolbox cannot locate a
file even with the user’s help, the
function returns a valid movie
identifier and sets the current error
value to couldNotResolveDataRef.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 5

newMovieDontAutoAlternate
Controls whether the Movie Toolbox
automatically selects enabled tracks
from alternate track groups. If you
set this flag to 1, the Movie Toolbox
does not automatically select tracks
for the movie—you must enable
tracks yourself.

dataRefWasChanged Contains a pointer to a Boolean value. The Movie
Toolbox sets the Boolean to indicate whether it had
to change any data references while resolving them.
The toolbox sets the Boolean value to true if any
references were changed. Use the
UpdateMovieResource function to preserve these
changes.

Set the dataRefWasChanged parameter to nil if
you do not want to receive this information.

getProc Contains a pointer to a function in your application.
This function is responsible for providing the movie
data to the Movie Toolbox.

refCon Contains a reference constant (defined as a void
pointer). The Movie Toolbox provides this value to
the function identified by the getProc parameter.

defaultDataRef Specifies the default data reference. This parameter
contains a handle to the information that identifies
the file to be used to resolve any data references and
as a starting point for any Alias Manager searches.

The type of information stored in the handle
depends upon the value of the dataRefType
parameter. For example, if your application is
loading the movie from a file, you would refer to
the file’s alias in the defaultDataRef parameter,
and set the dataRefType parameter to rAliasType.

If you do not want to identify a default data
reference, set the parameter to nil.

dataRefType Specifies the type of data reference. If the data
reference is an alias, you must set the parameter to
rAliasType ('alis'), indicating that the reference
is an alias.

DESCRIPTION

Your application must define a function that provides the movie data to
the Movie Toolbox. You specify that function to the Movie Toolbox with
the getProc parameter. That function must support the following
interface:

QuickTime 2.0 SDK: Toolbox Changes

Page 6 December 21, 1994

pascal OSErr MyGetMovieProc (long offset, long size,
void *dataPtr, void *refCon);

offset Specifies the offset into the movie resource (not the
movie file). This is the location from which your
function retrieves the movie data.

size Specifies the amount of data requested by the
Movie Toolbox, in bytes.

dataPtr Specifies the destination for the movie data.

refCon Contains a reference constant (defined as a void
pointer). This is the same value you provided to the
Movie Toolbox when you called the
NewMovieFromUserProc function.

Normally, when a movie is loaded from a file (say, by means of the
NewMovieFromFile function), the Movie Toolbox uses that file as the
default data reference. Since the NewMovieFromUserProc function does
not require a file specification, your application is free to specify a file to
be used as the default data reference using the defaultDataRef and
dataRefType parameters.

SPECIAL CONSIDERATIONS

The Movie Toolbox automatically sets the movie’s graphics world based
upon the current graphics port. Be sure that your application’s graphics
world is valid before you call this function.

ERROR CODES

paramErr –50 Invalid parameter specified
noMovieFound –2048 Toolbox cannot find a movie in the movie file
Memory Manager errors
Resource Manager errors

NewMovieFromFile

The NewMovieFromFile function now works with some files that do not
contain movie resources. In some cases, the data in a file is already
sufficiently well-formatted for QuickTime or its components to
understand. For example, the AIFF movie data import component can
understand AIFF sound files and import the sound data into a QuickTime
movie. When the NewMovieFromFile function encounters a file that does
not contain a movie resource, the function now tries to find a movie
import component that can understand the data and create a movie. For
more information about new capabilities of movie data import
components, see the chapter “Movie Data Exchange Components”
elsewhere in this document.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 7

ConvertMovieToFile

This function now supports a “Save As...” dialog box. The dialog allows
the user to specify the file name and type. Supported types include
standard QuickTime movies, flattened movies, single-fork flattened
movies, and any format that is supported by a movie data export
component. Figure 1 shows a sample “Save As...” dialog box.

Figure 1 Sample “Save As...” dialog box

Your application controls whether this dialog appears by setting the value
of the flags parameter to the ConvertMovieToFile function. The
function supports the following flags:

showUserSettingsDialog
Controls whether the “Save As...” dialog can
appear. Set this flag to 1 to use the “Save As...”
dialog.

movieToFileOnlyExport
Restricts the user to export file formats. If you want
to require the user to export the movie data using a
movie data export component, set this flag to 1. The
dialog then displays only file types that are
supported by movie data export components.

QuickTime 2.0 SDK: Toolbox Changes

Page 8 December 21, 1994

The following code shows how to call this function.

err = ConvertMovieToFile (theMovie, /* identifies movie */
nil, /* all tracks */
nil, /* no output file */
0, /* no file type */
0, /* no creator */
-1, /* script */
nil, /* no resource ID */
createMovieFileDeleteCurFile |

showUserSettingsDialog |
movieToFileOnlyExport,

0); /* no specific component
*/

Movie Functions

FlattenMovie and FlattenMovieData

The Movie Toolbox, via the new SetTrackLoadSettings function, now
allows you to set a movie’s preloading guidelines when you create the
movie. The preload information is preserved when you flatten the movie
(using either the FlattenMovie or FlattenMovieData functions). In
flattened movies, the tracks that are to be preloaded are stored at the start
of the movie, rather than being interleaved with the rest of the movie data.
This improves preload performance.

For more information about preloading, see the discussion of the
SetTrackLoadSettings function in “Enhancing Movie Playback
Performance.”

Enhancing Movie Playback Performance

SetTrackLoadSettings

The SetTrackLoadSettings function allows you to specify a portion of a
track that is to be loaded into memory whenever it is played.

pascal void SetTrackLoadSettings (Track theTrack,
TimeValue preloadTime,
TimeValue preloadDuration,
long preloadFlags,
long defaultHints);

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 9

theTrack Specifies the track for this operation. Your
application obtains this track identifier from such
Movie Toolbox functions as NewMovieTrack and
GetMovieTrack.

preloadTime Specifies the starting point of the portion of the
track to be preloaded. Set this parameter to –1 if you
want to preload the entire track (in this case the
function ignores the preloadDuration parameter).

preloadDuration Specifies the amount of the track to be preloaded,
starting from the time specified in the preloadTime
parameter. If you are preloading the entire track, the
function ignores this parameter.

preloadFlags Controls when the Movie Toolbox preloads the
track. The function supports the following flag
values:

preloadAlways Specifies that the Movie Toolbox
should always preload this track,
even if the track is disabled.

preloadOnlyIfEnabled
Specifies that the Movie Toolbox
should preload this track only when
the track is enabled.

Set this parameter to 0 if you do not want to preload
the track.

defaultHints Specifies playback hints for the track. You may
specify any of the supported hints flags. See
“Hints,” earlier in this chapter, for some flags that
are new with QuickTime 2.0.

DESCRIPTION

The SetTrackLoadSettings allows you to control how the Movie
Toolbox preloads the tracks in your movie. By using these settings, you
make this information part of the movie, so that the preloading takes place
every time the movie is opened, without an application having to call the
LoadTrackIntoRAM function. Consequently, you should use this feature
carefully, so that your movies do not consume large amounts of memory
when played.

QuickTime 2.0 SDK: Toolbox Changes

Page 10 December 21, 1994

SPECIAL CONSIDERATIONS

The Movie Toolbox transfers this preload information when you call the
CopyTrackSettings function. In addition, the preload information is
preserved when you flatten a movie (using either the FlattenMovie or
FlattenMovieData functions). In flattened movies, the tracks that are to
be preloaded are stored at the start of the movie, rather than being
interleaved with the rest of the movie data. This improves preload
performance.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid

GetTrackLoadSettings

The GetTrackLoadSettings function allows you to retrieve a track’s
preload information.

pascal void GetTrackLoadSettings (Track theTrack,
TimeValue *preloadTime,
TimeValue *preloadDuration,
long *preloadFlags,
long *defaultHints);

theTrack Specifies the track for this operation. Your
application obtains this track identifier from such
Movie Toolbox functions as NewMovieTrack and
GetMovieTrack.

preloadTime Specifies a field to receive the starting point of the
portion of the track to be preloaded. The Movie
Toolbox returns a value of –1 if the entire track is to
be preloaded.

preloadDuration Specifies a field to receive the amount of the track
to be preloaded, starting from the time specified in
the preloadTime parameter. If the entire track is to
be preloaded, this value is meaningless.

preloadFlags Specifies a field to receive the flags that control
when the Movie Toolbox preloads the track. The
function supports the following flag values:

preloadAlways Specifies that the Movie Toolbox
always preloads this track.

preloadOnlyIfEnabled
Specifies that the Movie Toolbox
preloads this track only when the
track is enabled.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 11

defaultHints Specifies a field to receive the playback hints for the
track.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid

Working with Progress and Cover Functions

SetMovieDrawingCompleteProc

The SetMovieDrawingCompleteProc function allows you to assign a
drawing-complete function to a movie. The Movie Toolbox calls this
function based upon guidelines you establish when you assign the function
to the movie.

pascal void SetMovieDrawingCompleteProc (Movie theMovie,
long flags,
MovieDrawingCompleteProcPtr
proc, long refCon);

theMovie Specifies the movie for this operation. Your
application obtains this identifier from such
functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle.

flags Contains information that controls when your
drawing complete function is called. The following
values are supported:

movieDrawingCallWhenChanged
Specifies that the Movie Toolbox
should call your drawing-complete
function only when the movie has
changed.

movieDrawingCallAlways
Specifies that the Movie Toolbox
should call your drawing-complete
function every time your application
calls the MoviesTask function.

proc Contains a pointer to your drawing-complete
function. Set this parameter to nil if you want to
remove your function.

refCon Contains a value that the Movie Toolbox provides
to your drawing-complete function.

QuickTime 2.0 SDK: Toolbox Changes

Page 12 December 21, 1994

DESCRIPTION

Your drawing-complete function must support the following interface:

typedef pascal OSErr MyMovieDrawingCompleteProc
(Movie theMovie, long refCon);

theMovie Specifies the movie for this operation.

refCon Contains the reference constant you supplied when
your application called the
SetMovieDrawingCompleteProc function.

ERROR CODES

invalidMovie –2010 Your movie reference is bad

Functions That Modify Movie Properties

Working With Movie Spatial Characteristics

SetMovieColorTable

The SetMovieColorTable function allows you to associate a color table
with a movie.

pascal OSErr SetMovieColorTable (Movie theMovie,
CTabHandle ctab);

theMovie Specifies the movie for this operation. Your
application obtains this identifier from such
functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle.

ctab Contains a handle to the color table. Set this
parameter to nil to remove the movie’s color table.

DESCRIPTION

The Movie Toolbox makes a copy of the color table, so it is your
responsibility to dispose of the color table when you are done with it. If
the movie already has a color table, the Movie Toolbox uses the new table
to replace the old one.

The CopyMovieSettings function copies the movie’s color table, along
with the other settings information.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 13

The color table you supply may be used to modify the palette of indexed
display devices at playback time. If you are using the movie controller, be
sure to set the mcFlagsUseWindowPalette flag. If you are not using the
movie controller, you should retrieve the movie’s color table (using the
GetMovieColorTable function) and supply it to the Palette Manager.

ERROR CODES

invalidMovie –2010 Your movie reference is bad
Memory Manager errors

GetMovieColorTable

The GetMovieColorTable function allows you to retrieve a movie’s color
table.

pascal OSErr GetMovieColorTable (Movie theMovie,
CTabHandle *ctab);

theMovie Specifies the movie for this operation. Your
application obtains this identifier from such
functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle.

ctab Contains a pointer to a field that is to receive a
handle to the movie’s color table. If the movie does
not have a color table, the Movie Toolbox sets the
field to nil.

DESCRIPTION

The Movie Toolbox returns a copy of the color table, so it is your
responsibility to dispose of the color table when you are done with it.

ERROR CODES

invalidMovie –2010 Your movie reference is bad
Memory manager errors

QuickTime 2.0 SDK: Toolbox Changes

Page 14 December 21, 1994

Locating a Movie’s Tracks and Media Structures

GetMovieIndTrackType

The GetMovieIndTrackType function allows you to search for all of a
movie’s tracks that share a given media type or media characteristic.

pascal Track GetMovieIndTrackType (Movie theMovie,
long index, OSType trackType,
long flags);

theMovie Specifies the movie for this operation. Your
application obtains this identifier from such
functions as NewMovie, NewMovieFromFile, and
NewMovieFromHandle.

index Specifies the index value of the track for this
operation. This is not that same as the track’s index
value in the movie. Rather, this parameter is an
index into the set of tracks that meet your other
selection criteria.

trackType Contains either a media type or a media
characteristic value. The Movie Toolbox applies
this value to the search, and returns information
about tracks that meet this criterion. You indicate
whether you have specified a media type or
characteristic value by setting the flags parameter
appropriately.

flags Contains flags that control the search operation. The
following flags are valid (note that you may not set
both movieTrackMediaType and
movieTrackCharacteristic to 1):

movieTrackMediaType
Indicates that the trackType
parameter contains a media type
value. Set this flag to 1 if you are
supplying a media type value (such
as VideoMediaType).

movieTrackCharacteristic
Indicates that the trackType
parameter contains a media
characteristic value. Set this flag to 1
if you are supplying a media
characteristic value (such as
VisualMediaCharacteristic).

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 15

movieTrackEnabledOnly
Specifies that the Movie Toolbox
should only search enabled tracks.
Set this track to 1 to limit the search
to enabled tracks.

DESCRIPTION

The Movie Toolbox returns the track identifier that corresponds to the
track that meets your selection criteria. If the Movie Toolbox cannot find a
matching track, in returns a value of nil.

Note that the index parameter does not work the same way that is does in
the GetMovieIndTrack function. With the GetMovieIndTrackType
function, the index parameter specifies an index into the set of tracks that
meet your other selection criteria. For example, in order to find the third
track that supports the sound characteristic, you could call the function in
the following manner:

theTrack = GetMovieIndTrackType (theMovie,
3,
AudioMediaCharacteristic,
movieTrackCharacteristic);

ERROR CODES

paramErr –50 Invalid parameter specified
invalidMovie –2010 Your movie reference is bad

Working With Track References

Track references allow you to relate tracks to one another. This can be useful for
identifying the text track that contains the subtitles for a movie’s audio track, and relating
the text track to a particular audio track. See “Track References,” earlier in this chapter,
for more information about track references.

The AddTrackReference function allows you to relate one track to another. The
DeleteTrackReference function removes that relationship. The SetTrackReference
and GetTrackReference functions allow you to modify an existing track reference so
that it identifies a different track. The GetNextTrackReferenceType and
GetTrackReferenceCount functions allow you to scan all of a track’s track references.

AddTrackReference

The AddTrackReference function allows you to add a new track
reference to a track.

pascal OSErr AddTrackReference (Track theTrack,
Track refTrack,
OSType refType,
long *addedIndex);

QuickTime 2.0 SDK: Toolbox Changes

Page 16 December 21, 1994

theTrack Identifies the track for this operation. Your
application obtains this track identifier from such
Movie Toolbox functions as NewMovieTrack and
GetMovieTrack.

refTrack Specifies the track to be identified in the track
reference.

refType Specifies the type of reference.

addedIndex Contains a pointer to a long. The Movie Toolbox
returns the index value assigned to the new track
reference. If you do not want this information, set
this parameter to nil.

ERROR CODES

invalidTrack –2009 This track is corrupted or invalid
Memory Manager errors

DeleteTrackReference

The DeleteTrackReference function allows you to remove a track
reference from a track.

pascal OSErr DeleteTrackReference (Track theTrack,
OSType refType, long index);

theTrack Identifies the track for this operation. Your
application obtains this track identifier from such
Movie Toolbox functions as NewMovieTrack and
GetMovieTrack.

refType Specifies the type of reference.

index Specifies the index value of the reference to be
deleted. You obtain this index value when you
create the track reference.

DESCRIPTION

This function deletes a track reference from a track. If there are additional
track references with higher index values, the Movie Toolbox
automatically renumbers those references, decrementing their index values
by 1.

ERROR CODES

paramErr –50 Invalid parameter specified
invalidTrack –2009 This track is corrupted or invalid

Memory Manager errors

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 17

SetTrackReference

The SetTrackReference function allows you to modify an existing track
reference. You may change the track reference so that it identifies a
different track in the movie.

extern pascal OSErr SetTrackReference (Track theTrack,
Track refTrack,
OSType refType, long index);

theTrack Identifies the track for this operation. Your
application obtains this track identifier from such
Movie Toolbox functions as NewMovieTrack and
GetMovieTrack.

refTrack Specifies the track to be identified in the track
reference. The Movie Toolbox uses this information
to update the existing track reference.

refType Specifies the type of reference.

index Specifies the index value of the reference to be
changed. You obtain this index value when you
create the track reference.

ERROR CODES

paramErr –50 Invalid parameter specified
invalidTrack –2009 This track is corrupted or invalid

GetTrackReference

The GetTrackReference function allows you to retrieve the track
identifier contained in an existing track reference.

pascal Track GetTrackReference (Track theTrack,
OSType refType, long index);

theTrack Identifies the track for this operation. Your
application obtains this track identifier from such
Movie Toolbox functions as NewMovieTrack and
GetMovieTrack.

refType Specifies the type of reference.

index Specifies the index value of the reference to be
changed. You obtain this index value when you
create the track reference.

QuickTime 2.0 SDK: Toolbox Changes

Page 18 December 21, 1994

DESCRIPTION

This function returns the track identifier that is contained in the specified
track reference. If the Movie Toolbox cannot locate the track reference
corresponding to your specifications, it returns a value of nil.

GetNextTrackReferenceType

The GetNextTrackReferenceType function allows you to determine all
of the track reference types that are defined for a given track.

pascal OSType GetNextTrackReferenceType (Track theTrack,
OSType refType);

theTrack Identifies the track for this operation. Your
application obtains this track identifier from such
Movie Toolbox functions as NewMovieTrack and
GetMovieTrack.

refType Specifies the type of reference. Set this parameter to
0 to retrieve the first track reference type. On
subsequent requests, use the previous value returned
by this function.

DESCRIPTION

This function returns an operating-system data type containing the next
track reference type value defined for the track. There is no implied
ordering of the returned values. When you reach the end of the track’s
reference types, this function sets the returned value to 0. You can use this
value to stop your scanning loop.

GetTrackReferenceCount

The GetTrackReferenceCount function allows you to determine how
many track references of a given type exist for a track.

pascal long GetTrackReferenceCount (Track theTrack,
OSType refType);

theTrack Identifies the track for this operation. Your
application obtains this track identifier from such
Movie Toolbox functions as NewMovieTrack and
GetMovieTrack.

refType Specifies the type of reference. The Movie Toolbox
determines the number of track references of this
type.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 19

DESCRIPTION

This function returns long integer that contains the number of track
references of the specified type in the track. If there are no references of
the type you have specified, the function returns a value of 0.

Functions for Editing Movies

Adding Samples to Media Structures

SetMediaDefaultDataRefIndex

The SetMediaDefaultDataRefIndex function allows you to specify
which of a media’s data references is to be accessed during an editing
session.

pascal OSErr SetMediaDefaultDataRefIndex (Media theMedia,
short index);

theMedia Specifies the media for this operation. Your
application obtains this media identifier from such
Movie Toolbox functions as NewTrackMedia and
GetTrackMedia.

index Specifies the data reference to access. Values of the
index parameter range from 1 to the number of data
references in the media (you can determine the
number of data references by calling the
GetMediaDataRefCount function). Once set, the
default data reference index persists. Set this
parameter to 0 to revert to the media’s default.

DESCRIPTION

Since the Movie Toolbox has never allowed you to create tracks that have
data in several files, there has not been a mechanism for controlling which
data reference is affected by a media editing session. The
SetMediaDefaultDataRefIndex function allows you to specify the index
of the data reference to be edited. After calling this function, you can start
editing that data reference by calling the BeginMediaEdits function.

ERROR CODES

invalidMedia –2008 The media is corrupted or invalid
badDataRefIndex –2050 Data reference index value is invalid

QuickTime 2.0 SDK: Toolbox Changes

Page 20 December 21, 1994

SetMediaPreferredChunkSize

The SetMediaPreferredChunkSize function allows you to specify a
maximum chunk size for a media.

pascal OSErr SetMediaPreferredChunkSize (Media theMedia,
long maxChunkSize);

theMedia Specifies the media for this operation. Your
application obtains this media identifier from such
Movie Toolbox functions as NewTrackMedia and
GetTrackMedia.

maxChunkSize Specifies the maximum chunk size, in bytes.

DESCRIPTION

The term chunk refers to the collection of sample data that is added to a
movie when you call the AddMediaSample function. When QuickTime
loads a movie for playback, it loads the data a chunk at a time.
Consequently, both the size and number of chunks in a movie can affect
playback performance. The Movie Toolbox tries to optimize playback
performance by consolidating adjacent sample references into a single
chunk (up to the limit you prescribe with this function).

ERROR CODES

noMediaHandler –2006 Media has no media handler
invalidMedia –2008 The media is corrupted or invalid

GetMediaPreferredChunkSize

The GetMediaPreferredChunkSize function allows you to retrieve the
maximum chunk size for a media.

pascal OSErr GetMediaPreferredChunkSize (Media theMedia,
long *maxChunkSize);

theMedia Specifies the media for this operation. Your
application obtains this media identifier from such
Movie Toolbox functions as NewTrackMedia and
GetTrackMedia.

maxChunkSize Specifies a field to receive the maximum chunk
size, in bytes.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 21

ERROR CODES

noMediaHandler –2006 Media has no media handler
invalidMedia –2008 The media is corrupted or invalid

Media Functions

Selecting Data Handlers

GetDataHandler

The GetDataHandler function allows you to retrieve the best data handler
component to use with a given data reference.

pascal Component GetDataHandler (Handle dataRef,
OSType dataHandlerSubType,
long flags);

dataRef Contains a handle to the data reference. The type of
information stored in the handle depends upon the
data reference type specified by the
dataHandlerSubType parameter.

dataHandlerSubType
Identifies both the type of data reference and, by
implication, the component subtype value assigned
to the data handler components that deal with data
references of that type.

flags Indicates the way in which you intend to use the
data handler component. Note that not all data
handlers necessarily support all services—for
example, some data handler components may not
support streaming writes.

The following flags are defined (set the appropriate
flags to 1):

kDataHCanRead Specifies that you intend to use the
data handler component to read data.

kDataHCanWrite Specifies that you intend to use the
data handler component to write
data.

kDataHCanStreamingWrite
Indicates that you intend to do
streaming writes (as part of a movie-
capture operation, for example).

QuickTime 2.0 SDK: Toolbox Changes

Page 22 December 21, 1994

DESCRIPTION

Once you have used this function to get information about the best data
handler component for your data reference, you can open and use the
component using Component Manager functions. See “Data Handler
Components,” earlier in this chapter, for more information.

If the function returns a value of nil, the Movie Toolbox was unable to
find an appropriate data handler component. For more information about
the error, call the GetMoviesError Movie Toolbox function.

Given that even the most-appropriate data handler component may not
support all of the functionality you desire, you should query that
component’s capabilities before you start reading or writing movie data.

ERROR CODES

Memory Manager errors

Timecode Media Handler Functions

This section discusses the functions and structures that allow you to use the timecode
media handler.

The timecode media handler allows QuickTime movies to store timing information that is
derived from the movie’s original source material. Every QuickTime movie contains
QuickTime-specific timing information, such as frame duration. This information affects
how QuickTime interprets and plays the movie.

The timecode media handler allows QuickTime movies to store additional timing
information that is not created by or for QuickTime. This additional timing information
would typically be derived from the original source material, say as a SMPTE timecode.
In essence, you can think of the timecode media handler as providing a link between the
“digital” QuickTime-specific timing information and the original “analog” timing
information from the source material.

As with any movie data, a movie’s timecode is stored in a timecode track. Timecode
tracks contain

• Source identification information (this identifies the source, say, a given videotape)

• Timecode format information (this specifies the characteristics of the timecode and
how to interpret the timecode information)

• Frame numbers (these allow QuickTime to map from a given movie time—in terms
of QuickTime time values—to its corresponding timecode value)

Apple has defined the information that is stored in the track in a manner that is
independent of any specific timecode standard. The format of this information is
sufficiently flexible to accommodate all know timecode standards, including, for
example, SMPTE timecode. The timecode format information provides QuickTime the
parameters for understanding the timecode and converting QuickTime time values into
timecode time values (and vice versa).

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 23

One key timecode attribute relates to the technique used to synchronize timecode values
with video frames. Most video source material is recorded at whole-number frame rates.
For example, both PAL and SECAM video contains exactly 25 frames per second.
However, some video source material is not recorded at whole-number frame rates. In
particular, NTSC color video contains 29.97 frames per second (though it is typically
referred to as 30 frames-per-second video). However, NTSC timecode values correspond
to the full 30 frames-per-second rate (this is a holdover from NTSC black-and-white
video). For such video sources, you need a mechanism that corrects the skew that will
develop over time between timecode values and actual video frames.

A common method for maintaining synchronization between timecode values and video
data is called dropframe. Contrary to its name, the dropframe technique actually skips
timecode values at a predetermined rate in order to keep the timecode and video data
synchronized. It does not actually drop video frames. In NTSC color video, which uses
the dropframe technique, the timecode values skip two frame values every minute, except
for minute values that are evenly divisible by ten. So NTSC timecode values, which are
expressed as HH:MM:SS:FF (hours, minutes, seconds, frames) skip from 00:00:59:29 to
00:01:00:02 (skipping 00:01:00:00 and 00:01:00:01). There is a flag in the timecode
definition structure that indicates whether the timecode uses the dropframe technique.

You can have the Movie Toolbox display the timecode when a movie is played. Use the
TCSetTimeCodeFlags function to turn the timecode display on and off. Note that the
timecode track must be enabled for this display to work.

You store the timecode’s source identification information in a user data item. Create a
user data item with a type value of TCSourceRefNameType ('name'). Store the source
information as a text string. This information might contain the name of the videotape
from which the movie was created, for example. Be sure to note the index value that you
assign to the user data item. You will need it in order to create timecode sample
descriptions. For more information about working with user data, see Inside Macintosh:
QuickTime.

The timecode media handler provides functions that allow you to manipulate the source
identification information. The following sample code demonstrates one way to set the
source tape name in a timecode media’s sample description.

void setTimeCodeSourceName (Media timeCodeMedia,
TimeCodeDescriptionHandle tcdH,
Str255 tapeName, ScriptCode tapeNameScript)

{
UserData srcRef;

if (NewUserData(&srcRef) == noErr) {
Handle nameHandle;

if (PtrToHand(&tapeName[1], &nameHandle, tapeName[0]) == noErr) {
if (AddUserDataText (srcRef, nameHandle, 'name', 1,

tapeNameScript) == noErr) {
TCSetSourceRef (GetMediaHandler (timeCodeMedia),

tcdH,
srcRef);

}
DisposeHandle(nameHandle);

QuickTime 2.0 SDK: Toolbox Changes

Page 24 December 21, 1994

}
DisposeUserData(srcRef);

}
}

You create a timecode track and media in the same manner that you create any other
track. Call the NewMovieTrack function to create the timecode track, and use the
NewTrackMedia function to create the track’s media. Be sure to specify a media type
value of TimeCodeMediaType when you call the NewTrackMedia function.

You define the relationship between a timecode track and one or more movie tracks using
the Movie Toolbox’s new track reference functions (see “Track References” and
“Functions for Working With Track References” elsewhere in this chapter for more
information). You then proceed to add samples to the track, as appropriate.

Each sample in the timecode track provides timecode information for a span of movie
time. The sample includes duration information. As a result, you typically add each
timecode sample after you have created the corresponding content track or tracks.

The timecode media sample description contains the control information that allows
QuickTime to interpret the samples. This includes the timecode format information. The
actual sample data contains a frame number that identifies one or more content frames
that use this timecode. Stored as a long, this value identifies the first frame in the group of
frames that use this timecode. In the case of a movie made from source material that
contains no edits, you would only need one sample. When the source material contains
edits, you typically need one sample for each edit, so that QuickTime can re-sync the
timecode information with the movie. Those samples contain the frame numbers of the
frames that begin each new group of frames.

The timecode description structure defines the format and content of a timecode media
sample description.

typedef struct TimeCodeDescription {
long descSize; /* size of the structure */
long dataFormat; /* sample type */
long resvd1; /* reserved--set to 0 */
short resvd2; /* reserved--set to 0 */
short dataRefIndex; /* data reference index */
long flags; /* reserved--set to 0 */
TimeCodeDef timeCodeDef; /* timecode format information */
long srcRef[1]; /* source information */

} TimeCodeDescription, *TimeCodeDescriptionPtr,
**TimeCodeDescriptionHandle;

Field Descriptions

descSize Specifies the size of the sample description, in bytes.

dataFormat Indicates the sample description type (TimeCodeMediaType, or
'tmcd').

resvd1 Reserved for use by Apple. Set this field to 0.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 25

resvd2 Reserved for use by Apple. Set this field to 0.

dataRefIndex Contains an index value indicating which of the media’s data
references contains the sample data for this sample description.

flags Reserved for use by Apple. Set this field to 0.

timeCodeDef Contains a timecode definition structure that defines timecode
format information.

srcRef Contains the timecode’s source information. This is formatted as a
user data item that is stored in the sample description. The media
handler provides functions that allow you to get and set this data.

The timecode definition structure contains the timecode format information. This
structure is defined as follows:

typedef struct TimeCodeDef {
long flags; /* timecode control flags */
TimeScale fTimeScale; /* timecode's time scale */
TimeValue frameDuration; /* how long each frame lasts */
unsigned char numFrames; /* number of frames per second */

} TimeCodeDef;

Field Descriptions

flags Contains flags that provide some timecode format information. The
following flags are defined:

tcDropFrame Indicates that the timecode “drops” frames
occasionally in order to stay in sync. Some
timecodes run at other than a whole number of
frames per second. For example, NTSC video runs
at 29.97 frames per second. In order to
resynchronize between the timecode rate and a 30
frames-per-second playback rate, the timecode will
drop a frame at a predictable time (in much the
same way that leap years keep the calendar in sync).
Set this flag to 1 if the timecode uses the dropframe
technique.

tc24HourMax Indicates that the timecode values wrap at 24 hours.
Set this flag to 1 if the timecode hour value wraps
(that is, returns to 0) at 24 hours.

tcNegTimesOK Indicates that the timecode supports negative time
values. Set this flag to 1 if the timecode allows
negative values.

tcCounter Indicates that the timecode should be interpreted as
a simple counter, rather than as a time value. This
allows the timecode to contain either time
information or counter (such as a tape counter)
information. Set this flag to 1 if the timecode
contains counter information.

QuickTime 2.0 SDK: Toolbox Changes

Page 26 December 21, 1994

fTimeScale Contains the time scale for interpreting the frameDuration field.
This field indicates the number of time units per second.

frameDuration Specifies how long each frame lasts, in the units defined by the
fTimeScale field.

numFrames Indicates the number of frames stored per second. In the case of
timecodes that are interpreted as counters, this field indicates the
number of frames stored per timer “tick.”

The best way to understand how to format and interpret the timecode definition structure
is to consider an example. If you were creating a movie from an NTSC video source
recorded at 29.97 frames per second, using SMPTE timecode, you would format the
timecode definition structure as follows:

TimeCodeDef.flags = tcDropFrame | tc24HourMax;
TimeCodeDef.fTimeScale = 2997; /* units */
TimeCodeDef.frameDuration = 100; /* relates units to frames */
TimeCodeDef.numFrames = 30; /* whole frames per second */

The movie’s natural frame rate of 29.97 frames per second is obtained by dividing the
fTimeScale value by the frameDuration (2997∏100). Note that the flags field
indicates that the timecode uses the dropframe technique to resync the movie’s natural
frame rate of 29.97 frames per second with its playback rate of 30 frames per second.

Given a timecode definition, you can freely convert from frame numbers to time values
and from time values to frame numbers. For a time value of 00:00:12:15
(HH:MM:SS:FF), you would obtain a frame number of 375 (12*30 + 15). The timecode
media handler provides a number of routines that allow you to perform these conversions.

When you use the timecode media handler to work with time values, the media handler
uses timecode records to store the time values. The timecode record allows you to
interpret the time information as either a time value (HH:MM:SS:FF) or a counter value.
The timecode record is defined as follows:

typedef union TimeCodeRecord {
TimeCodeTime t; /* value interpreted as time */
TimeCodeCounter c; /* value interpreted as counter

*/
} TimeCodeRecord;

typedef struct TimeCodeTime {
unsigned char hours; /* time: hours */
unsigned char minutes; /* time: minutes */
unsigned char seconds; /* time: seconds */
unsigned char frames; /* time: frames */

} TimeCodeTime;

typedef struct TimeCodeCounter {
long counter; /* counter value */

} TimeCodeCounter;

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 27

Note that, when you are working with timecodes that allow negative time values, the
minutes field of the TimeCodeTime structure (TimeCodeRecord.t.minutes) indicates
whether the time value is positive or negative. If the tctNegFlag bit of the minutes field
is set to 1, the time value is negative.

TCGetCurrentTimeCode

The TCGetCurrentTimeCode function retrieves the timecode and source
identification information for the current frame.

pascal HandlerError TCGetCurrentTimeCode (MediaHandler mh,
long *frameNum,
TimeCodeDef *tcdef,
TimeCodeRecord *tcrec,
UserData *srcRefH);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

frameNum Contains a pointer to a field that is to receive the
current frame number. Set this field to nil if you do
not want to retrieve the frame number.

tcdef Contains a pointer to a timecode definition
structure. The media handler returns the movie’s
timecode definition information. Set this parameter
to nil if you do not want this information.

tcrec Contains a pointer to a timecode record structure.
The media handler returns the current time value.
Set this parameter to nil if you do not want this
information.

srcRefH Contains a pointer to a field that is to receive a
handle containing the source information. It is your
responsibility to dispose of this handle when you
are done with it. Set this field to nil if you do not
want this information.

ERROR CODES

invalidTime –2015 This time value is invalid

TCGetTimeCodeAtTime

The TCGetTimeCodeAtTime function returns a track’s timecode
information corresponding to a specific media time.

QuickTime 2.0 SDK: Toolbox Changes

Page 28 December 21, 1994

pascal HandlerError TCGetTimeCodeAtTime (MediaHandler mh,
TimeValue mediaTime,
long *frameNum,
TimeCodeDef *tcdef,
TimeCodeRecord *tcdata,
UserData *srcRefH);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

mediaTime Specifies the time value for which you want to
retrieve timecode information. This time value is
expressed in the media’s time coordinate system.

frameNum Contains a pointer to a field that is to receive the
current frame number. Set this field to nil if you do
not want to retrieve the frame number.

tcdef Contains a pointer to a timecode definition
structure. The media handler returns the movie’s
timecode definition information. Set this parameter
to nil if you do not want this information.

tcrec Contains a pointer to a timecode record structure.
The media handler returns the current time value.
Set this parameter to nil if you do not want this
information.

srcRefH Contains a pointer to a field that is to receive a
handle containing the source information. It is your
responsibility to dispose of this handle when you
are done with it. Set this field to nil if you do not
want this information.

ERROR CODES

invalidTime –2015 This time value is invalid
Memory Manager errors

TCTimeCodeToFrameNumber

The TCTimeCodeToFrameNumber function converts a timecode time value
into its corresponding frame number.

pascal HandlerError TCTimeCodeToFrameNumber
(MediaHandler mh,
TimeCodeDef *tcdef,
TimeCodeRecord *tcrec,
long *frameNumber);

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 29

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

tcdef Contains a pointer to the timecode definition
structure to use for the conversion.

tcrec Contains a pointer to the timecode record structure
containing the time value to convert.

frameNumber Contains a pointer to a field that is to receive the
frame number that corresponds to the time value in
the tcrec parameter.

ERROR CODES

paramErr –50 Invalid parameter specified

TCFrameNumberToTimeCode

The TCFrameNumberToTimeCode function converts a frame number into
its corresponding timecode time value.

pascal HandlerError TCFrameNumberToTimeCode (MediaHandler
mh, long frameNumber,
TimeCodeDef *tcdef,
TimeCodeRecord *tcrec);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

frameNumber Specifies the frame number that is to be converted.

tcdef Contains a pointer to the timecode definition
structure to use for the conversion.

tcrec Contains a pointer to the timecode record structure
that is to receive the time value.

ERROR CODES

paramErr –50 Invalid parameter specified

TCTimeCodeToString

The TCTimeCodeToString function converts a time value into a text string
(HH:MM:SS:FF). If the timecode uses the dropframe technique, the
separators are semi-colons (;) rather than colons (:).

QuickTime 2.0 SDK: Toolbox Changes

Page 30 December 21, 1994

pascal HandlerError TCTimeCodeToString(MediaHandler mh,
TimeCodeDef *tcdef,
TimeCodeRecord *tcrec,
StringPtr tcStr);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

tcdef Contains a pointer to the timecode definition
structure to use for the conversion.

tcrec Contains a pointer to the timecode record structure
to use for the conversion.

tcStr A pointer to a text string that is to receive the
converted time value.

ERROR CODES

paramErr –50 Invalid parameter specified

TCSetSourceRef

The TCSetSourceRef function allows you to change the source
information in the timecode media sample reference.

pascal HandlerError TCSetSourceRef (MediaHandler mh,
TimeCodeDescriptionHandle
tcdH, UserData srefH);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

tcdH Specifies a handle containing the timecode media
sample reference that is to be updated.

srefH Specifies a handle to the source information to be
placed in the sample reference. It is your
application’s responsibility to dispose of this handle
when you are done with it.

ERROR CODES

paramErr –50 Invalid parameter specified
Memory Manager errors

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 31

TCGetSourceRef

The TCGetSourceRef function allows you to retrieve the source
information from the timecode media sample reference.

pascal HandlerError TCGetSourceRef (MediaHandler mh,
TimeCodeDescriptionHandle
tcdH, UserData *srefH);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

tcdH Specifies a handle containing the timecode media
sample reference for this operation.

srefH Specifies a pointer to a handle that will receive the
source information. It is your application’s
responsibility to dispose of this handle when you
are done with it.

ERROR CODES

paramErr –50 Invalid parameter specified
Memory Manager errors

TCSetTimeCodeFlags

The TCSetTimeCodeFlags function allows you to change the flags that
affect how the Movie Toolbox handles the timecode information.

pascal HandlerError TCSetTimeCodeFlags (MediaHandler mh,
long flags, long flagsMask);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

flags Specifies the new flag values. The following flags
are defined:

tcdfShowTimeCode Controls the display of timecode
information. Set this flag to 1 to
cause timecode information to be
displayed when the movie plays. Set
this flag to 0 to turn off the display.

QuickTime 2.0 SDK: Toolbox Changes

Page 32 December 21, 1994

Note that the timecode track must be
enabled in order for the timecode
information to be displayed.

flagsMask Specifies which of the flag values are to change.
The media handler modifies only those flag values
that correspond to bits that are set to 1 in this
parameter. Use the flag values from the flags
parameter. For example, in order to turn off
timecode display, you would set the
tcdfShowTimeCode flag to 1 in the flagsMask
parameter, and to 0 in the flags parameter.

TCGetTimeCodeFlags

The TCGetTimeCodeFlags function allows you to retrieve the timecode
control flags.

pascal HandlerError TCGetTimeCodeFlags (MediaHandler mh,
long *flags;

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

flags Contains a pointer to a field that is to receive the
control flags. The following flags are defined:

tcdfShowTimeCode Controls the display of timecode
information. If this flag is set to 1,
the timecode information is
displayed when the movie is played.

Note that the timecode track must be
enabled in order for the timecode
information to be displayed.

TCSetDisplayOptions

The TCSetDisplayOptions function allows you to set the text
characteristics that apply to timecode information that is displayed in a
movie.

pascal HandlerError TCSetDisplayOptions (MediaHandler mh,
TCTextOptionsPtr textOptions);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 33

textOptions Contains a pointer to a text options structure. This
structure contains font and style information.

DESCRIPTION

You provide the text style information in a text options structure. This
structure is defined as follows (for more information about working with
text characteristics, see Inside Macintosh: Text):

typedef struct TCTextOptions {
short txFont; /* font */
short txFace; /* font style */
short txSize; /* font size */
RGBColor foreColor; /* foreground color */
RGBColor backColor; /* background color */

} TCTextOptions, *TCTextOptionsPtr;

txFont Specifies the number of the font.

txFace Specifies the font’s style (bold, italic, and so on).

txSize Specifies the font’s size.

foreColor Specifies the foreground color.

backColor Specifies the background color.

TCGetDisplayOptions

The TCGetDisplayOptions function allows you to retrieve the text
characteristics that apply to timecode information that is displayed in a
movie.

pascal HandlerError TCGetDisplayOptions (MediaHandler mh,
TCTextOptionsPtr textOptions);

mh Specifies the timecode media handler. You obtain
this identifier by calling the GetMediaHandler
function.

textOptions Contains a pointer to a text options structure. This
structure will receive font and style information.

ERROR CODES

paramErr –50 Invalid parameter specified

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 35

CHAPTER 2 IMAGE COMPRESSION MANAGER

This chapter discusses new features in the Image Compression Manager.

QuickTime 2.0 introduces the concept of scheduled asynchronous decompression
operations. Decompressor components can now allow applications to queue
decompression operations and specify when those operations should take place. See the
chapter “Image Compressor Components” for more information.

The Image Compression Manager provides a new function,
DecompressSequenceFrameWhen, that allows your application to schedule an
asynchronous decompression operation. This function is described later in this chapter.

As discussed in the “Movie Toolbox” chapter of this document, QuickTime 2.0 also
introduces timecode tracks to QuickTime movies. Both the Image Compression Manager
and compressor components have been enhanced to support timecode information. The
Image Compression Manager now provides the SetDSequenceTimeCode function, which
allows you to set the timecode value for a frame that is to be decompressed. For more
information about timecodes and the timecode media handler, see the “Movie Toolbox”
chapter earlier in this document.

IMAGE COMPRESSION MANAGER REFERENCE

Image Compression Manager Routines

Working With Sequences

DecompressSequenceFrameWhen

The DecompressSequenceFrameWhen function allows you to queue a
frame for decompression and specify the time at which the Image
Compression Manager is to perform the decompression.

pascal OSErr DecompressSequenceFrameWhen (ImageSequence
seqID, Ptr data,
long dataSize,
CodecFlags inFlags,
CodecFlags *outFlags,
ICMCompletionProcRecordPtr
asyncCompletionProc, const
ICMFrameTimePtr frameTime);

QuickTime 2.0 SDK: Toolbox Changes

Page 36 December 21, 1994

seqID Contains the unique sequence identifier that was
returned by the DecompressSequenceBegin
function.

data Points to the compressed image data. This pointer
must contain a 32-bit clean address. If you use a
dereferenced, locked handle, you must call the
Memory Manager’s StripAddress function before
you use that pointer with this parameter.

inFlags Contains flags providing further control
information. See Inside Macintosh: QuickTime for
information about CodecFlags fields. The
following flags are valid for this function:

codecFlagNoScreenUpdate
Controls whether the decompressor
updates the screen image. If you set
this flag to 1, the decompressor does
not write the current frame to the
screen, but does write the frame to its
offscreen image buffer (if one was
allocated). If you set this flag to 0,
the decompressor writes the frame to
the screen.

codecFlagDontOffscreen
Controls whether the decompressor
uses the offscreen buffer during
sequence decompression. This flag is
only used with sequences that have
been temporally compressed. If this
flag is set to 1, the decompressor
does not use the offscreen buffer
during decompression. Instead, the
decompressor returns an error. This
allows your application to refill the
offscreen buffer. If this flag is set to
0, the decompressor uses the
offscreen buffer if appropriate.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 37

codecFlagOnlyScreenUpdate
Controls whether the decompressor
decompresses the current frame. If
you set this flag to 1, the
decompressor writes the contents of
its offscreen image buffer to the
screen, but does decompress the
current frame. If you set this flag to
0, the decompressor decompresses
the current frame and writes it to the
screen. You can set this flag to 1
only if you have allocated an
offscreen image buffer for use by the
decompressor.

outFlags Contains status flags. The decompressor updates
these flags at the end of the decompression
operation. See Inside Macintosh: QuickTime for
information about CodecFlags constants. The
following flags may be set by this function:

codecFlagUsedNewImageBuffer
Indicates to your application that the
decompressor used the offscreen
image buffer for the first time when
it processed this frame. If this flag is
set to 1, the decompressor used the
image buffer for this frame and this
is the first time the decompressor
used the image buffer in this
sequence.

codecFlagUsedImageBuffer
Indicates whether the decompressor
used the offscreen image buffer. If
the decompressor used the image
buffer during the decompress
operation, it sets this flag to 1.
Otherwise, it sets this flag to 0.

codecFlagDontUseNewImageBuffer
Forces an error to be returned when a
new image buffer would have to be
allocated instead of allocating the
new buffer.

codecFlagInterlaceUpdate
Updates the screen interlacing even
and odd scan lines to reduce tearing
artifacts (if the decompressor
supports this mode).

QuickTime 2.0 SDK: Toolbox Changes

Page 38 December 21, 1994

asyncCompletionProc
Points to a completion function structure. The
compressor calls your completion function when an
asynchronous decompression operation is complete.
You can cause the decompression to be performed
asynchronously by specifying a completion
function. See Inside Macintosh: QuickTime for
more information about completion functions.

If you specify asynchronous operation, you must
not read the decompressed image until the
decompressor indicates that the operation is
complete by calling your completion function. Set
asyncCompletionProc to nil to specify
synchronous decompression. If you set
asyncCompletionProc to –1, the operation is
performed asynchronously but the decompressor
does not call your completion function.

frameTime Points to a structure that contains the frame’s time
information, including the time at which the frame
should be displayed, its duration, and the movie’s
playback rate.

DESCRIPTION

This function accepts the same parameters as the
DecompressSequenceFrame function, with the addition of the frameTime
parameter. This parameter points to an ICMFrameTime structure, which
contains the frame’s time information. This structure is discussed in
“Image Compressor Components,” later in this document.

SPECIAL CONSIDERATIONS

If the current decompressor component does not support this function, the
Image Compression Manager returns an error code of codecCantWhenErr.
If the decompressor cannot service your request at a particular time (say,
it’s queue is full), the Image Compression Manager returns an error code
of codecCantQueueErr. The best way to determine whether a
decompressor component supports this function is to go ahead and call the
function—a component’s ability to honor the request may change based
on screen depth, clipping settings, and so on.

ERROR CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 Could not find the specified decompressor
codecSpoolErr –8966 Error loading or unloading data
codecCantWhenErr

–8974 Decompressor can’t honor this request
codecCantQueueErr

–8975 Decompressor can’t queue this frame

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 39

SetDSequenceTimeCode

The SetDSequenceTimeCode function allows you to set the timecode
value for the frame that is about to be decompressed.

pascal OSErr SetDSequenceTimeCode (ImageSequence seqID,
const TimeCodeDef *timeCodeFormat,
const TimeCodeTime *timeCodeTime);

seqID Contains the unique sequence identifier that was
returned by the DecompressSequenceBegin
function.

timeCodeFormat Contains a pointer to a timecode definition
structure. You provide the appropriate timecode
definition information for the next frame to be
decompressed.

timeCodeTime Contains a pointer to a timecode record structure.
You provide the appropriate time value for the next
frame in the current sequence.

DESCRIPTION

QuickTime’s video media handler uses this function to set the timecode
information for a movie. When a movie that contains timecode
information starts playing, the media handler calls this function as it
processes the movie’s first frame.

Note that the Image Compression Manager passes the timecode
information straight through to the image decompressor component. That
is, the Image Compression Manager does not make a copy of any of this
timecode information. As a result, you must make sure that the data
referred to by the timeCodeFormat and timeCodeTime parameters is valid
until the next decompression operation completes.

ERROR CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 Could not find the specified decompressor

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 41

CHAPTER 3 IMAGE COMPRESSOR COMPONENTS

In QuickTime 2.0 the Image Compression Manager has been enhanced to support
scheduled asynchronous decompression operations. By calling the new
DecompressSequenceFrameWhen Image Compression Manager function, applications
can schedule decompression requests in advance. This allows decompressor components
that also support this functionality to provide reliable playback performance under a
wider range of conditions.

Apple has modified its Cinepak, Video, Animation, Component Video, and Graphics
decompressors to support scheduled asynchronous decompression to 8-, 16-, and 32-bit
destinations (the Cinepak decompressor also supports 4-bit grayscale destinations).

If you want to support this functionality, you must modify your decompressor component
in the following ways:

• Report your component’s new capabilities in its compressor capability structure
(there are two new flags)

• Modify your component’s CDBandDecompress function to accept scheduled
asynchronous decompression requests and process them correctly

• Implement the new CDCodecFlush function; this function allows the Image
Compression Manager to instruct you to empty your input queue

• Optionally, implement logic to manage the cursor during decompression operations

All of these changes are discussed in detail in the reference section that follows.

As discussed in the “Movie Toolbox” chapter of this document, QuickTime 2.0 also
introduces timecode tracks to QuickTime movies. Both the Image Compression Manager
and compressor components have been enhanced to support timecode information. Image
compressor components may now support the CDCodecSetTimeCode function, which
allows the Image Compression Manager to set the timecode value for a frame that is to be
decompressed. For more information about timecodes and the timecode media handler,
see the “Movie Toolbox” chapter earlier in this document.

QuickTime 2.0 SDK: Toolbox Changes

Page 42 December 21, 1994

IMAGE COMPRESSOR COMPONENTS REFERENCE

Data Types

The Compressor Capability Structure

There are two new decompressor capability flags (your component sets
these flags in the flags field of the compressor capability structure
[CodecCapabilities]):

codecCanAsyncWhen Indicates whether your decompressor component
supports scheduled asynchronous decompression.
Set this flag to 1 if your component can support the
scheduled variant of the CDBandDecompress
function. Note that you must also set the
codecCanAsync flag to 1.

codecCanShieldCursor
Indicates whether your decompressor component
can shield the cursor during decompression. If your
component can manage the cursor’s display, set this
flag to 1. Your component can use the Image
Compression Manager’s
ICMShieldSequenceCursor function to manage the
cursor. This function is described later in this
chapter in “Image Compression Manager Utility
Functions.”

Otherwise, set this flag to 0—the Image
Compression Manager then manages the cursor for
you.

The Decompression Parameters Structure

Apple has modified the definition of the decompression parameters structure. The
frameTime field has been added. This field contains a pointer to an ICMFrameTime
structure. This structure contains a frame’s time information for scheduled asynchronous
decompression operations.

The decompression parameters structure is now defined as follows (the frameTime field
is near the bottom):

typedef struct {
ImageSequence sequenceID; /* unique sequence ID

(predecompress,
 banddecompress) */

ImageDescriptionHandle imageDescription; /* handle to image
description

 structure
(predecompress,

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 43

banddecompress) */
Ptr data; /* compressed image data */
long bufferSize; /* size of data buffer */
long frameNumber; /* frame identifier */
long startLine; /* starting line for band

*/
long stopLine; /* ending line for band */
long conditionFlags; /* condition flags */
CodecFlags callerFlags; /* control flags */
CodecCapabilitiesPtr *capabilities; /* pointer to compressor

capability structure
(predecompress,
banddecompress) */

ProgressProcRecord progressProcRecord;
/* progress function

structure */
CompletionProcRecord completionProcRecord;

/* completion function
structure */

DataProcRecord dataProcRecord; /* data-loading function
structure */

CGrafPtr port; /* pointer to color
graphics port for image
(predecompress,
banddecompress) */

PixMap dstPixMap; /* destination pixel map
(predecompress,
banddecompress) */

BitMapPtr maskBits; /* update mask */
PixMapPtr mattePixMap; /* blend matte pixel map */
Rect srcRect; /* source rectangle

(predecompress,
banddecompress) */

MatrixRecordPtr *matrix; /* pointer to matrix }
structure
(predecompress,
banddecompress) */

CodecQ accuracy; /* desired accuracy
(predecompress,
banddecompress */

short transferMode; /* transfer mode
(predecompress,
banddecompress) */

ICMFrameTimePtr frameTime /* time information
(scheduled decompress)

*/
long reserved[1]; /* reserved */

} CodecDecompressParams;

QuickTime 2.0 SDK: Toolbox Changes

Page 44 December 21, 1994

The new field is used as follows:

frameTime Contains a pointer to an ICMFrameTime structure.
This structure contains time information relating to
scheduled asynchronous decompression operations.

The ICMFrameTime structure is defined as follows:

struct ICMFrameTimeRecord {
Int64Bit value; /* time to display frame */
long scale; /* time scale */
void *base; /* reference to time base

*/
long duration; /* display duration */
Fixed rate; /* movie's playback rate */

};

The structure’s fields are defined as follows:

value Specifies the time at which the frame is to be
displayed. The scale field specifies the units for
this value; the base field refers to the time base.

scale Indicates the units for the frame’s display time.

base Refers to the time base.

duration Specifies the duration for which the frame is to be
displayed.

rate Indicates the time base effective rate.

Functions

Indirect Functions

CDPreDecompress

If your decompressor component supports scheduled asynchronous
decompression operations, be sure to set the codecCanAsyncWhen flag to 1
in the flags field of your component’s compressor capabilities structure.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 45

CDBandDecompress

For scheduled asynchronous decompression operations, the Image
Compression Manager supplies a reference to an ICMFrameTime structure
in this function’s decompression parameters structure parameter. The
ICMFrameTime structure contains time information governing the
scheduled decompression operation, including the time at which the frame
must be displayed. See “The Decompression Parameters Structure,” earlier
in this chapter, for a complete description of this structure.

When your component has finished the decompression operation, it must
call the application’s completion function. In the past, your component
called that function directly. For scheduled asynchronous decompression
operations, your component should call the Image Compression
Manager’s ICMDecompressComplete function, which is described later in
this chapter.

If your component does not support scheduled asynchronous
decompression, return an error code of codecCantWhenErr. If your
component’s queue is full, return an error code of codecCantQueueErr.

For other asynchronous decompression operations, the Image
Compression Manager sets the frameTime field in the decompression
parameters structure to nil.

CDCodecFlush

Your component receives the CDCodecFlush function whenever the Image
Compression Manager needs to empty your component’s input queue.

pascal ComponentResult CDCodecFlush;

DESCRIPTION

Your component should empty its queue of scheduled asynchronous
decompression requests. For each request, your component must call the
ICMDecompressComplete function. Be sure to set the err parameter to –1,
indicating that the request was canceled. Also, you must set both the
codecCompletionSource and codecCompletionDest flags to 1.

SPECIAL CONSIDERATIONS

Your component’s CDCodecFlush function may be called at interrupt
time.

QuickTime 2.0 SDK: Toolbox Changes

Page 46 December 21, 1994

CDCodecSetTimeCode

Your component receives CDCodecSetTimeCode function whenever an
application calls the Image Compression Manager’s
SetDSequenceTimeCode function. That function allows an application to
set the timecode for a frame that is to be decompressed.

pascal OSErr CDCodecSetTimeCode (ImageSequence seqID,
const TimeCodeDef *timeCodeFormat,
const TimeCodeTime *timeCodeTime);

seqID Contains the unique sequence identifier that was
returned by the DecompressSequenceBegin
function.

timeCodeFormat Contains a pointer to a timecode definition
structure. This structure contains the timecode
definition information for the next frame to be
decompressed.

timeCodeTime Contains a pointer to a timecode record structure.
This structure contains the time value for the next
frame in the current sequence.

DESCRIPTION

The timecode information you receive applies to the next frame to be
decompressed.

Image Compression Manager Utility Functions

ICMDecompressComplete

Your component must call the ICMDecompressComplete function
whenever it finishes a scheduled asynchronous decompression operation.

pascal void ICMDecompressComplete (ImageSequence seqID,
OSErr err, short flag,
ICMCompletionProcRecordPtr
completionRtn);

seqID Identifies the frame’s sequence.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 47

err Indicates whether the operation succeeded or failed.
Set this parameter to 0 for successful operations.
For failed operations, set a reasonable result code.
For canceled operations (for example, when the
Image Compression Manager calls your
component’s CDCodecFlush function), set this
parameter to –1.

flag Indicates which part of the operation is complete.
The following flags are defined:

codecCompletionSource
Your component is done with the
source buffer. Set this flag to 1 when
you are done with the processing
associated with the source buffer.

codecCompletionDest
Your component is done with the
destination buffer. Set this flag to 1
when you are done with the
processing associated with the
destination buffer.

Note that you may set more than one
of these flags to 1.

completionRtn Contains a pointer to a completion function
structure. That structure identifies the application’s
completion function, and contains a reference
constant associated with the frame.

Your component obtains the completion function
structure as part of the decompression parameters
structure provided by the Image Compression
Manager at the start of the decompression
operation.

DESCRIPTION

Your component must call this function at the end of scheduled
asynchronous decompression operations. For other types of
decompression operations, you may still call the application’s completion
function directly.

QuickTime 2.0 SDK: Toolbox Changes

Page 48 December 21, 1994

ICMShieldSequenceCursor

Your component may call the ICMShieldSequenceCursor function to
manage the display of the cursor during decompression operations.

pascal OSErr ICMShieldSequenceCursor (ImageSequence seqID);

seqID Identifies the current sequence.

DESCRIPTION

For correct image display behavior, the cursor must be shielded (hidden)
during decompression. By default, the Image Compression Manager
handles the cursor for you, hiding it at the beginning of a decompression
operation and revealing it at the end.

With the advent of scheduled asynchronous decompression, however, the
Image Compression Manager cannot do as precise a job of managing the
cursor, because it does not when scheduled operations actually begin and
end. While the Image Compression Manager can still manage the cursor, it
must hide the cursor when each request is queued, rather than when the
request is serviced. This may result in the cursor remaining hidden for
long periods of time.

In order to achieve better cursor behavior, you can choose to manage the
cursor in your decompressor component. If you so choose, you can use the
ICMShieldSequenceCursor function to hide the cursor—the Image
Compression Manager displays the cursor when you call the
ICMDecompressComplete function. In this manner, the cursor is hidden
only when your component is decompressing and displaying the frame.

SPECIAL CONSIDERATIONS

This function is interrupt-safe.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 49

CHAPTER 4 SEQUENCE GRABBER COMPONENTS

This chapter discusses new features of sequence grabber components.

The sequence grabber now allows you to assign a specific file to each channel. This
allows you to collect data into more than one file at a time. This can result in improved
performance by defining the files for different channels on different devices. These
destination containers are referred to as sequence grabber outputs. See “Working with
Sequence Grabber Outputs,” later in this chapter, for a complete discussion.

The sequence grabber now uses data handler components when writing movie data. This
provides greater flexibility, especially when working with special storage devices (such
as networks).

As discussed in the “Movie Toolbox” chapter of this document, QuickTime 2.0
introduces timecode tracks to QuickTime movies. The sequence grabber automatically
creates timecode tracks if the source video data contains timecode information. In order
to support timecode tracks, the sequence grabber also provides two functions that let you
identify the source information associated with video data that contains timecode
information. For more information about timecodes and the timecode media handler, see
the “Movie Toolbox” chapter earlier in this document.

SEQUENCE GRABBER COMPONENTS REFERENCE

Sequence Grabber Component Functions

Configuring Sequence Grabber Components

SGSetDataRef

The SGSetDataRef function allows you to specify the destination for a
record operation using a data reference, and to specify other options that
govern the operation. This function is similar to the SGSetDataOutput
function, and provides you an alternative way to specify the destination.

pascal ComponentResult SGSetDataRef (SeqGrabComponent s,
Handle dataRef,
OSType dataRefType,
long whereFlags);

QuickTime 2.0 SDK: Toolbox Changes

Page 50 December 21, 1994

s Specifies the component instance that identifies
your connection to the sequence grabber
component. You obtain this value from the
Component Manager’s OpenDefaultComponent or
OpenComponent function.

dataRef Contains a handle to the information that identifies
the destination container.

dataRefType Specifies the type of data reference. If the data
reference is an alias, you must set the parameter to
rAliasType ('alis'), indicating that the reference
is an alias.

whereFlags Contains flags that control the record operation.
You must set either the seqGrabToDisk flag or the
seqGrabToMemory flag to 1 (set unused flags to 0):

seqGrabToDisk Instructs the sequence grabber
component to write the recorded data
to a QuickTime movie in the
container specified by the dataRef
parameter. If you set this flag to 1,
the sequence grabber writes the data
to the container as the data is
recorded. Set this flag to 0 if you set
the seqGrabToMemory flag to 1 (only
one of these two flags may be set to
1).

seqGrabToMemory Instructs the sequence grabber
component to store the recorded data
in memory until the recording
process is complete. The sequence
grabber then writes the recorded data
to the container specified by the
dataRef parameter. This technique
provides better performance than
recording directly to the container,
but limits the amount of data you can
record. Set this flag to 1 to record to
memory. Set this flag to 0 if you set
the seqGrabToDisk flag to 1 (only
one of these two flags may be set
to 1).

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 51

seqGrabDontUseTempMemory
Prevents the sequence grabber
component from using temporary
memory during the record operation.
By default, the sequence grabber
component and its channel
components use as much temporary
memory as necessary to perform the
record operation. Set this flag to 1 to
prevent the sequence grabber
component and its channel
components from using temporary
memory.

seqGrabAppendToFile
Directs the sequence grabber
component to add the recorded data
to the data fork of the container
specified by the dataRef parameter.
By default, the sequence grabber
component deletes the container and
creates a new file containing one
movie and the corresponding movie
resource. Set this flag to 1 to cause
the sequence grabber component to
append the recorded data to the data
fork of the container and create a
new movie resource in that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber
component from adding the new
movie resource to the container
specified by the dataRef parameter.
By default, the sequence grabber
component creates a new movie
resource and adds that resource to
the container. Set this flag to 1 to
prevent the sequence grabber
component from adding the movie
resource to the container. You are
then responsible for adding the
resource to a file, if you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber
component from creating a movie.
By default, the sequence grabber
component creates a new movie
resource and adds the captured data
to that movie. If you set this flag to
1, the sequence grabber still calls
your data function, but does not write
any data to the movie file.

QuickTime 2.0 SDK: Toolbox Changes

Page 52 December 21, 1994

seqGrabDataProcIsInterruptSafe
Specifies that your data function is
interrupt-safe, and may be called at
interrupt time. This allows the
sequence grabber component to
present the captured data as soon as
possible. Note that not all sequence
grabber channel components may
use this feature.

DESCRIPTION

If you are performing a preview operation, you do not need to use the
SGSetDataRef function.

ERROR CODES

notEnoughMemoryToGrab –9403 Insufficient memory for operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for
operation
File Manager errors
Memory Manager errors

SGGetDataRef

The SGGetDataRef function allows you to determine the data reference
that is currently assigned to a sequence grabber component and the control
flags that would govern a record operation.

pascal ComponentResult SGGetDataRef (SeqGrabComponent s,
Handle *dataRef,
OSType *dataRefType,
long *whereFlags);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. You obtain this value from the
Component Manager’s OpenDefaultComponent or
OpenComponent function.

dataRef Contains a pointer to a handle that is to receive the
information that identifies the destination container.

dataRefType Specifies a pointer to a field that is to receive the
type of data reference.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 53

whereFlags Contains a pointer to a long integer that is to receive
flags that control the record operation. The
following flags are defined (unused flags are set to
0):

seqGrabToDisk Instructs the sequence grabber
component to write the recorded data
to a QuickTime movie in the
container specified by the dataRef
parameter. If this flag is set to 1, the
sequence grabber writes the data to
the container as the data is recorded.

seqGrabToMemory Instructs the sequence grabber
component to store the recorded data
in memory until the recording
process is complete. The sequence
grabber then writes the recorded data
to the container specified by the
dataRef parameter. This technique
provides better performance than
recording directly to the movie file,
but limits the amount of data you can
record. If this flag is set to 1, the
sequence grabber component is
recording to memory.

seqGrabDontUseTempMemory
Prevents the sequence grabber
component from using temporary
memory during the record operation.
By default, the sequence grabber
component and its channel
components use as much temporary
memory as necessary to perform the
record operation. If this flag is set to
1, the sequence grabber component
and its channel components do not
use temporary memory.

QuickTime 2.0 SDK: Toolbox Changes

Page 54 December 21, 1994

seqGrabAppendToFile
Directs the sequence grabber
component to add the recorded data
to the data fork of the container
specified by the dataRef parameter.
By default, the sequence grabber
component deletes the container and
creates a new file containing one
movie and its movie resource. If this
flag is set to 1, the sequence grabber
component appends the recorded
data to the data fork of the container
and creates a new movie resource in
that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber
component from adding the new
movie resource to the container
specified by the dataRef parameter.
By default, the sequence grabber
component creates a new movie
resource and adds that resource to
the container. If this flag is set to 1,
the sequence grabber component
does not add the movie resource to
the container. You are then
responsible for adding the resource
to a file, if you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber
component from creating a movie.
By default, the sequence grabber
component creates a new movie
resource and adds the captured data
to that movie. If this flag is set to 1,
the sequence grabber still calls your
data function, but does not write any
data to the container.

seqGrabDataProcIsInterruptSafe
Specifies that your data function is
interrupt-safe, and may be called at
interrupt time. This allows the
sequence grabber component to
present the captured data as soon as
possible. Note that not all sequence
grabber channel components may
use this feature.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 55

DESCRIPTION

You set these characteristics by calling the SGSetDataRef function, which
is described in the previous section. If you have not set these
characteristics before calling the SGGetDataRef function, the returned data
is meaningless.

ERROR CODES

Memory Manager errors

Controlling Sequence Grabber Components

SGGetMode

The SGGetMode function provides a convenient mechanism for
determining whether a sequence grabber component is in preview mode or
record mode.

pascal ComponentResult SGGetMode (SeqGrabComponent s,
Boolean *previewMode,
Boolean *recordMode);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. You obtain this value from the
Component Manager’s OpenDefaultComponent or
OpenComponent function.

previewMode Contains a pointer to a Boolean. The sequence
grabber component sets this field to true if the
component is in preview mode.

recordMode Contains a pointer to a Boolean. The sequence
grabber component sets this field to true if the
component is in record mode.

Working With Channel Characteristics

The sequence grabber now supports two new functions, SGChannelSetDataSourceName
and SGChannelGetDataSourceName, that allow you to work with the source
identification information associated with a timecode media. For more information about
timecodes and the timecode media handler, see the “Movie Toolbox” chapter earlier in
this document.

QuickTime 2.0 SDK: Toolbox Changes

Page 56 December 21, 1994

SGChannelSetDataSourceName

The SGChannelSetDataSourceName function allows you to set the source
information relating to the timecode data created for a track. You must set
this information before you start digitizing.

pascal ComponentResult SGChannelSetDataSourceName
(SGChannel c,
const Str255 name,
ScriptCode scriptTag);

c Specifies the reference that identifies the channel
for this operation. This must be a video channel.

name Identifies a string that contains the source
identification information.

scriptTag Specifies the language of the source identification
information.

DESCRIPTION

This source information identifies the source of the video data (say, a
videotape name). The sequence grabber stores this information with the
track’s timecode information. If the source does not contain timecode
information, or the digitizer does not provide the information, the
sequence grabber does not save this information.

This function is supported only by video channels.

SGChannelGetDataSourceName

The SGChannelGetDataSourceName function allows you to get the source
information relating to the timecode data created for a track.

pascal ComponentResult SGChannelGetDataSourceName
(SGChannel c, Str255 name,
ScriptCode *scriptTag);

c Specifies the reference that identifies the channel
for this operation. This must be a video channel.

name Identifies a string that is to receive the source
identification information. Set this parameter to nil
if you do not want to retrieve the name

scriptTag Specifies a field that is to receive the source
information’s language code. Set this parameter to
nil if you do not want this information.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 57

Working with Sequence Grabber Outputs

In order to allow sequence grabber components to capture to more than one data
reference at a time, QuickTime 2.0 introduces the concept of a sequence grabber output.
A sequence grabber output ties a sequence grabber channel to a specified data reference.

If you are capturing to a single movie file, you can continue to use the SGSetDataOutput
function (or the new SGSetDataRef function) to specify the sequence grabber’s
destination. However, if you want to capture movie data into several different files or data
references, you must use sequence grabber outputs to do so. Even if you are using
outputs, you must still use the SGSetDataOutput function or the SGSetDataRef function
to identify where the sequence grabber should create the movie resource.

You are responsible for creating outputs, assigning them to sequence grabber channels,
and disposing of them when you are done. Sequence grabber components provide a
number of functions for managing outputs: the SGNewOutput function creates a new
output; the SGDisposeOutput function disposes of an output; the SGSetOutputFlags
function configures the output; the SGSetChannelOutput function assigns an output to a
channel; and the SGGetDataOutputStorageSpaceRemaining function determines how
much space is left in the output.

SGNewOutput

The SGNewOutput function creates a new sequence grabber output. You
specify the output’s destination container using a data reference.

pascal ComponentResult SGNewOutput (SeqGrabComponent s,
Handle dataRef,
OSType dataRefType,
long whereFlags,
SGOutput *output);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. You obtain this value from the
Component Manager’s OpenDefaultComponent or
OpenComponent function.

dataRef Contains a handle to the information that identifies
the destination container.

dataRefType Specifies the type of data reference. If the data
reference is an alias, you must set the parameter to
rAliasType ('alis'), indicating that the reference
is an alias.

whereFlags Contains flags that control the record operation.
You must set either the seqGrabToDisk flag or the
seqGrabToMemory flag to 1 (set unused flags to 0):

QuickTime 2.0 SDK: Toolbox Changes

Page 58 December 21, 1994

seqGrabToDisk Instructs the sequence grabber
component to write the recorded data
to a QuickTime movie in the
container specified by the dataRef
parameter. If you set this flag to 1,
the sequence grabber writes the data
to the container as the data is
recorded. Set this flag to 0 if you set
the seqGrabToMemory flag to 1 (only
one of these two flags may be set to
1).

seqGrabToMemory Instructs the sequence grabber
component to store the recorded data
in memory until the recording
process is complete. The sequence
grabber then writes the recorded data
to the container specified by the
dataRef parameter. This technique
provides better performance than
recording directly to the container,
but limits the amount of data you can
record. Set this flag to 1 to record to
memory. Set this flag to 0 if you set
the seqGrabToDisk flag to 1 (only
one of these two flags may be set
to 1).

seqGrabDontUseTempMemory
Prevents the sequence grabber
component from using temporary
memory during the record operation.
By default, the sequence grabber
component and its channel
components use as much temporary
memory as necessary to perform the
record operation. Set this flag to 1 to
prevent the sequence grabber
component and its channel
components from using temporary
memory.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 59

seqGrabAppendToFile
Directs the sequence grabber
component to add the recorded data
to the data fork of the container
specified by the dataRef parameter.
By default, the sequence grabber
component deletes the container and
creates a new file containing one
movie and the corresponding movie
resource. Set this flag to 1 to cause
the sequence grabber component to
append the recorded data to the data
fork of the container and create a
new movie resource in that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber
component from adding the new
movie resource to the container
specified by the dataRef parameter.
By default, the sequence grabber
component creates a new movie
resource and adds that resource to
the container. Set this flag to 1 to
prevent the sequence grabber
component from adding the movie
resource to the container. You are
then responsible for adding the
resource to a file, if you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber
component from creating a movie.
By default, the sequence grabber
component creates a new movie
resource and adds the captured data
to that movie. If you set this flag to
1, the sequence grabber still calls
your data function, but does not write
any data to the movie file.

seqGrabDataProcIsInterruptSafe
Specifies that your data function is
interrupt-safe, and may be called at
interrupt time. This allows the
sequence grabber component to
present the captured data as soon as
possible. Note that not all sequence
grabber channel components may
use this feature.

QuickTime 2.0 SDK: Toolbox Changes

Page 60 December 21, 1994

output Contains a pointer to a sequence grabber output.
The sequence grabber component returns an output
identifier. You can then use this identifier with other
sequence grabber component functions.

DESCRIPTION

Once you have created the sequence grabber output, you can use the
SGSetChannelOutput function to assign the output to a sequence grabber
channel.

ERROR CODES

paramErr –50 Invalid parameter specified
File Manager errors
Memory Manager errors

SGDisposeOutput

The SGDisposeOutput function disposes of an existing output.

pascal ComponentResult SGDisposeOutput (SeqGrabComponent s,
SGOutput output);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. You obtain this value from the
Component Manager’s OpenDefaultComponent or
OpenComponent function.

output Identifies the sequence grabber output for this
operation. You obtain this identifier by calling the
SGNewOutput function.

DESCRIPTION

If any sequence grabber channels are using this output, the sequence
grabber component assigns them to an undefined output (and any data
captured subsequently is lost until you assign a new output to the channel).

Note that you cannot dispose of an output when the sequence grabber
component is in record mode.

ERROR CODES

cantDoThatInCurrentMode –9402 Request invalid in current mode

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 61

SGSetChannelOutput

The SGSetChannelOutput function allows you to assign an output to a
channel.

pascal ComponentResult SGSetChannelOutput (SeqGrabComponent
s, SGChannel c,
SGOutput output);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. You obtain this value from the
Component Manager’s OpenDefaultComponent or
OpenComponent function.

c Identifies the channel for this operation. Provide
your connection identifier. You connect to a
channel component by calling the SGNewChannel or
SGNewChannelFromComponent functions.

output Identifies the sequence grabber output for this
operation. You obtain this identifier by calling the
SGNewOutput function.

DESCRIPTION

Note that when you call the SGSetDataRef or SGSetDataOutput
functions the sequence grabber component sets every channel to the
specified file or container. If you want to use different outputs, you must
use this function to assign the channels appropriately.

One output may be assigned to one or more channels.

ERROR CODES

badSGChannel –9406 Invalid channel specified

QuickTime 2.0 SDK: Toolbox Changes

Page 62 December 21, 1994

SGSetOutputFlags

The SGSetOutputFlags function allows you to configure an existing
sequence grabber output.

pascal ComponentResult SGSetOutputFlags (SeqGrabComponent s,
SGOutput output,
long whereFlags);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. You obtain this value from the
Component Manager’s OpenDefaultComponent or
OpenComponent function.

output Identifies the sequence grabber output for this
operation. You obtain this identifier by calling the
SGNewOutput function.

whereFlags Contains flags that control the record operation.
You must set either the seqGrabToDisk flag or the
seqGrabToMemory flag to 1 (set unused flags to 0):

seqGrabToDisk Instructs the sequence grabber
component to write the recorded data
to a QuickTime movie in the
container specified by the dataRef
parameter. If you set this flag to 1,
the sequence grabber writes the data
to the container as the data is
recorded. Set this flag to 0 if you set
the seqGrabToMemory flag to 1 (only
one of these two flags may be set to
1).

seqGrabToMemory Instructs the sequence grabber
component to store the recorded data
in memory until the recording
process is complete. The sequence
grabber then writes the recorded data
to the container specified by the
dataRef parameter. This technique
provides better performance than
recording directly to the container,
but limits the amount of data you can
record. Set this flag to 1 to record to
memory. Set this flag to 0 if you set
the seqGrabToDisk flag to 1 (only
one of these two flags may be set
to 1).

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 63

seqGrabDontUseTempMemory
Prevents the sequence grabber
component from using temporary
memory during the record operation.
By default, the sequence grabber
component and its channel
components use as much temporary
memory as necessary to perform the
record operation. Set this flag to 1 to
prevent the sequence grabber
component and its channel
components from using temporary
memory.

seqGrabAppendToFile
Directs the sequence grabber
component to add the recorded data
to the data fork of the container
specified by the dataRef parameter.
By default, the sequence grabber
component deletes the container and
creates a new file containing one
movie and the corresponding movie
resource. Set this flag to 1 to cause
the sequence grabber component to
append the recorded data to the data
fork of the container and create a
new movie resource in that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber
component from adding the new
movie resource to the container
specified by the dataRef parameter.
By default, the sequence grabber
component creates a new movie
resource and adds that resource to
the container. Set this flag to 1 to
prevent the sequence grabber
component from adding the movie
resource to the container. You are
then responsible for adding the
resource to a file, if you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber
component from creating a movie.
By default, the sequence grabber
component creates a new movie
resource and adds the captured data
to that movie. If you set this flag to
1, the sequence grabber still calls
your data function, but does not write
any data to the movie file.

QuickTime 2.0 SDK: Toolbox Changes

Page 64 December 21, 1994

seqGrabDataProcIsInterruptSafe
Specifies that your data function is
interrupt-safe, and may be called at
interrupt time. This allows the
sequence grabber component to
present the captured data as soon as
possible. Note that not all sequence
grabber channel components may
use this feature.

ERROR CODES

paramErr –50 Invalid parameter specified
cantDoThatInCurrentMode –9402 Request invalid in current mode

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 65

SGGetDataOutputStorageSpaceRemaining

The SGGetDataOutputStorageSpaceRemaining function, besides having
the longest name in captivity, allows you to determine the amount of space
remaining in the file associated with an output.

pascal ComponentResult SGGetDataOutputStorageSpaceRemaining
(SeqGrabComponent s,
SGOutput output,
unsigned long *space);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. You obtain this value from the
Component Manager’s OpenDefaultComponent or
OpenComponent function.

output Identifies the sequence grabber output for this
operation. You obtain this identifier by calling the
SGNewOutput function.

space Contains a pointer to an unsigned long. The
sequence grabber component returns a value that
indicates the number of bytes of space remaining in
the file associated with the output.

DESCRIPTION

Use this function in place of the SGGetStorageSpaceRemaining function
in cases where you are working with more than one output.

ERROR CODES

paramErr –50 Invalid parameter specified

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 67

CHAPTER 5 SEQUENCE GRABBER CHANNEL

COMPONENTS

This chapter discusses the changes to sequence grabber channel components.

There are a couple of new functions that allow the sequence grabber to request that your
channel component observe a specified data rate.

SEQUENCE GRABBER COMPONENTS REFERENCE

Sequence Grabber Channel Component Functions

Configuration Functions for All Channel Components

SGChannelSetRequestedDataRate

The SGChannelSetRequestedDataRate function allows the sequence
grabber component to specify the maximum rate at which it would like to
receive data from your channel component.

pascal ComponentResult SGChannelSetRequestedDataRate
(SGChannel c,
long bytesPerSecond);

c Identifies the channel connection for this operation.

bytesPerSecond Specifies the maximum data rate requested by the
sequence grabber component. The sequence grabber
component sets this parameter to 0 to remove any
data-rate restrictions.

DESCRIPTION

The data rate supplied by the sequence grabber component represents a
requested data rate. Your component may not be able to observe that rate
under all conditions. The sequence grabber component can accommodate
your component occasionally exceeding this suggested rate.

ERROR CODES

badComponentSelector 0x80008002 Function not
supported

QuickTime 2.0 SDK: Toolbox Changes

Page 68 December 21, 1994

SGChannelGetRequestedDataRate

The SGChannelGetRequestedDataRate function allows the sequence
grabber component to retrieve the current maximum data rate value from
your channel component.

pascal ComponentResult SGChannelGetRequestedDataRate
(SGChannel c,
long *bytesPerSecond);

c Identifies the channel connection for this operation.

bytesPerSecond Points to a field that is to receive the maximum data
rate requested by the sequence grabber component.
Set this field to 0 if the sequence grabber has not set
any restrictions.

ERROR CODES

badComponentSelector 0x80008002 Function not
supported

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 69

CHAPTER 6 VIDEO DIGITIZER COMPONENTS

This chapter discusses changes to video digitizer components.

There is a new function, VDSetDataRate, that instructs your video digitizer component to
observe a specified rate of data delivery.

As discussed in the “Movie Toolbox” chapter of this document, QuickTime 2.0
introduces timecode tracks to QuickTime movies. Video digitizers may return timecode
information for an incoming video signal by responding to the new VDGetTimeCode
function described in this chapter. For more information about timecodes and the
timecode media handler, see the “Movie Toolbox” chapter earlier in this document.

VIDEO DIGITIZER COMPONENTS REFERENCE

Video Digitizer Component Functions

Controlling Digitization

VDSetDataRate

The VDSetDataRate function instructs your video digitizer component to
limit the rate at which it delivers compressed, digitized video data.

pascal VideoDigitizerError VDSetDataRate
(VideoDigitizerComponent ci,
long bytesPerSecond);

ci Specifies the video digitizer component for the
request. Applications contains this reference from
the Component Manager’s OpenComponent
function.

bytesPerSecond Specifies the maximum data rate requested by the
application. Applications set this parameter to 0 to
remove any data-rate restrictions.

QuickTime 2.0 SDK: Toolbox Changes

Page 70 December 21, 1994

DESCRIPTION

This function is valid only for video digitizer components that can deliver
compressed video (that is, components that support the
VDCompressOneFrameAsync function). Components that support data-rate
limiting set the codecInfoDoesRateConstrain flag to 1 in the
compressFlags field of the VDCompressionList structure returned by the
component in response to the VDGetCompressionTypes function.

Your video digitizer component should return this data-rate limit in the
bytesPerSecond parameter of the existing VDGetDataRate function.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 71

Utility Functions

VDGetTimeCode

The VDGetTimeCode function instructs your video digitizer component to
return timecode information for the incoming video signal.

pascal VideoDigitizerError VDGetTimeCode
(VideoDigitizerComponent ci,
TimeRecord *atTime,
const TimeCodeDef
*timeCodeFormat,
const TimecodeTime
*timeCodeTime);

ci Specifies the video digitizer component for the
request. Applications contains this reference from
the Component Manager’s OpenComponent
function.

atTime Specifies a location to receive the QuickTime movie
time value corresponding to the timecode
information.

timeCodeFormat Contains a pointer to a timecode definition
structure. Your video digitizer component returns
the movie’s timecode definition information.

timeCodeTime Contains a pointer to a timecode record structure.
Your video digitizer component returns the time
value corresponding to the movie time contained in
the atTime parameter.

DESCRIPTION

Typically, applications call this function once, at the beginning of a
capture session.

For more information about the timecode data structures, see the “Movie
Toollbox” chapter elsewhere in this document.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 73

CHAPTER 7 MOVIE DATA EXCHANGE COMPONENTS

This chapter discusses new features in movie data exchange components.

DIRECT IMPORTATION

Some movie data import components can create a movie from a file without having to
write to a separate disk file. Examples include MPEG and AIFF import components—
data in files of these types can be played directly by the appropriate media handler
components, without any data conversion. In such cases it is inappropriate for the user to
have to specify a destination file, given that there is no need for such a file.

If you import component can operate in this manner, set the canMovieImportInPlace
flag to 1 in your component flags when you register your component. The standard file
dialog uses this flag to determine how to import files. The OpenMovieFile and
NewMovieFromFile functions use this flag to open some kinds of files as movies.

AUDIO CD IMPORT COMPONENT

The Audio CD import component now creates AIFF files, rather than movie files. These
files also contain movie resources, so you can open them as movies.

QuickTime 2.0 SDK: Toolbox Changes

Page 74 December 21, 1994

MOVIE DATA EXCHANGE COMPONENTS REFERENCE

Importing Movie Data

MovieImportGetFileType

The MovieImportGetFileType allows your movie data import component
to tell the Movie Toolbox the appropriate file type for the most-recently
imported movie file.

pascal ComponentResult MovieImportGetFileType
(MovieImportComponent ci,
OSType *fileType);

ci Identifies the Movie Toolbox’s connection to your
movie data import component.

fileType Contains a pointer to an OSType field. Your
component should place the file type value that best
identifies the movie data just imported. For
example, Apple’s Audio CD movie data import
component sets this field to 'AIFF' whenever it
creates an AIFF file instead of a movie file.

DESCRIPTION

You should implement this function only if your movie data import
component creates files other than QuickTime movies. By default, the
Movie Toolbox makes new files movies, unless you override that default
by providing this function.

ERROR CODES

badComponentSelector 0x80008002 Function not
supported

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 75

CHAPTER 8 DERIVED MEDIA HANDLER COMPONENTS

This chapter discusses new features in derived media handler components.

DERIVED MEDIA HANDLER COMPONENTS REFERENCE

Functions

Managing Your Media Handler Component

MediaIdle

There is a minor change to the MediaIdle function that is related to the
new media handler support for partial screen redrawing (for more
information on this feature see the discussion of the MediaGetDrawingRgn
function elsewhere in this chapter).

From time to time, your derived media handler component may determine
that only a portion of the available drawing area needs to be redrawn. You
can signal that condition to the base media handler component by setting
the mPartialDraw flag to 1 in the flags your component returns to the
Movie Toolbox from your MediaIdle function. You return these flags
using the flagsOut parameter.

Whenever you set this flag to 1, the Movie Toolbox calls your
component’s MediaGetDrawingRgn function in order to determine the
portion of the image that needs to be redrawn.

As an example, consider a full-screen animation. Only rarely is the entire
image in motion. Typically, only a small portion of the screen image
moves. By using partial redrawing, you can significantly improve the
playback performance of such a movie.

QuickTime 2.0 SDK: Toolbox Changes

Page 76 December 21, 1994

Graphics Data Management

MediaGetDrawingRgn

The MediaGetDrawingRgn function allows your derived media handler
component to specify a portion of the screen that must be redrawn. This
region is defined in the movie’s display coordinate system.

pascal ComponentResult MediaGetDrawingRgn (ComponentInstance
ci, RgnHandle *partialRgn);

ci Identifies the Movie Toolbox’s connection to your
derived media handler.

partialRgn Points to a handle that defines the screen region to
be redrawn. Note that your component is
responsible for disposing of this region once
drawing is complete. Since the base media handler
will use this region during redrawing, it is best to
dispose of it when your component is closed.

DESCRIPTION

The Movie Toolbox calls this function in order to determine what part of
the screen needs to be redrawn. By default, the Movie Toolbox redraws
the entire region that belongs to your component. If your component
determines that only a portion of the screen has changed, and has indicated
this to the Movie Toolbox by setting the mPartialDraw flag to 1 in the
flagsOut parameter of the MediaIdle function, the Movie Toolbox calls
your component’s MediaGetDrawingRgn function. Your component
returns a region that defines the changed portion of the screen.

ERROR CODES

badComponentSelector 0x80008002 Function not
supported
Memory Manager errors

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 77

Base Media Handler Utility Functions

MediaForceUpdate

The MediaForceUpdate function allows your derived media handler
component to influence when the base media handler updates the screen.

pascal ComponentResult MediaForceUpdate (ComponentInstance
ci, long forceUpdateFlags);

ci Identifies your derived media handler’s connection
to the base media handler.

forceUpdateFlags Specifies what you want the base media handler to
do. The following flags are defined (be sure to set
unused flags to 0):

forceUpdateRedraw Instructs the base media handler to
call your derived media handler’s
MediaIdle function during the next
MoviesTask execution. This allows
your media handler to update the
screen based on non-time-related
events (typically you would get
control only at sample changes). For
example, you might want to
highlight some text (say, a sample
number) whenever the user stops the
movie, even though this may not
correspond to a sample change.

forceUpdateNewBuffer
Instructs the base media handler to
allocate a new off-screen buffer. This
can be useful if you need to change
the buffer’s characteristics. The base
media handler reallocates the buffer
the next time the MoviesTask
function is called.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 79

CHAPTER 9 DATA HANDLER COMPONENTS

This chapter discusses data handler components. Data handler components allow the
rest of QuickTime to retrieve time-based data from external storage devices and, in some
cases, store time-based data on those devices.

This chapter is divided into the following sections:

• “About Data Handler Components” provides a general introduction to components
of this type

• “Using Data Handler Components” discusses how QuickTime uses these
components

• “Creating a Data Handler Component” describes how to create one of these
components

• “Reference to Data Handler Components” presents detailed information about the
functions that are supported by these components

• “Summary of Data Handler Components” contains a condensed listing of the
constants, data structures, and functions supported by these components

This chapter addresses developers of data handler components, though it contains
information for both developers and users of these components. If you plan to create a
data handler component, you should read the entire chapter. If you are writing an
application that uses components of this type, you should read the first two sections
(“About Data Handler Components” and “Using Data Handler Components”), and then
use the reference section as appropriate.

Furthermore, note that data handler components exist both in QuickTime for the
Macintosh and QuickTime for Windows. Given that the architectures of these two
systems are very similar, much of the background information is common to both
environments—you will typically find this background information in Inside Macintosh.
However, while the basic functionality and structure of these components is quite similar
in both environments, there are some important technical differences. For example, the
techniques you would use to create a component for Windows are quite different from
those you would use on the Macintosh. Therefore, whenever appropriate, this chapter
refers you to the specific Inside Macintosh or QuickTime for Windows documentation for
additional information that is particular to these two environments.

Note: This chapter describes the interface provided by data handler components. Note
that this interface is supported only in QuickTime and QuickTime for Windows
versions 2.0 or newer. In addition, unless noted otherwise, the data handler
components supplied by Apple support the entire interface described in this note.

QuickTime 2.0 SDK: Toolbox Changes

Page 80 December 21, 1994

As components, data handler components rely on the facilities of the Component
Manager. In order to create or use any component, your application must also use the
Component Manager. If you are not familiar with the Component Manager, see
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. If you are
developing for QuickTime for Windows, you should also take a look at QuickTime for
Windows: Components and Decompressors. In addition, you should be familiar with the
Movie Toolbox. See “Movie Toolbox” in Inside Macintosh: QuickTime for more
information.

Note: Throughout this chapter, the terms data handler and handler refer to data
handler components.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 81

ABOUT DATA HANDLER COMPONENTS

This section provides background information about data handler components. After
reading this section you should understand why these components exist and whether you
need to create or use a data handler component.

Data Handler Components

Data handler components store and retrieve time-based data on behalf of other
QuickTime components, typically media handler components. Figure 1 shows the logical
relationships between applications, the Movie Toolbox, other QuickTime components,
and data handlers during movie playback.

QuickTime 2.0 SDK: Toolbox Changes

Page 82 December 21, 1994

Video
Media Handler

Data Handler

Sound
Media Handler

Data Handler

Movie Toolbox

An Application

Movie File

Control Flow

Data Flow

Figure 1: Playing a movie

Figure 2 shows the components that get involved in capturing movie data.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 83

Video channel
component

Data Handler

Sound channel
component

Sequence
grabber

component

An Application

Control Flow

Data Flow

Movie File

Video digitizer
component

Sound input
device

Figure 2: Capturing movie data

Data handlers isolate the rest of QuickTime from the details of how to store or retrieve
time-based data from a particular storage medium. The data handler’s primary function is
to store or retrieve data at the time requested by the client program.

Data handlers do not know anything about the content of the data they process. It is the
responsibility of the client (for example, a QuickTime media handler component) to
process the data. In the case of a movie’s video data, for example, the QuickTime media
handler takes the data from a data handler and uses the facilities of the Image
Compression Manager to display the movie data on the computer screen. See Inside
Macintosh: QuickTime Components for more information about QuickTime media
handler components.

QuickTime 2.0 SDK: Toolbox Changes

Page 84 December 21, 1994

While data handlers do not work with the content of the data they process, these
components must be aware of all of the details involved in storing and retrieving data
from the storage medium that they support. For example, Apple provides several data
handlers. One supports data access from HFS volumes. Another, the memory-based data
handler, allows QuickTime to retrieve movies from memory handles. These two data
handler components use very different mechanisms to store and retrieve movie data. As a
further example, in order to play movies from a multimedia server, you would need to use
a data handler that understands the network protocols and data formats necessary to
communicate with that server.

As is the case throughout QuickTime, all data handlers identify their movie-data
containers with data references. The term container refers to the system element that
contains the movie data and can be any element that can contain data. For example, a
container may be an in-memory data structure, a local disk file, or a file on a networked
multimedia server. Data references identify the location of the container and its type.

Different container types may require different types of references. For example, files are
identified using aliases, while memory-based movies are identified by handles. The data
reference data type is flexible enough to accommodate all these cases. It is up to each
data handler component to specify the type of reference it requires, and to verify that the
references supplied by client applications are valid. Data handler components use the
component subtype value to specify the reference type they support.

Because the methods for accessing data on different devices may differ substantially,
QuickTime supports multiple data handlers and a selection mechanism for choosing an
appropriate handler. Whenever an application opens a movie container, the Movie
Toolbox determines the most appropriate data handler component to use in order to
access that container. The Movie Toolbox makes this determination by querying the
various data handlers installed on the user’s computer. If your application uses the Movie
Toolbox, this selection process is transparent to your program. If you are developing a
data handler, your component must support the selection functions (see “Reference to
Data Handler Components,” later in this chapter, for more information).

USING DATA HANDLER COMPONENTS

This section discusses how applications use data handler components. You should read
this section if you are writing an application that uses these components or if you are
creating your own data handler.

This section is divided into the following topics:

• “Selecting a Data Handler” discusses the facilities that are available to help your
application choose the best data handler for a given context

• “Managing Data References” describes how your application goes about gaining
access to a container using a data handler component

• “Retrieving Movie Data” talks about how your application reads movie data

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 85

• “Storing Movie Data” discusses how your application can write movie data using a
data handler component

• “Managing the Data Handler” discusses your application’s responsibilities while
maintaining its connection with a data handler

Note that, if your application uses the Movie Toolbox to read and write movie data, you
do not need to worry about the details of working with data handler components. The
Movie Toolbox handles all of the data handler interactions for you. The information in
this section is intended for developers whose applications need to work directly with data
handler components.

Selecting a Data Handler

Before you can use a data handler component, your application must open a connection to
that component. The easiest way to open a connection to a data handler component is to
call the Move Toolbox’s GetDataHandler function. You supply a data reference, and the
Movie Toolbox selects an appropriate data handler component for you. For more
information about this function, see the chapter “Movie Toolbox” in Inside Macintosh:
QuickTime.

Alternatively, you may use the Component Manager to open your connection. Call the
Component Manager’s OpenDefaultComponent or OpenComponent function to do so.

In order to help developers choose the best data handler for a specific situation while still
making it easy for an application to find a usable data handler, Apple has defined two
separate and complementary mechanisms for selecting data handler components. The
goal of these selection mechanisms is to ensure that your application is working with a
data handler component that can process data from the movie container in question. Both
mechanisms rely on characteristics of the current data reference in order to make the
selection.

Selecting by Component Type Value

At the most basic level, your application can use the Component Manager’s built-in
selection mechanisms to find a data handler component for a data reference. You may use
the Component Manager’s FindNextComponent function in order to retrieve a list of all
data handler components that meet your needs. You specify your request by supplying
the component’s characteristics in a component description record—in particular, in the
componentType, componentSubtype, componentManufacturer, and componentFlags
fields.

QuickTime 2.0 SDK: Toolbox Changes

Page 86 December 21, 1994

All data handler components have a component type value of 'dhlr', which is defined
by the dataHandlerType constant. Data handler components use the value of the
component subtype field to indicate the type of data reference they support. As a result of
this convention, note that all data handlers that share a component subtype value must be
able to recognize and work with data references of the same type. For example, file
system data handlers always carry a component subtype value of 'alis', which indicates
that their data references are file system aliases (note that this is true for QuickTime on
the Macintosh and under Windows, even though there is not, properly, a file system alias
under Windows). Apple’s memory-based data handler for the Macintosh has a component
subtype value of 'hndl'.

Apple has not defined any special manufacturer field values or component flags values
for data handler components. You may use the manufacturer field to select data handlers
supplied by a specific vendor. To do so, you would need to determine the appropriate
manufacturer field value for that vendor.

Interrogating a Data Handler’s Capabilities

While you can use the Component Manager’s selection mechanisms to find a data
handler component that can recognize data references of a specific type, your application
must interact with the data handler in order to determine whether it can support a specific
data reference. Apple has defined two functions that allow you to query a data handler
component in order to find out whether it can work with a data reference. By using these
two functions, your application can choose a data handler that is best-suited to its specific
needs.

Before you can use either of these functions, your application must open a connection to
the data handler component, using the Component Manager.

Using the DataHCanUseDataRef function, you supply a data reference to the data handler
component. The component then reports what it can do with that data reference. The
returned value indicates the level and, to some extent, the quality of service the data
handler can provide (for example, whether the component can read data from or write
data to the data reference, and whether the component uses any special support when
working with that data reference).

Because calling the DataHCanUseDataRef function in several data handlers can get time
consuming, Apple has also defined a function that helps narrow the search somewhat.
Using the DataHGetVolumeList function, your application can obtain a list of all of the
file system volumes that a data handler can support. In response to your request, the data
handler returns a list of all of the volumes it can support, along with flags indicating the
level and quality of service the data handler can provide for containers on that volume.

For more information on these functions, see “Selecting a Data Handler,” later in this
chapter.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 87

Managing Data References

Once you have selected a data handler component, you must provide a data reference to
the data handler. Use the DataHSetDataRef function to supply a data reference to a data
handler. Once you have assigned a data reference to the data handler, your application
may start reading and/or writing movie data from that data reference. The
DataHGetDataRef function allows your application to obtain a data handler’s current
data reference.

Data handlers also provide a function that allows your application to determine whether
two data references are equivalent (that is, refer to the same movie container). Your
application provides a data reference to the DataHCompareDataRef function. The data
handler returns a Boolean value indicating whether that data reference matches the data
handler’s current data reference.

For more information on these functions, see “Working With Data References,” later in
this chapter.

Retrieving Movie Data

Before your application can read data using a data handler component, you must open a
read path to the current data reference. Use the DataHOpenForRead function to request
read access to the current data reference. Once you have gained read access to the data
reference, data handlers provide both high- and low-level read functions.

The high-level function, DataHGetData, provides an easy-to-use, synchronous read
interface. Being a synchronous function, DataHGetData does not return control to your
application until the data handler has read and delivered the data you request.

If you need more control over the read operation, you can use the low-level function,
DataHScheduleData, to issue asynchronous read requests. When you call this function,
you provide detailed information specifying when you need the data from the request.
The data handler returns control to your application immediately, and then processes the
request when appropriate. When the data handler completes the request, it calls your data-
handler completion function to report that the request has been satisfied (see “Completion
Function” for more information on the data-handler completion function).

Besides simply scheduling read requests that must be satisfied during a movie’s playback,
another use of the DataHScheduleData function is to prepare a movie for playback
(commonly referred to as pre-rolling the movie). The DataHScheduleData function uses
several special values to indicate a pre-roll operation. Your application calls the
DataHScheduleData function one or more times to schedule the pre-roll read requests,
and then uses the DataHFinishData function to tell the data handler to start delivering
the requested data.

For more information on these functions and about pre-roll operations, see “Reading
Movie Data,” later in this chapter.

QuickTime 2.0 SDK: Toolbox Changes

Page 88 December 21, 1994

Storing Movie Data

Before your application can write data using a data handler component, you must open a
write path to the current data reference. Use the DataHOpenForWrite function to request
write access to the current data reference. Once you have gained write access to the data
reference, data handler components provide both high- and low-level write functions.

Note: QuickTime for Windows does not support writing movie data.

The high-level function, DataHPutData, allows you to easily append data to the end of
the container identified by a data reference. Except when capturing movie data using the
sequence grabber component, the Movie Toolbox uses this call when writing data to
movie files. However, this function does not allow your application to write to any
location other than the end of the container. In addition, this is a synchronous operation,
so control is not returned to your program until the write is complete. As a result, this
function is not well-suited to high-performance write operations, such as would be
required to capture a movie.

If you need a more flexible write facility, or one with higher performance characteristics,
you can use the DataHWrite function. This function is intended to support high-speed
writes, suitable for movie capture operations. For example, Apple’s sequence grabber
component uses this data handler function to capture movies.

When you call this function, you provide detailed information specifying the location in
the container that is to receive the data. The data handler returns control to your
application immediately, and then processes the request asynchronously. When the data
handler completes the request, it calls your data-handler completion function to report
that the request has been satisfied (see “Completion Function” for more information on
the data-handler completion function).

In addition to the DataHWrite function, data handler components provide several other
“helper” functions that allow you to create new movie containers and prepare them for a
movie capture operation.

For more information on all of these functions, see “Writing Movie Data,” later in this
chapter.

Managing the Data Handler

Data handler components provide a number of functions that your application can use to
manage its connection to the handler. The most important among these is DataHTask,
which provides processor time to the handler. Your application should call this function
often so that the handler has enough time to do its work.

Other functions in this category provide playback hints to the data handler and allow your
application to influence how the component handles its cached data.

For more information on these functions, see “Managing Data Handler Components,”
later in this chapter.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 89

CREATING A DATA HANDLER COMPONENT

This section discusses the details of creating a data handler component and includes
source code for a simple data handler component. After reading this section, you will
understand all of the special requirements of these components. The functional interface
that your component must support is described in “Reference to Data Handler
Components,” later in this chapter.

You should consider developing your own data handler component if you are planning to
provide a new type of movie container or a container that requires special data handling
techniques. For example, if you are planning to develop a networked multimedia server,
you would most likely need to develop a new data handler that could support the special
protocols required by your server. By encapsulating that protocol support in a data
handler, QuickTime applications can access the movie data on your server without having
to implement any special support. In this way, your server becomes a seamless part of the
user’s system.

Before reading this section, you should be familiar with how to create components. See
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for a complete
discussion of components, how to use them, and how to create them on the Macintosh.
For further information about using the Component Manager with QuickTime for
Windows, see QuickTime for Windows: Components and Decompressors.

General Information

All data handler components have a component type value of 'dhlr', which is defined
by the dataHandlerType constant. Data handler components use the value of the
component subtype field to indicate the type of data reference they support. As a result of
this convention, note that all data handlers that share a component subtype value must be
able to recognize and work with data references of the same type. For example, file
system data handlers always carry a component subtype value of 'alis', which indicates
that their data references are file system aliases (note that this is true for QuickTime on
the Macintosh and under Windows, even though there is not, properly, a file system alias
under Windows). Apple’s memory-based data handler for the Macintosh has a component
subtype value of 'hndl'.

#define dataHandlerType 'dhlr'
#define rAliasType 'alis'

Apple has not defined any special manufacturer field values or component flags values
for data handler components. Developers may use the manufacturer field value to select
your data handler from among all the data handlers that support a given type of data
reference.

Apple has defined a functional interface for data handler components. For information
about the functions that your component must support, see “Reference to Data Handler
Components” later in this chapter. You can use the following constants to refer to the
request codes for each of the functions that your component must support:

QuickTime 2.0 SDK: Toolbox Changes

Page 90 December 21, 1994

enum {

kDataGetDataSelector = 2, /* DataHGetData */
kDataPutDataSelector = 3, /* DataHPutData */
kDataFlushDataSelector = 4, /* DataHFlushData */
kDataOpenForWriteSelector = 5, /* DataHOpenForWrite */
kDataCloseForWriteSelector = 6, /* DataHCloseForWrite */
kDataOpenForReadSelector = 8, /* DataHOpenForRead */
kDataCloseForReadSelector = 9, /* DataHCloseForRead */
kDataSetDatRefSelector = 10, /* DataHSetDataRef */
kDataGetDataRefSelector = 11, /* DataHGetDataRef */
kDataCompareDataRefSelector = 12, /* DataHCompareDataRef

*/
kDataTaskSelector = 13, /* DataHTask */
kDataScheduleDataSelector = 14, /* DataHScheduleData */
kDataFinishDataSelector = 15, /* DataHFinishData */
kDataFlushCacheSelector = 16, /* DataHFlushCache */
kDataResolveDataRefSelector = 17, /* DataHResolveDataRef

*/
kDataGetFileSizeSelector = 18, /* DataHGetFileSize */
kDataCanUseDataRefSelector = 19, /* DataHCanUseDataRef */
kDataGetVoumeListSelector = 20, /* DataHGetVolumeList */
kDataWriteSelector = 21, /* DataHWrite */
kDataPreextendSelector = 22, /* DataHPreextend */
kDataSetFileSizeSelector = 23, /* DataHSetFileSize */
kDataGetFreeSpaceSelector = 24, /* DataHGetFreeSpace */
kDataCreateFileSelector = 25, /* DataHCreateFile */
kDataGetPreferredBlockSizeSelector = 26, /*

DataHGetPreferredBlockSize */
kDataGetDeviceIndexSelector = 27, /* DataHGetDeviceIndex

*/
/* 28 and 29 unused */
kDataGetScheduleAheadTimeSelector = 30, /*

DataHGetScheduleAheadTime */
kDataSetOSFileRefSelector = 516, /* DataHSetOSFileRef */
kDataGetOSFileRefSelector = 517, /* DataHGetOSFileRef */

kDataPlaybackHintsSelector = 3+0x100 /* DataHPlaybackHints */
};

Macintosh Data Handler Components

This section provides sample code for a working Macintosh data handler component.

Sample Macintosh Data Handler

#include <Aliases.h>
#include <Files.h>
#include <OSUtils.h>

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 91

#include “DataHandlerPrototypes.h”

// these selectors belong in the header file

enum {DataGetDataSelector = 2 };
enum {DataPutDataSelector = 3 };
enum {DataOpenForWriteSelector = 5 };
enum {DataCloseForWriteSelector = 6 };
enum {DataOpenForReadSelector = 8 };
enum {DataCloseForReadSelector = 9 };
enum {DataSetAliasSelector = 10 };
enum {DataGetAliasSelector = 11 };
enum {DataCompareAliasSelector = 12 };
enum {DataTaskSelector = 13 };
enum {DataScheduleDataSelector = 14 };
enum {DataCanUseDataRef = 19 };
enum {DataGetVolumeListSelector = 20 };

// data structures

typedef struct {
ComponentInstance self;

AliasHandle alias;

short readFref;
short writeFref;

} DataHandlerGlobalsRecord, *DataHandlerGlobals;

// function declarations

pascal ComponentResult main(ComponentParameters *params,
Handle storage);

ComponentFunctionUPP DHSelectorLookup(short selector);

pascal ComponentResult DHOpen(DataHandlerGlobals storage,
ComponentInstance self);

pascal ComponentResult DHClose(DataHandlerGlobals storage,
ComponentInstance self);

pascal ComponentResult DHCanDo(DataHandlerGlobals storage,
short functionSelector);

pascal ComponentResult DHVersion(DataHandlerGlobals storage);

pascal ComponentResult DHGetData(DataHandlerGlobals storage, Handle h,
long offsetIntoHandle, long offset,
long size);

pascal ComponentResult DHPutData(DataHandlerGlobals storage, Handle h,
long hOffset, long *offset, long size);

pascal ComponentResult DHSetAlias(DataHandlerGlobals storage,
AliasHandle alias);

pascal ComponentResult DHGetAlias(DataHandlerGlobals storage,
AliasHandle *alias);

QuickTime 2.0 SDK: Toolbox Changes

Page 92 December 21, 1994

pascal ComponentResult DHCompareAlias(DataHandlerGlobals storage,
AliasHandle alias, Boolean *equal);

pascal ComponentResult DHScheduleData (DataHandlerGlobals storage,
Ptr dataPtr,long fileOffset,
long dataSize, long refCon,
TimeRecord *timeNeededBy,
DataHCompletionUPP completionRoutine);

pascal ComponentResult DHOpenForRead(DataHandlerGlobals storage);
pascal ComponentResult DHCloseForRead(DataHandlerGlobals storage);
pascal ComponentResult DHOpenForWrite(DataHandlerGlobals storage);
pascal ComponentResult DHCloseForWrite(DataHandlerGlobals storage);

pascal ComponentResult DHGetVolumeList(DataHandlerGlobals storage,
DataHVolumeList *volumeList);

pascal ComponentResult DHCanUseDataRef(DataHandlerGlobals storage,
Handle dataRef, long *useFlags);

// main function

pascal ComponentResult main(ComponentParameters *params, Handle storage)
{

ComponentResult err;
ComponentFunctionUPP componentProc;

componentProc = DHSelectorLookup(params->what);

if (componentProc)
err = CallComponentFunctionWithStorage(storage, params,

componentProc);
else

err = badComponentSelector;

return err;
}

// determine function based on selected request

ComponentFunctionUPP DHSelectorLookup(short selector)
{

ComponentFunctionUPP componentProc = 0;

switch (selector) {
case kComponentVersionSelect:

componentProc = (ComponentFunctionUPP)DHVersion;
break;

case kComponentCanDoSelect:
componentProc = (ComponentFunctionUPP)DHCanDo;
break;

case kComponentCloseSelect:
componentProc = (ComponentFunctionUPP)DHClose;
break;

case kComponentOpenSelect:

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 93

componentProc = (ComponentFunctionUPP)DHOpen;
break;

case DataGetDataSelector:
componentProc = (ComponentFunctionUPP)DHGetData;
break;

case DataPutDataSelector:
componentProc = (ComponentFunctionUPP)DHPutData;
break;

case DataOpenForReadSelector:
componentProc = (ComponentFunctionUPP)DHOpenForRead;
break;

case DataCloseForReadSelector:
componentProc = (ComponentFunctionUPP)DHCloseForRead;
break;

case DataOpenForWriteSelector:
componentProc = (ComponentFunctionUPP)DHOpenForWrite;
break;

case DataCloseForWriteSelector:
componentProc = (ComponentFunctionUPP)DHCloseForWrite;
break;

case DataSetAliasSelector:
componentProc = (ComponentFunctionUPP)DHSetAlias;
break;

case DataGetAliasSelector:
componentProc = (ComponentFunctionUPP)DHGetAlias;
break;

case DataCompareAliasSelector:
componentProc = (ComponentFunctionUPP)DHCompareAlias;
break;

case DataScheduleDataSelector:
componentProc = (ComponentFunctionUPP)DHScheduleData;
break;

case DataCanUseDataRef:
componentProc = (ComponentFunctionUPP)DHCanUseDataRef;
break;

case DataGetVolumeListSelector:
componentProc = (ComponentFunctionUPP)DHGetVolumeList;
break;

}

return componentProc;
}

// open data handler connection

pascal ComponentResult DHOpen(DataHandlerGlobals storage,
ComponentInstance self)

{
ComponentResult err;

storage =
(DataHandlerGlobals)NewPtrClear(sizeof(DataHandlerGlobalsRecord));

if (err = MemError())

QuickTime 2.0 SDK: Toolbox Changes

Page 94 December 21, 1994

return err;

storage->self = (ComponentInstance)self;

SetComponentInstanceStorage(storage->self,(Handle)storage);

return noErr;
}

// close component connection

pascal ComponentResult DHClose(DataHandlerGlobals storage,
ComponentInstance self)

{
if (storage != nil) {

DHCloseForRead(storage);
DHCloseForWrite(storage);

if (storage->alias != nil)
DisposeHandle((Handle)storage->alias);

DisposePtr((Ptr)storage);
}

return noErr;
}

// determine whether data handler supports request

pascal ComponentResult DHCanDo(DataHandlerGlobals storage,
short functionSelector)

{
return DHSelectorLookup(functionSelector) != 0;

}

// return component's version

pascal ComponentResult DHVersion(DataHandlerGlobals storage)
{

return 0x00020001;
}

// read data

pascal ComponentResult DHGetData(DataHandlerGlobals storage, Handle h,
long offsetIntoHandle, long offset,

long size)
{

OSErr err;
SignedByte saveState;

if (!storage->readFref) {
err = DHOpenForRead(storage);
if (err != noErr)

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 95

return err;
}

saveState = HGetState(h);
HLock(h);
err = DHScheduleData(storage, *h + offsetIntoHandle,

offset, size, 0, nil, nil);
HSetState(h, saveState);

return err;
}

// write data

pascal ComponentResult DHPutData(DataHandlerGlobals storage, Handle h,
long hOffset, long *offset, long size)

{
OSErr err;

if (!storage->writeFref) {
err = DHOpenForWrite(storage);
if (err != noErr)

return err;
}

err = SetFPos(storage->writeFref, fsFromLEOF, 0);
if (err == noErr) {

if (offset)
err = GetFPos(storage->writeFref, offset);

if (err == noErr)
err = FSWrite(storage->writeFref, &size, *h + hOffset);

}

return err;
}

// set alias

pascal ComponentResult DHSetAlias(DataHandlerGlobals storage,
AliasHandle alias)

{
OSErr err = noErr;

// throw away the old one
if (storage->alias) {

DisposeHandle((Handle)storage->alias);
storage->alias = nil;

}

// copy the new one, if there is one
if (alias) {

err = HandToHand((Handle *)&alias);
if (err == noErr)

storage->alias = alias;

QuickTime 2.0 SDK: Toolbox Changes

Page 96 December 21, 1994

}

return err;
}

// retrieve alias

pascal ComponentResult DHGetAlias(DataHandlerGlobals storage,
AliasHandle *alias)

{
OSErr err = noErr;

*alias = nil;
if (storage->alias) {

*alias = storage->alias;
err = HandToHand((Handle *)alias);

}

return err;
}

// compare two aliases

pascal ComponentResult DHCompareAlias(DataHandlerGlobals storage,
AliasHandle alias, Boolean

*equal)
{

OSErr err = paramErr;
FSSpec fss1, fss2;
Boolean whoCares;

*equal = false;

if (storage->alias && alias) {
err = ResolveAlias(nil, storage->alias, &fss1, &whoCares);
if (err == noErr) {

err = ResolveAlias(nil, alias, &fss2, &whoCares);
if (err == noErr) {

*equal = (fss1.vRefNum == fss2.vRefNum) &&
(fss1.parID == fss2.parID) &&
EqualString(fss1.name, fss2.name, false, false);

}
}

}

return err;
}

// scheduled read

pascal ComponentResult DHScheduleData(DataHandlerGlobals storage,
Ptr dataPtr,long fileOffset,
long dataSize, long refCon,
TimeRecord *timeNeededBy,

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 97

DataHCompletionUPP
completionRoutine)
{

OSErr err;

if (storage->readFref == 0) {
err = DHOpenForRead(storage);
if (err)

return err;
}

err = SetFPos(storage->readFref, fsFromStart, fileOffset);
if (err == noErr)

err = FSRead(storage->readFref, &dataSize, dataPtr);

// Always call completion routine, even on an error.
if (completionRoutine != nil)

(*completionRoutine)(dataPtr, refCon, err);

return err;
}

// open container for read

pascal ComponentResult DHOpenForRead(DataHandlerGlobals storage)
{

OSErr err;
FSSpec fss;
Boolean whoCares;

if (storage->readFref != 0)
return noErr;

if (storage->alias == nil)
return dataNoDataRef;

err = ResolveAlias(nil, storage->alias, &fss, &whoCares);
if (err) return err;

err = FSpOpenDF(&fss, fsRdPerm, &storage->readFref);

return err;
}

// close container after reading

pascal ComponentResult DHCloseForRead(DataHandlerGlobals storage)
{

if (storage->readFref) {
FSClose(storage->readFref);
storage->readFref = 0;

}

return noErr;

QuickTime 2.0 SDK: Toolbox Changes

Page 98 December 21, 1994

}

// open container for write

pascal ComponentResult DHOpenForWrite(DataHandlerGlobals storage)
{

OSErr err;
FSSpec fss;
Boolean whoCares;

if (storage->writeFref != 0)
return noErr;

if (storage->alias == nil)
return dataNoDataRef;

err = ResolveAlias(nil, storage->alias, &fss, &whoCares);
if (err) return err;

err = FSpOpenDF(&fss, fsRdWrPerm, &storage->writeFref);

return err;
}

// close container after writing

pascal ComponentResult DHCloseForWrite(DataHandlerGlobals storage)
{

if (storage->writeFref) {
FSClose(storage->writeFref);
storage->writeFref = 0;

}

return noErr;
}

//
// This function limits the set of drives this data handler will be used
to
// read from to those with names beginning with the letter Q.
//
Boolean isVRefNumOK(short vRefNum);
Boolean isVRefNumOK(short vRefNum)
{

ParamBlockRec pb;
Str63 name;

name[0] = 0;
pb.volumeParam.ioVolIndex = 0;
pb.volumeParam.ioVRefNum = vRefNum;
pb.volumeParam.ioNamePtr = name;
if (PBGetVInfoSync(&pb) != noErr)

return false;

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 99

return (name[1] == 'Q') || (name[1] == 'q');
}

// determine whether we can handle the data reference

pascal ComponentResult DHCanUseDataRef(DataHandlerGlobals storage,
Handle dataRef, long *useFlags)

{
OSErr err;
FSSpec fss;
Boolean whoCares;

*useFlags = 0;

err = ResolveAlias(nil, (AliasHandle)dataRef, &fss, &whoCares);
if (err) return err;

if (isVRefNumOK(fss.vRefNum))
*useFlags = kDataHCanRead | kDataHSpecialRead | kDataHCanWrite;

return noErr;
}

//
// This call is only required for data handlers with a subtype of
// rAliasType ('alis').
//
pascal ComponentResult DHGetVolumeList(DataHandlerGlobals storage,

DataHVolumeList *volumeList)
{

OSErr err = noErr;
DataHVolumeList list;
VCB *vq;

list = (DataHVolumeList)NewHandle(0);
if (err = MemError())

goto bail;

vq = (VCB *)GetVCBQHdr()->qHead;
while (vq) {

if (isVRefNumOK(vq->vcbVRefNum)) {
DataHVolumeListRecord vlr;

// add it to our list
vlr.vRefNum = vq->vcbVRefNum;
vlr.flags = kDataHCanRead | kDataHSpecialRead | kDataHCanWrite;
err = PtrAndHand((Ptr)&vlr, (Handle)list, sizeof(vlr));
if (err)

goto bail;
}
vq = (VCB *)vq->qLink;

}

bail:

QuickTime 2.0 SDK: Toolbox Changes

Page 100 December 21, 1994

if (err) {
DisposeHandle((Handle)list);
list = nil;

}
*volumeList = list;
return err;

}

Windows Data Handler Components

This section discusses additional information you need to know before you develop your
own Windows data handler component. It also includes source code for a Windows data
handler component.

While data handler components to be used with QuickTime for Windows are functionally
quite similar to Macintosh data handlers, there are some differences you need to consider
before developing your own Windows data handler. First of all, QuickTime for Windows
does not support a write data path. Therefore, your data handler needs to support only
those functions that allow QuickTime to read movie data.

In addition, Windows components are build as special dynamic link libraries (DLLs).
You need to structure your code appropriately.

Sample Windows Data Handler

/*
**
**
** File: datah.cpp
**
** Description:
**
** Data Handler component for QuickTime for Windows.
**
** Routines:
**
** Routines enclosed in [brackets] exist, but are unsupported.
**
** DataHOpen(); - component manager open call
** DataHClose(); - component manager close call
** DataHCanDo(); - component manager cando call
** DataHVersion(); - component manager version call
** DataHGetData(); - immediate data read
** [DataHPutData();] - data write
** [DataHFlushData();] - flush write buffers
** [DataHOpenForWrite();] - open for write access
** [DataHCloseForWrite();] - close for write access
** DataHOpenForRead(); - open for read access
** DataHCloseForRead(); - close for read access
** DataHSetDatRef(); - set data reference

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 101

** DataHGetDataRef(); - get data reference
** DataHCompareDataRef(); - compare data references
** DataHTask(); - provide background time
** DataHScheduleData(); - schedule advance read
** DataHFinishData(); - complete scheduled reads
** DataHFlushCache(); - flush cache buffers
** DataHResolveDataRef(); - resolve data reference
** DataHGetFileSize(); - return file size
** DataHCanUseDataRef(); - check if data ref can be used
** DataHGetVolumeList(); - return list of volumes supported
** [DataHWrite();] - write data
** [DataHPreextend();] - extend file
** [DataHSetFileSize();] - set file size
** DataHGetFreeSpace(); - get device free space
** [DataHCreateFile();] - create file
** DataHGetPreferredBlockSize(); - get preferred block size
** DataHGetDeviceIndex(); - get unique device index
** DataHGetScheduleAheadTime(); - get preferred advance read time
** DataHPlaybackHints(); - provide data ref playback hints
** DataHSetOSFileReference(); - set HFILE as data reference
** DataHGetOSFileReference(); - get references from SetOSFile...
** _DataHDirectRead(); - direct device read function
**
***/
// Windows header files
#include <windows.h>
#include <windowsx.h>
#include <mmsystem.h>

// dos headers
#include <direct.h>
#include <dos.h>

// Compiler header files
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

// Application header files
#define INTERNAL_DHLR
#include “datahp.h”
#include <qtdebug.h>

// Apple Computer four character type.
#define ostypeAPPL QTFOURCC('a','p','p','l')

// macros
#define DATAHPARM(x,y) GetPrivateProfileInt(“Data
Handler”,x,y,QTW_PROFILE)
#define DEBUG TRUE

// prototypes for external functions
DWORD QTAPI DataHEntry(void);

QuickTime 2.0 SDK: Toolbox Changes

Page 102 December 21, 1994

// Global data
ComponentDescription cdTable = // one component in this DLL
 { ostypeDHLR // ostypeComponentType
 , ostypeHNDL // ostypeComponentSubType
 , ostypeAPPL //
ostypeComponentManufacturer
 , 0 // dwComponentFlags
 , 0 // dwComponentFlagsMask
 , (ComponentRoutine) DataHEntry // crEntryPoint
 , 0 // hrsrcName
 , 0 // hrsrcInfo
 , 0 // hrsrcIcon
 } ;

/*
**
**
** Name: DataHOpen()
**
** Description:
**
** Opens an instance of the component.
**
** The general data handler initialization is done here, so that any
memory
** used will not be allocated until an instance of the data handler is
actually
** opened.
**
**
*/
ComponentResult QTAPI DataHOpen(STKOFF_CMP so, ComponentInstance ci)
{

void far *storageH, far *globalH;
DataHInstanceStoragePtr storage;
DataHGlobalStoragePtr globals;

// allocate the cross-instance globals
globalH = (void far *)GetComponentRefcon(ci);
if(globalH == NULL)
{

// allocate global storage
globalH = (void far *)GlobalAlloc(GMEM_ZEROINIT,

sizeof(DataHGlobalStorage));
if(globalH == NULL)

return insufficientMemory;

// set the refcon so that we know we have been initialized
SetComponentRefcon(ci, (long)globalH);

}

globals = (DataHGlobalStoragePtr)GlobalLock((const void
near *)LOWORD(globalH));

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 103

if(globals == NULL)
{

GlobalFree((const void near *)LOWORD(globalH));
return(insufficientMemory);

}

// allocate instance storage
storageH = (void far *)GlobalAlloc(GMEM_ZEROINIT,

sizeof(DataHInstanceStorage));
if(storageH == NULL)

return insufficientMemory;
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
{

GlobalUnlock((const void near *)LOWORD(globalH));
GlobalFree((const void near *)LOWORD(storageH));
return(insufficientMemory);

}

// init storage fields
storage->ci = ci;
wwList_Init(&storage->readRequestList);
wwList_InitCache(&storage->readRequestList, 10); // init node cache

// set storage for this component
SetComponentInstanceStorage(ci, (LPVOID)storageH);

// done
GlobalUnlock((const void near *)LOWORD(storageH));
GlobalUnlock((const void near *)LOWORD(globalH));
return(noErr);

}

/*
**
**
** Name: DataHClose()
**
** Description:
**
** Closes an instance of the component.
**
**
*/
ComponentResult QTAPI DataHClose(STKOFF_CMP so, ComponentInstance ci)
{

void far *storageH, far *globalH;
DataHInstanceStoragePtr storage;

// locate instance storage

QuickTime 2.0 SDK: Toolbox Changes

Page 104 December 21, 1994

storageH = GetComponentInstanceStorage(ci);
if(storageH != NULL)
{

storage = (DataHInstanceStoragePtr)GlobalLock((const void
near

*)LOWORD(storageH));
if(storage != NULL)
{

// close the file
if (storage->fileRefNum)

mmioClose(storage->fileRefNum, 0);

// release memory allocated for filename
if(storage->fileName)

GlobalFree((HGLOBAL)storage->fileName);

// release memory for instance storage
GlobalUnlock((const void near *)LOWORD(storageH));
GlobalFree((const void near *)LOWORD(storageH));

}
}

// release global storage if this is the last instance of the
component

if(CountComponentInstances(ci) == 1)
{

globalH = (void far *)GetComponentRefcon(ci);
if(globalH)
{

GlobalFree((const void near *)LOWORD(globalH));
SetComponentRefcon(ci,NULL);

}
}

return(noErr);
}

/*
**
**
** Name: DataHCanDo()
**
** Description:
**
** Returns TRUE if a call is supported.
**
**
*/
ComponentResult QTAPI DataHCanDo(STKOFF_CMP so, long lFunctionSelector)
{

switch (lFunctionSelector)
{

/* standard component manager calls */

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 105

case kDataVersionSelector:
case kDataCanDoSelector:
case kDataCloseSelector:
case kDataOpenSelector:

/* data handler calls */
case kDataGetDataSelector:
case kDataOpenForReadSelector:
case kDataCloseForReadSelector:
case kDataSetDatRefSelector:
case kDataGetDataRefSelector:
case kDataCompareDataRefSelector:
case kDataTaskSelector:
case kDataScheduleDataSelector:
case kDataFinishDataSelector:
case kDataFlushCacheSelector:
case kDataResolveDataRefSelector:
case kDataGetFileSizeSelector:
case kDataCanUseDataRefSelector:
case kDataGetVolumeListSelector:
case kDataPlaybackHintsSelector:
case kDataSetOSFileReferenceSelector:
case kDataGetOSFileReferenceSelector:

return(TRUE);
break;

default:
return(FALSE);
break;

}

return(FALSE);
}

/*
**
**
** Name: DataHVersion()
**
** Description:
**
** Returns version number of the component.
**
**
*/
ComponentResult QTAPI DataHVersion(STKOFF_CMP so, ComponentInstance ci)
{

return(kDataHVersion);
}

/*
**
**

QuickTime 2.0 SDK: Toolbox Changes

Page 106 December 21, 1994

** Name: DataHGetData()
**
** Description:
**
** Synchronous data read.
**
**
*/
ComponentResult QTAPI DataHGetData (DHLR_FPARM1

Handle h, // handle to destination of data
long hOffset, // offset into handle to place data
long offset, // offset within file of data to read
long size) // amount of data to read

{
void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;
char *dataPtr;

// lock the storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// verify that we have an open file
if(storage->fileRefNum == 0)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(dataNotOpenForRead);

}

// lock and deref the user handle
dataPtr = (char *)GlobalLock(h);
if(dataPtr == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(insufficientMemory);

}

// build the pointer to the destination area
dataPtr += hOffset;

if(_DataHDirectRead(storage, dataPtr, offset, size) == FALSE)
{

GlobalUnlock(h);
GlobalUnlock((const void near *)LOWORD(storageH));
return(dataReadErr);

}

// done
GlobalUnlock(h);
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 107

}

/*
**
**
** Name: DataHPutData()
**
** Description:
**
** Synchronous write. Not supported.
**
**
*/
ComponentResult QTAPI DataHPutData (DHLR_FPARM1

Handle h,
long hOffset,
long *offset,
long size)

{
return(badComponentSelector);

}

/*
**
**
** Name: DataHFlushData()
**
** Description:
**
** Flush unwritten data. Not supported.
**
**
*/
ComponentResult QTAPI DataHFlushData (DHLR_FPARM2)
{

return(badComponentSelector);
}

/*
**
**
** Name: DataHOpenForWrite()
**
** Description:
**
** Open data reference for write access. Not supported.
**
**

QuickTime 2.0 SDK: Toolbox Changes

Page 108 December 21, 1994

*/
ComponentResult QTAPI DataHOpenForWrite (DHLR_FPARM2)
{

return(badComponentSelector);
}

/*
**
**
** Name: DataHCloseForWrite()
**
** Description:
**
** Close data reference that has been opened for write access. Not
supported.
**
**
*/
ComponentResult QTAPI DataHCloseForWrite (DHLR_FPARM2)
{

return(badComponentSelector);
}

/*
**
**
** Name: DataHOpenForRead()
**
** Description:
**
** Open data reference for read access.
**
**
*/
ComponentResult QTAPI DataHOpenForRead (DHLR_FPARM2)
{

void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;
char *fileName;

storage = (DataHInstanceStoragePtr)GlobalLock((const void
near

*)LOWORD(storageH));
if(storage == NULL)

return(insufficientMemory);

// must have a data reference
if(storage->fileName == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(dataNoDataRef);

}

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 109

// dereference the handle to the file name
fileName = (char *)GlobalLock(storage->fileName);
if(fileName == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(invalidDataRef);

}

// open the file
storage->fileRefNum = mmioOpen(fileName, NULL, MMIO_READ);
if(storage->fileRefNum == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
GlobalUnlock(storage->fileName);
return(invalidDataRef);

}

// unlock handles
GlobalUnlock((const void near *)LOWORD(storageH));
GlobalUnlock(storage->fileName);

// done
if(storage->fileRefNum)

return(noErr);
else

return(invalidDataRef);
}

/*
**
**
** Name: DataHCloseForRead()
**
** Description:
**
** Close data reference that has been opened for read access.
**
**
*/
ComponentResult QTAPI DataHCloseForRead (DHLR_FPARM2)
{

void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// close the file
if (storage->fileRefNum)

QuickTime 2.0 SDK: Toolbox Changes

Page 110 December 21, 1994

{
mmioClose(storage->fileRefNum, 0);
storage->fileRefNum = 0;

}
else

return(dataNotOpenForRead);

// done
return(noErr);

}

/*
**
**
** Name: DataHSetDataRef()
**
** Description:
**
** Set data reference for this component instance. In QTW, the data
reference
** is the file path. The input data reference is assumed to be a locked
** HGLOBAL.
**
**
*/
ComponentResult QTAPI DataHSetDataRef (DHLR_FPARM1

Handle dataRef)
{

char far *strIn;
char *myStr;
int len;
HLOCAL mem;
void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// release any existing allocated memory
if(storage->fileName)
{

GlobalFree(storage->fileName);
storage->fileName = NULL;

}

// deref the path
strIn = (char far *)GlobalLock(dataRef);
if(strIn == NULL)
{

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 111

GlobalUnlock((const void near *)LOWORD(storageH));
return(invalidUserDataHandle);

}
len = _fstrlen(strIn);

// allocate the memory
mem = GlobalAlloc(GMEM_ZEROINIT, len);
if(mem == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
GlobalUnlock(dataRef);
return(insufficientMemory);

}

// copy data
myStr = (char *)GlobalLock(mem);
while (*myStr++ = *strIn++)

/* empty body */;
GlobalUnlock(mem);

// store handle
storage->fileName = mem;

// done
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

}

/*
**
**
** Name: DataHGetDataRef()
**
** Description:
**
** Return data reference for this component instance.
**
**
*/
ComponentResult QTAPI DataHGetDataRef (DHLR_FPARM1

Handle *dataRef)
{

char far *strOut;
char *myStr;
int len;
HGLOBAL mem;
void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

QuickTime 2.0 SDK: Toolbox Changes

Page 112 December 21, 1994

if(storage == NULL)
return(insufficientMemory);

// deref the path
myStr = (char *)GlobalLock(storage->fileName);
len = strlen(myStr);

// allocate the memory
mem = GlobalAlloc(0, len);
if(mem == NULL)
{

GlobalUnlock(storage->fileName);
GlobalUnlock((const void near *)LOWORD(storageH));
return(insufficientMemory);

}

// copy data
strOut = (char far *)GlobalLock(mem);
while (*myStr++ = *strOut++)

/* empty body */;
GlobalUnlock(mem);

// store handle
*dataRef = mem;

// done
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

}

/*
**
**
** Name: DataHCompareDataRef()
**
** Description:
**
** Compare provided data reference with the one established for this
** component instance.
**
**
*/

ComponentResult QTAPI DataHCompareDataRef (DHLR_FPARM1
Handle dataRef,
Boolean *equal)

{
char far *inStr;
char *myStr;
int myLen, inLen;
void far *storageH = instanceStorage;

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 113

DataHInstanceStoragePtr storage;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// deref the paths
myStr = (char *)GlobalLock(storage->fileName);
if(myStr == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(insufficientMemory);

}
myLen = strlen(myStr);
inStr = (char far *)GlobalLock(dataRef);
if(myStr == NULL)
{

GlobalUnlock(storage->fileName);
GlobalUnlock((const void near *)LOWORD(storageH));
return(invalidUserDataHandle);

}
inLen = _fstrlen(inStr);

// assume equal
*equal = TRUE;

// check lengths
if(myLen != inLen)
{

*equal = FALSE;
}
else
{

// lengths are same, so check contents
for(int i = 0; i < myLen; i++)
{

if(toupper(*myStr) != toupper(*inStr))
{

*equal = FALSE;
break;

}
myStr++;
inStr++;

}
}

// done
GlobalUnlock(storage->fileName);
GlobalUnlock((const void near *)LOWORD(storageH));
GlobalUnlock(dataRef);
return(noErr);

QuickTime 2.0 SDK: Toolbox Changes

Page 114 December 21, 1994

}

/*
**
**
** Name: DataHTask()
**
** Description:
**
** Provides time slices for the data handler to perform background
operations.
**
**
*/
ComponentResult QTAPI DataHTask (DHLR_FPARM2)
{

void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;
DataHReadRequestPtr request;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// attempt to satisfy pending requests
do
{

request = (DataHReadRequestPtr)wwList_GetHead(&storage-
>readRequestList);

if(request)
{

if(_DataHDirectRead(storage, (char *)request-
>placeToPutDataPtr,

request->fileOffset, request->dataSize))
{

// do the callback
if(request->completionRtn)

(*request->completionRtn)(request->placeToPutDataPtr,
request->refCon, noErr);

// remove this request. The current list item will be
adjusted

wwList_DelHead(&storage->readRequestList);
}
else
{

// move to the next item in the list
wwList_GetNext(&storage->readRequestList);

}
}

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 115

else
request=(DataHReadRequestPtr)wwList_GetCurr(&storage-

>readRequestList);
} while(request);

// done
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

}

/*
**
**
** Name: DataHScheduleData()
**
** Description:
**
** Async or synchronous read operation.
**
**
*/
ComponentResult QTAPI DataHScheduleData (DHLR_FPARM1

Ptr placeToPutDataPtr,
long fileOffset,
long dataSize,
long refCon,
DataHSchedulePtr scheduleRec,
DHCompleteProc completionRtn)

{
void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;
DataHReadRequestPtr request;

// lock instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// to read the data right now
if(scheduleRec == NULL)
{

// use direct method to read from disk
if(_DataHDirectRead(storage, (char *)placeToPutDataPtr,

fileOffset,
dataSize) == FALSE)

{
GlobalUnlock((const void near *)LOWORD(storageH));
if(completionRtn)

(*completionRtn)(placeToPutDataPtr, refCon, dataReadErr);
return(dataReadErr);

}

QuickTime 2.0 SDK: Toolbox Changes

Page 116 December 21, 1994

// do the callback
if(completionRtn)

(*completionRtn)(placeToPutDataPtr, refCon, noErr);
}
else // the request is asynchronous
{

// allocate a new request structure
request = (DataHReadRequestPtr)malloc(sizeof(DataHReadRequest));
if(request == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
if(completionRtn)

(*completionRtn)(placeToPutDataPtr, refCon,
insufficientMemory);

return(insufficientMemory);
}

// init request fields
request->placeToPutDataPtr = placeToPutDataPtr;
request->fileOffset = fileOffset;
request->dataSize = dataSize;
request->refCon = refCon;
request->completionRtn = completionRtn;
request->scheduleRec.timeNeededBy = scheduleRec->timeNeededBy;
request->scheduleRec.extendedID = scheduleRec->extendedID;
request->scheduleRec.extendedVers = scheduleRec->extendedVers;
request->scheduleRec.priority = scheduleRec->priority;

// place it in the request queue
if(wwList_AddTail(&storage->readRequestList, (LISTDATA)request) ==

FALSE)
{

free(request);
GlobalUnlock((const void near *)LOWORD(storageH));
if(completionRtn)

(*completionRtn)(placeToPutDataPtr, refCon,
insufficientMemory);

return(insufficientMemory);
}

}

// done
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

}

/*
**
**
** Name: DataHFinishData()
**
** Description:

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 117

**
** Complete specified async read requests.
**
**
*/
ComponentResult QTAPI DataHFinishData (DHLR_FPARM1

Ptr placeToPutDataPtr,
Boolean cancel)

{
return(badComponentSelector);

}

/*
**
**
** Name: DataHFlushCache()
**
** Description:
**
** Flush read caches.
**
**
*/
ComponentResult QTAPI DataHFlushCache (DHLR_FPARM2)
{

return(noErr);
}

/*
**
**
** Name: DataHResolveDataRef()
**
** Description:
**
** Resolves a data reference. No operation is performed, as a data
reference
** under QuickTime for Windows is a path name.
**
**
*/
ComponentResult QTAPI DataHResolveDataRef (DHLR_FPARM1

Handle dataRef,
Boolean *wasChanged,
Boolean userInterfaceAllowed)

{
*wasChanged = FALSE;
return(noErr);

}

/*

QuickTime 2.0 SDK: Toolbox Changes

Page 118 December 21, 1994

**
**
** Name: DataHGetFileSize()
**
** Description:
**
** Return size of data reference. The data reference must already be
open
** for this call to work.
**
**
*/
ComponentResult QTAPI DataHGetFileSize (DHLR_FPARM1

long *fileSize)
{

void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;
long curr;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// file must be open
if (storage->fileRefNum == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(dataNotOpenForRead);

}

// get the current file position and save it
curr = mmioSeek(storage->fileRefNum, 0, SEEK_CUR);

// get the size of the file by seeking to the EOF
*fileSize = mmioSeek(storage->fileRefNum, 0, SEEK_END);
if(*fileSize == -1)
{

*fileSize = 0;
GlobalUnlock((const void near *)LOWORD(storageH));
return(-1);

}

// reset the previous file position
mmioSeek(storage->fileRefNum, curr, SEEK_SET);

// done
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

}

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 119

/*
**
**
** Name: DataHCanUseDataRef()
**
** Description:
**
** Return flags indicating the ability for the data handler to access
the
** data reference.
**
** Currently only reading of files is supported.
**
**
*/
ComponentResult QTAPI DataHCanUseDataRef (DHLR_FPARM1

Handle dataRef,
DataHUseFlags *useFlags)

{
*useFlags = kDataHCanRead;
return(noErr);

}

/*
**
**
** Name: DataHGetVolumeList()
**
** Description:
**
** Return a list of volumes supported by this data handler. Not
supported.
**
**
*/
ComponentResult QTAPI DataHGetVolumeList (DHLR_FPARM1

DataHVolumeList *volumeList)
{

return(badComponentSelector);
}

/*
**

**
** Name: DataHWrite()
**
** Description:
**
** Write data to data reference. Not supported.
**
**

QuickTime 2.0 SDK: Toolbox Changes

Page 120 December 21, 1994

*/
ComponentResult QTAPI DataHWrite (DHLR_FPARM1

Ptr data,
long offset,
long size,
DHCompleteProc completion,
long refcon)

{
return(badComponentSelector);

}

/*
**
**
** Name: DataHPreextend()
**
** Description:
**
** Preextend the data reference. Not supported.
**
**
*/
ComponentResult QTAPI DataHPreextend (DHLR_FPARM1

long maxToAdd,
long *spaceAdded)

{
return(badComponentSelector);

}

/*
**
**
** Name: DataHSetFileSize()
**
** Description:
**
** Change file size of data reference. Not supported.
**
**
*/
ComponentResult QTAPI DataHSetFileSize (DHLR_FPARM1

long fileSize)
{

return(badComponentSelector);
}

/*
**
**
** Name: DataHGetFreeSpace()
**

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 121

** Description:
**
** Return amount of free space on the device holding the data reference.
** Not supported.
**
**
*/
ComponentResult QTAPI DataHGetFreeSpace (DHLR_FPARM1

unsigned long *freeSize)
{

void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;
char *fileName;
int deviceIndex;
_diskfree_t freeSpace;
OSErr err;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// must have a data reference
if(storage->fileName == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(dataNoDataRef);

}

// dereference the handle to the file name
fileName = (char *)GlobalLock(storage->fileName);
if(fileName == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(invalidDataRef);

}

// get the index, use the drive letter. If the caller didn't
// specify a drive letter, then get the current drive. The
// index is 0 for A:, 1 for B:, ...
if(fileName[1] != ':')

deviceIndex = _getdrive();
else

deviceIndex = tolower(fileName[0])-'a';

// get the free space on the device
if(_dos_getdiskfree(deviceIndex, &freeSpace))
{

err = couldNotResolveDataRef;
}
else
{

QuickTime 2.0 SDK: Toolbox Changes

Page 122 December 21, 1994

// calculate the free space from the dos info returned
*freeSize = freeSpace.avail_clusters *

freeSpace.sectors_per_cluster
* freeSpace.bytes_per_sector;

err = noErr;
}

// unlock handles
GlobalUnlock((const void near *)LOWORD(storageH));
GlobalUnlock(storage->fileName);

// done
return(err);

}

/*
**
**
** Name: DataHCreateFile()
**
** Description:
**
** Create a file corresponding to the data reference. Not supported.
**
**
*/
ComponentResult QTAPI DataHCreateFile (DHLR_FPARM1

OSType creator,
Boolean deleteExisting)

{
return(badComponentSelector);

}

/*
**
**
** Name: DataHGetPreferredBlockSize()
**
** Description:
**
** Return the block size, in bytes, the data handler prefers to work
with.
**
**
*/
ComponentResult QTAPI DataHGetPreferredBlockSize (DHLR_FPARM1

long *blockSize)
{

// we are happiest with blocks of this size
*blockSize = 512;
return(noErr);

}

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 123

/*
**
**
** Name: DataHGetDeviceIndex()
**
** Description:
**
** Return a unique identifier for the device the data reference resides
on.
**
**
*/
ComponentResult QTAPI DataHGetDeviceIndex (DHLR_FPARM1

long *deviceIndex)
{

void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;
char *fileName;

storage = (DataHInstanceStoragePtr)GlobalLock((const void
near

*)LOWORD(storageH));
if(storage == NULL)

return(insufficientMemory);

// must have a data reference
if(storage->fileName == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(dataNoDataRef);

}

// dereference the handle to the file name
fileName = (char *)GlobalLock(storage->fileName);
if(fileName == NULL)
{

GlobalUnlock((const void near *)LOWORD(storageH));
return(invalidDataRef);

}

// get the index, use the drive letter. If the caller didn't
// specify a drive letter, then get the current drive. The
// index is 0 for A:, 1 for B:, ...
if(fileName[1] != ':')

*deviceIndex = _getdrive();
else

*deviceIndex = (long)(tolower(fileName[0])-'a');

// unlock handles
GlobalUnlock((const void near *)LOWORD(storageH));
GlobalUnlock(storage->fileName);

QuickTime 2.0 SDK: Toolbox Changes

Page 124 December 21, 1994

// done
return(noErr);

}

/*
**
**
** Name: DataHGetScheduleAheadTime()
**
** Description:
**
** Return schedule ahead time that the data handler prefers. Currently
** an arbitrary value is returned.
**
**
*/
ComponentResult QTAPI DataHGetScheduleAheadTime (DHLR_FPARM1

long *millisecs)
{

// 2 seconds, arbitrary
*millisecs = 2*1000;
return(noErr);

}

/*
**
**
** Name: DataHPlaybackHints()
**
** Description:
**
** Provides hints about the data reference being accessed. This
function
** may be called at any time, even during movie playback if the user has
** made edits to the movie.
**
**
*/
ComponentResult QTAPI DataHPlaybackHints (DHLR_FPARM1

long flags,
unsigned long minFileOffset,
unsigned long maxFileOffset,
long bytesPerSecond)

{
void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 125

return(insufficientMemory);

// store playback hints
storage->minFileOffset = minFileOffset;
storage->maxFileOffset = maxFileOffset;
storage->bytesPerSecond = bytesPerSecond;

// done
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

}

/*
**
**
** Name: DataHSetOSFileReference()
**
** Description:
**
** Set the file reference directly to an already open file. This call
** exists because NewMovieFromDataFork() is only given an HFILE to work
with,
** and MS-Windows can't backup to the filename from just the HFILE.
**
**
*/
ComponentResult QTAPI DataHSetOSFileReference (DHLR_FPARM1

long fileRef,
long filePerms)

{
void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// make sure we are not already open via the regular data reference
if(storage->fileRefNum)

return(invalidDataRef);

// assign the file reference
storage->hfileRefNum = (HFILE)fileRef;
storage->hfilePerms = filePerms;

// done
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

}

QuickTime 2.0 SDK: Toolbox Changes

Page 126 December 21, 1994

/*
**
**
** Name: DataHGetOSFileReference()
**
** Description:
**
** Returns the file reference set by SetOSFileReference();
**
**
*/
ComponentResult QTAPI DataHGetOSFileReference (DHLR_FPARM1

long *fileRef,
long *filePerms)

{
void far *storageH = instanceStorage;
DataHInstanceStoragePtr storage;

// locate instance storage
storage = (DataHInstanceStoragePtr)GlobalLock((const void

near
*)LOWORD(storageH));

if(storage == NULL)
return(insufficientMemory);

// make sure we are not already open via the regular data reference
if(storage->fileRefNum)

return(invalidDataRef);

// copy the file reference
*fileRef = storage->hfileRefNum;
*filePerms = storage->hfilePerms;

// done
GlobalUnlock((const void near *)LOWORD(storageH));
return(noErr);

}

/*
**
**
** Name: _DataHDirectRead()
**
** Description:
**
** Directly calls mmioRead() to read data from a file. This function
does
** not alter the current file position (it is preserved). This function
** should be used only as a last resort, i.e. if the TdmRead() function
** cannot return the data.
**
**

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 127

*/
BOOL _DataHDirectRead(

DataHInstanceStorage *storage, // storage for this instance
char *pDestBuf, // pointer to destination buffer
long fileOffset, // file offset to begin read at
long size) // # of bytes to read

{
BOOL result = TRUE;
UINT xfer;
long nread;
unsigned long mysize;

if(storage->fileRefNum) {
// move to the new location
mmioSeek(storage->fileRefNum, fileOffset, SEEK_SET);

// read the data
nread = mmioRead(storage->fileRefNum, pDestBuf, size);
if(nread < size)

result = FALSE;
}
else if(storage->hfileRefNum) {

// the file reference was set via SetOSFileReference, so read
// in the data in 64k chunks
mysize = size;
while(mysize) {

xfer = (UINT)(mysize < 65536 ? mysize : 65535);
_lread(storage->hfileRefNum, pDestBuf, xfer);
pDestBuf += xfer;
mysize -= xfer;

}
}
else {

result = FALSE;
}

// done
return(result);

}

QuickTime 2.0 SDK: Toolbox Changes

Page 128 December 21, 1994

REFERENCE TO DATA HANDLER COMPONENTS

This section describes the functions your data handler component may support. Some of
these functions are optional—your component should support only those functions that
are appropriate to it.

Functions

This section describes the functions that may be supported by data handler components,
and is divided into the following topics:

n “Selecting a Data Handler” discusses the functions that allow client programs, such
as the Movie Toolbox, to select an appropriate data handler for a data reference.

n “Working With Data References” describes the functions that allow client programs
to manage a data handler’s current data reference.

n “Reading Movie Data” tells you about the functions that allow client programs to
retrieve data from a data handler.

n “Writing Movie Data” tells you about the functions that allow client programs to
store data using a data handler.

n “Managing Data Handler Components” provides information about the functions
that allow client programs to manage their interactions with data handler
components.

n “Completion Function” discusses the interface that must be provided by a client
program’s data-handler completion function.

Selecting a Data Handler

In order to client programs to choose the best data handler component for a data
reference, Apple has defined some functions that allow applications to interrogate a data
handler’s capabilities.

The DataHGetVolumeList function allows an application to obtain a list of the volumes
your data handler can support. The DataHCanUseDataRef function allows your data
handler to examine a specific data reference and indicate its ability to work with the
associated container. The DataHGetDeviceIndex function allows applications to
determine whether different data references identify containers that reside on the same
device.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 129

By way of illustration, the Movie Toolbox uses the DataHGetVolumeList and
DataHCanUseDataRef functions as follows. During startup, and whenever a new volume
is mounted, the Movie Toolbox calls each data handler’s DataHGetVolumeList function
in order to obtain information about each handler’s general capabilities. So, the Movie
Toolbox calls each component’s OpenComponent, DataHGetVolumeList , and
CloseComponent functions.

Whenever an application opens a movie, the Movie Toolbox selects the best data handler
for the movie’s container. This may involve calling each appropriate data handler’s
DataHCanUseDataRef function (in some cases, a data handler may indicate that it does
not need to examine a data reference before accessing it—see the discussion of the
DataHGetVolumeList function for more information). For each data handler that can
support the data reference (that is, has the correct component subtype value) and needs to
be interrogated, the Movie Toolbox calls the component’s OpenComponent,
DataHCanUseDataRef , and CloseComponent functions. Based on the resulting
information, the Movie Toolbox selects the best data handler for the application.

DataHGetVolumeList

In response to the DataHGetVolumeList function, your data handler
component returns a list of the volumes your component can access, along
with flags indicating your component’s capabilities for each volume.

pascal ComponentResult DataHGetVolumeList (DataHandler dh,
DataHVolumeList *volumeList);

dh Identifies the calling program’s connection to your
data handler component.

volumeList Contains a pointer to a field that your data handler
component uses to return a handle to a volume list.
Your component constructs the volume list by
allocating a handle and filling it with a series of
DataHVolumeListRecord structures (one structure
for each volume your component can access). This
structure is described later in this section.

DESCRIPTION

In order to reduce the delay that may result from choosing an appropriate
data handler for a volume, the Movie Toolbox maintains a list of data
handlers and the volumes they support. The Movie Toolbox uses the
DataHGetVolumeList function to build that list.

When your component receives this function, it should scan the available
volumes and create a series of DataHVolumeListRecord structures—one
structure for each volume your component can access. This structure is
defined as follows:

typedef struct DataHVolumeListRecord {
short vRefNum; /* reference number */

QuickTime 2.0 SDK: Toolbox Changes

Page 130 December 21, 1994

long flags; /* capability flags */
} DataHVolumeListRecord, *DataHVolumeListPtr,
**DataHVolumeList;

vRefNum Contains the volume reference number assigned to
the volume.

flags Indicates the level of support your data handler can
provide for this volume. These flags are similar to
those defined for the DataHCanUseDataRef
function, though there is one additional flag. Your
component should set every appropriate flag to 1
(set unused flags to 0).

kDataHCanRead Indicates that your data handler can
read from the volume.

kDataHSpecialRead Indicates that your data handler can
read from the volume using a
specialized method. For example,
your data handler might support
access to networked multimedia
servers using a special protocol. In
that case, your component would set
this flag to 1 whenever the volume
resides on a supported server.

kDataHSpecialReadFile
Reserved for use by Apple.

kDataHCanWrite Indicates that your data handler can
write data to the volume. In
particular, use this flag to indicate
that your data handler’s
DataHPutData function will work
with this volume.

kDataHSpecialWrite
Indicates that your data handler can
write to the volume using a
specialized method. As with the
kDataHSpecialRead flag, your data
handler would use this flag to
indicate that your component can
access the volume using specialized
support (for example, special
network protocols).

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 131

kDataHCanStreamingWrite
Indicates that your data handler can
support the special write functions
for capturing movie data when
writing to this volume. These
functions are described later in this
chapter, in “Writing Movie Data.”

kDataHMustCheckDataRef
Instructs the calling program that
your component must check each
data reference before it can
accurately report its capabilities. If
you set this flag to 1, the Movie
Toolbox will call your component’s
DataHCanUseDataRef function
before it assigns a container to your
data handler. Note, however, that this
may slow the data handler selection
process somewhat.

Your data handler may use any facilities necessary to determine whether it
can access the volume, including opening a container on the volume. Your
component should set to 1 as many of the capability flags as are
appropriate for each volume. Do not include records for volumes your
handler cannot support.

For example, if your component supports networked multimedia servers
using a special set of protocols, your data handler should set the
kDataHCanRead and kDataHCanSpecialRead flags to 1 for any volume
that is on that server. In addition, if your component can write to a volume
on the server, set the kDataHCanWrite and kDataHCanSpecialWrite
flags to 1 (perhaps along with kDataHCanStreamingWrite). However,
your component should create entries only for those volumes that support
your protocols.

It is the calling program’s responsibility to dispose of the handle returned
by your component.

The Movie Toolbox tracks mounting and unmounting removable volumes,
and keeps its volume list current. As a result, the Movie Toolbox may call
your component’s DataHGetVolumeList function whenever a removable
volume is mounted.

If your data handler does not process data that is stored in file system
volumes, you need not support this function.

ERROR CODES

Memory Manager errors

QuickTime 2.0 SDK: Toolbox Changes

Page 132 December 21, 1994

DataHCanUseDataRef

The DataHCanUseDataRef function allows your data handler to report
whether it can access the data associated with a specified data reference.

pascal ComponentResult DataHCanUseDataRef (DataHandler dh,
Handle dataRef,
long *useFlags);

dh Identifies the calling program’s connection to your
data handler component.

dataRef Specifies the data reference. This parameter
contains a handle to the information that identifies
the container in question.

useFlags Contains a pointer to a field that your data handler
component uses to indicate its ability to access the
container identified by the dataRef parameter.
Your data handler may use the following flags (set
all flags that are appropriate to 1; set unused flags to
0):

kDataHCanRead Indicates that your data handler can
read from the container.

kDataHSpecialRead Indicates that your data handler can
read from the container using a
specialized method. For example,
your data handler might support
access to networked multimedia
servers using a special protocol. In
that case, your component would set
this flag to 1 whenever the data
reference identifies a container on a
supported server.

kDataHSpecialReadFile
Indicates that your data handler can
read from the container using a
specialized method that is particular
to the type of container in question.
For example, your data handler may
use a different method for some
types of containers (say, a Hypercard
stack).

This flag represents a special case of
the kDataHSpecialRead flag. That
is, this flag is appropriate only if you
have also set kDataHSpecialRead to
1.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 133

kDataHCanWrite Indicates that your data handler can
write data to the container. In
particular, use this flag to indicate
that your data handler’s
DataHPutData function will work
with this data reference.

kDataHSpecialWrite
Indicates that your data handler can
write to the container using a
specialized method. As with the
kDataHSpecialRead flag, your data
handler would use this flag to
indicate that the data reference
identifies a container which your
component can access using
specialized support (for example,
special network protocols).

kDataHCanStreamingWrite
Indicates that your data handler can
support the special write functions
for capturing movie data when
writing to this container. These
functions are described later in this
chapter, in “Writing Movie Data.”

If your data handler cannot access the container, set
the field to 0.

DESCRIPTION

Apple’s standard data handler sets both the kDataHCanRead and
kDataHCanWrite flags to 1 for any data reference it receives, indicating
that it can read from and write to any volume.

Your component should set to 1 as many of the capability flags as are
appropriate for the specified data reference. Conversely, be sure to set the
flags to 0 if your component cannot support the container. For example, if
your component supports networked multimedia servers using a special set
of protocols, your data handler should set the kDataHCanRead and
kDataHCanSpecialRead flags to 1 for any container that is on that server.
In addition, if your component can write to the server, set the
kDataHCanWrite and kDataHCanSpecialWrite flags to 1 (perhaps along
with kDataHCanStreamingWrite). However, your component should set
the flags field to 0 for any container that is not on a server that supports
your protocols.

Your data handler may use any facilities necessary to determine whether it
can access the container. Bear in mind, though, that your component
should try to be as quick about this determination as possible, in order to
minimize the chance that the delay will be noticed by the user.

QuickTime 2.0 SDK: Toolbox Changes

Page 134 December 21, 1994

SEE ALSO

The Movie Toolbox calls your component’s DataHGetVolumeList
function to retrieve your data handler’s capabilities for an entire volume.

DataHGetDeviceIndex

In response to the DataHGetDeviceIndex function, your data handler
component returns a value that identifies the device on which a data
reference resides.

pascal ComponentResult DataHGetDeviceIndex (DataHandler dh,
long *deviceIndex);

dh Identifies the calling program’s connection to your
data handler component.

deviceIndex Contains a pointer to a field that your data handler
component uses to return a device identifier value.

DESCRIPTION

Some client programs may need to account for the fact that two or more
data references reside on the same device. For instance, this may affect
storage-allocation requirements. This function allows such client programs
to obtain this information from your data handler.

Your component may use any identifier value that is appropriate (as an
example, Apple’s HFS data handler uses the volume reference number).
The client program should do nothing with the value other than compare it
with other identifiers returned by your data handler component.

Working With Data References

All data handler components use data references to identify and locate a movie’s
container. Different types of containers may require different types of data references. For
example, a reference to a memory-based movie may be a handle, while a reference to a
file-based movie may be an alias.

Client programs can correlate data references with data handlers by matching the
component’s subtype value with the data reference type—the subtype value indicates the
type of data reference the component supports. All data handlers with the same subtype
value must support the same data reference type. To continue the previous example,
Apple’s memory-based data handler for the Macintosh uses handles (and has a subtype
value of 'hndl'), while the HFS data handler uses Alias Manager aliases (its subtype
value is 'alis').

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 135

The DataHSetDataRef and DataHGetDataRef functions allow applications to assign
your data handler’s current data reference. The DataHCompareDataRef function asks
your component to compare a data reference against the current data reference and
indicate whether the references are equivalent (that is, refer to the same container). The
DataHResolveDataRef permits your component to locate a data reference’s container.

The DataHSetOSFileRef and DataHGetOSFileRef functions provide an alternative,
system-specific mechanism for assigning your data handler’s current data reference.

DataHSetDataRef

The DataHSetDataRef function assigns a data reference to your data
handler component.

pascal ComponentResult DataHSetDataRef (DataHandler dh,
Handle dataRef);

dh Identifies the calling program’s connection to your
data handler component.

dataRef Specifies the data reference. This parameter
contains a handle to the information that identifies
the container in question. Your component must
make a copy of this handle.

DESCRIPTION

Note that the type of data reference always corresponds to the type that
your component supports, and that you specify in the component subtype
value of your data handler. As a result, the client program does not provide
a data reference type value (unlike the Movie Toolbox’s data reference
functions).

The client program is responsible for disposing of the handle.
Consequently, your component must make a copy of the data reference
handle.

ERROR CODES

Memory Manager errors

DataHGetDataRef

The DataHGetDataRef function retrieves your component’s current data
reference.

pascal ComponentResult DataHGetDataRef (DataHandler dh,
Handle *dataRef);

QuickTime 2.0 SDK: Toolbox Changes

Page 136 December 21, 1994

dh Identifies the calling program’s connection to your
data handler component.

dataRef Contains a pointer to a data reference handle. Your
component should make a copy of its current data
reference in a handle and return that handle in this
field. The client program is responsible for
disposing of that handle.

ERROR CODES

Memory Manager errors

DataHCompareDataRef

Your component compares a supplied data reference against its current
data reference and returns a Boolean value indicating whether the data
references are equivalent (that is, the two data references identify the same
container).

pascal ComponentResult DataHCompareDataRef (DataHandler dh,
Handle dataRef, Boolean
*equal);

dh Identifies the calling program’s connection to your
data handler component.

dataRef Specifies the data reference to be compared to your
component’s current data reference.

equal Contains a pointer to a Boolean. Your component
should set that Boolean to true if the two data
references identify the same container. Otherwise,
set the Boolean to false.

DESCRIPTION

Note that your component cannot simply compare the bits in the two data
references. For example, two completely different aliases may refer to the
same HFS file. Consequently, you need to completely resolve the data
reference in order to determine the file identified by the reference.

DataHResolveDataRef

The DataHResolveDataRef function instructs your data handler
component to locate the container associated with a given data reference.

pascal ComponentResult DataHResolveDataRef (DataHandler dh,
Handle theDataRef,

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 137

Boolean *wasChanged,
Boolean userInterfaceAllowed);

dh Identifies the calling program’s connection to your
data handler component.

theDataRef Specifies the data reference to be resolved.

wasChanged Contains a pointer to a Boolean. Your component
should set that Boolean to true if, in locating the
container, your data handler updates any
information in the data reference.

userInterfaceAllowed
Indicates whether your component may interact
with the user when locating the container. If this
parameter is set to true, your component may ask
the user to help locate the container (for instance, by
presenting a Find File dialog box).

DESCRIPTION

This function is, essentially, equivalent to the Alias Manager’s
ResolveAlias function. The client program asks your component to
locate the container that is associated with a given data reference. If your
component determines that the data reference needs to be updated with
more accurate location information, it should put the new information in
the supplied data reference (and set the Boolean referred to by the
wasChanged parameter to true).

Client programs may call your data handler’s DataHResolveDataRef
function at any time. Typically, however, the Movie Toolbox uses this
function as part of its strategy for opening and reading a movie container.
As such, you can expect that the supplied data reference will identify a
container that your component can support.

DataHSetOSFileRef

The DataHSetOSFileRef function assigns a movie container to your data
handler component. Applications may use this function instead of calling
the DataHSetDataRef function in cases where the applications have
already opened the container.

pascal ComponentResult DataHSetOSFileRef (DataHandler dh,
long ref, long flags);

dh Identifies the calling program’s connection to your
data handler component.

QuickTime 2.0 SDK: Toolbox Changes

Page 138 December 21, 1994

ref Specifies the container. This parameter contains an
operating system-specific file-access token. For
example, on the Macintosh an application would
supply the file reference it obtained by calling the
FSOpenFile function. Under Windows, this
parameter would contain an HFILE value obtained
from the OpenFile function.

flags Specifies access flags for the container. This
parameter contains the access flags the application
used when opening the container. Again, these are
operating system-specific.

DESCRIPTION

This function provides an alternative mechanism for assigning your data
handler’s current container. In some cases, an application may have
created or opened a movie container prior to assigning the container to
your handler. In such cases, the application may choose to provide its
access token to your data handler, rather than using the DataHSetDataRef
function to assign a data reference. The application must have opened the
file before calling this function.

Note that your data handler must implement this function in a system-
specific manner, and must verify that the access token is valid.

Applications must still call your handlers DataHOpenForRead or
DataHOpenForWrite functions, as appropriate, before using your data
handler to access the container.

ERROR CODES

invalidDataRef –2012 Application already set a data
reference

memFullErr –108 Insufficient memory for operation

DataHGetOSFileRef

The DataHGetOSFileRef function retrieves your component’s container
access token, if it was assigned using the DataHSetOSFileRef function.

pascal ComponentResult DataHGetOSFileRef (DataHandler dh,
long *ref, long *flags);

dh Identifies the calling program’s connection to your
data handler component.

ref Contains a pointer to a long. Your component
should return the container access token that the
application provided when it called your
DataHSetOSFileRef function.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 139

flags Contains a pointer to a long. Your component
should return the access flags that the application
provided when it called your DataHSetOSFileRef
function.

ERROR CODES

invalidDataRef –2012 Application already set a data
reference

memFullErr –108 Insufficient memory for operation

Reading Movie Data

Data handler components provide two basic read facilities. The DataHGetData function
is a fully synchronous read operation, while the DataHScheduleData function is
asynchronous. Applications provide scheduling information when they call your
component’s DataHScheduleData function. When your component processes the queued
request, it calls the application’s data-handler completion function (see “Completion
Function,” later in this chapter, for more information). By calling your component’s
DataHFinishData function, applications can force your component to process queued
read requests. Applications may call your component’s DataHGetScheduleAheadTime
function in order to determine how far in advance your component prefers to get read
requests.

Before any application can read data from a data reference, it must open read access to
that reference by calling your component’s DataHOpenForRead function. The
DataHCloseForRead function closes that read access path.

DataHOpenForRead

Your component opens its current data reference for read-only access.

pascal ComponentResult DataHOpenForRead (DataHandler dh);

dh Identifies the calling program’s connection to your
data handler component.

DESCRIPTION

After setting your component’s current data reference by calling the
DataHSetDataRef function, client programs call the DataHOpenForRead
function in order to start reading from the data reference. Your component
should open the data reference for read-only access. If the data reference is
already open or cannot be opened, return an appropriate error code.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’s DataHOpenForRead function. If this
happens, your component should open the data reference for read-only
access, respond to the read request, and then leave the data reference open
in anticipation of later read requests.

QuickTime 2.0 SDK: Toolbox Changes

Page 140 December 21, 1994

DataHCloseForRead

Your component closes read-only access to its data reference.

pascal ComponentResult DataHCloseForRead (DataHandler dh);

dh Identifies the calling program’s connection to your
data handler component.

DESCRIPTION

Note that a client program may close its connection to your component (by
calling the Component Manager’s CloseComponent function) without
closing the read path. If this happens, your component should close the
data reference before closing the connection.

ERROR CODES

dataNotOpenForRead –2042 Data reference not open for read
dataAlreadyClosed –2045 This reference already closed

DataHGetData

Your component reads data from its current data reference. This is a
synchronous read operation.

pascal ComponentResult DataHGetData (DataHandler dh, Handle
h, long hOffset, long offset,
long size);

dh Identifies the calling program’s connection to your
data handler component.

h Specifies the handle to receive the data.

hOffset Identifies the offset into the handle where your
component should return the data.

offset Specifies the offset in the data reference from which
your component is to read.

size Specifies the number of bytes to read.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 141

DESCRIPTION

The DataHGetData function provides a high-level read interface. This is a
synchronous read operation; that is, the client program’s execution is
blocked until your component returns control from this function. As a
result, most time-critical clients use the DataHScheduleData function to
read data.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’s DataHOpenForRead function. If this
happens, your component should open the data reference for read-only
access, respond to the read request, and then leave the data reference open
in anticipation of later read requests.

SEE ALSO

Client programs can force your component to invalidate any cached data
by calling your component’s DataHFlushCache function.

DataHScheduleData

Your component reads data from its current data reference. This can be a
synchronous read operation or an asynchronous read operation.

pascal ComponentResult DataHScheduleData (DataHandler dh,
Ptr placeToPutDataPtr,
long fileOffset, long
dataSize, long refCon,
DataHSchedulePtr scheduleRec,
DHCompleteProc completionRtn);

dh Identifies the calling program’s connection to your
data handler component.

placeToPutDataPtr Specifies the location in memory that is to receive
the data.

fileOffset Specifies the offset in the data reference from which
your component is to read.

dataSize Specifies the number of bytes to read.

refCon Contains a reference constant that your data handler
component should provide to the data-handler
completion function specified with the
completionRtn parameter.

QuickTime 2.0 SDK: Toolbox Changes

Page 142 December 21, 1994

scheduleRec Contains a pointer to a schedule record. If this
parameter is set to nil, then the client program is
requesting a synchronous read operation (that is,
your data handler must return the data before
returning control to the client program).

If this parameter is not set to nil, it must contain
the location of a schedule record that has timing
information for an asynchronous read request. Your
data handler should return control to the client
program immediately, and then call the client’s
data-handler completion function when the data is
ready. The schedule record is discussed later in this
section.

completionRtn Contains a pointer to a data-handler completion
function. When your data handler finishes with the
client program’s read request, your component must
call this routine. Be sure to call this routine even if
the request fails. Your component should pass the
reference constant that the client program provided
with the refCon parameter.

The client program must provide a completion
routine for all asynchronous read requests (that is,
all requests that include a valid schedule record).
For synchronous requests, client programs should
set this parameter to nil. However, if the function
is provided, your handler must call it, even after
synchronous requests.

DESCRIPTION

The DataHScheduleData function provides both a synchronous and an
asynchronous read interface. Synchronous read operations work like the
DataHGetData function—the data handler component returns control to
the client program only after it has serviced the read request.
Asynchronous read operations allow client programs to schedule read
requests in the context of a specified QuickTime time base. Your data
handler queues the request and immediately returns control to the calling
program. After your component actually reads the data, it calls the client
program’s data-handler completion function.

If your component cannot satisfy the request (for example, the request
requires data more quickly than you can deliver it), your component
should reject the request immediately, rather than queuing the request and
then calling the client’s data-handler completion function.

The client program provides scheduling information for scheduled reads in
a schedule record. This structure is defined as follows:

typedef struct DataHScheduleRecord {
TimeRecord timeNeededBy; /* schedule info
*/

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 143

long extendedID; /* type of data */
long extendedVers; /* reserved */
Fixed priority; /* priority */
} DataHScheduleRecord, *DataHSchedulePtr;

timeNeededBy Specifies the time at which your data handler must
deliver the requested data to the calling program.
This time value is relative to the time base that is
contained in this time record.

During pre-roll operations, the Movie Toolbox may
use special values in certain time record fields. The
time record fields in question are the scale and
value fields. By correctly interpreting the values of
these fields, your data handler can queue up the pre-
roll read requests in the most efficient way for its
device.

There are two types of pre-roll read operations. The
first type is a required read; that is, the Movie
Toolbox requires that the read operation be satisfied
before the movie starts playing. The second type is
an optional read. If your data handler can satisfy the
read operation as part of the pre-roll operation, it
should do so. Otherwise, your data handler may
satisfy the request at a specified time while the
movie is playing.

The Movie Toolbox indicates that a pre-roll read
request is required by setting the scale field of the
time record to –1. This literally means that the
request is scheduled for a time that is infinitely far
into the future. Your data handler should collect all
such read requests, order them most efficiently for
your device, and process them when the Movie
Toolbox calls your component’s DataHFinishData
function.

For optional pre-roll read requests, the Movie
Toolbox sets the scale field properly, but negates
the contents of the value field. Your data handler
has the option of delivering the data for this request
with the required data, if that can be done
efficiently. Otherwise, your data handler may
deliver the data at its schedule time. You determine
the scheduled time by negating the contents of the
value field (that is, multiplying by –1).

For more information about pre-roll operations, see
“Retrieving Movie Data,” earlier in this chapter.

QuickTime 2.0 SDK: Toolbox Changes

Page 144 December 21, 1994

extendedID Indicates the type of data that follows in the
remainder of the record. The following values are
valid:

kDataHExtendedSchedule
The remainder of the record contains
extended scheduling information.

If the extendedID field is set to kDataHExtendedSchedule, the
remainder of the schedule record is defined as follows:

extendedVers Reserved; this field should always be set to 0.

priority Indicates the relative importance of the data request.
Client programs assign a value of 100.0 to data
requests the must be delivered. Lower values
indicate relatively less critical data. If your data
handler must accommodate bandwidth limitations
when delivering data, your component may use this
value as an indication of which requests can be
dropped with the least impact on the client program.

As an example, consider using priorities in a frame-
differenced movie. Key frames might have priority
values of 100.0, indicating that they are essential to
proper playback. As you move through the frames
following a key frame, each successive frame might
have a lower priority value. Once you drop a frame,
you must drop all successive frames of equal or
lower priority until you reach another key frame,
because each of these frames would rely on the
dropped one for some image data.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’s DataHOpenForRead function. If this
happens, your component should open the data reference for read-only
access, respond to the read request, and then leave the data reference open
in anticipation of later read requests.

SEE ALSO

Client programs can force your component to invalidate any cached data
by calling your component’s DataHFlushCache function.

DataHFinishData

The DataHFinishData function instructs your data handler component to
complete or cancel one or more queued read requests. The client program
would have issued those read requests by calling your component’s
DataHScheduleData function.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 145

pascal ComponentResult DataHFinishData (DataHandler dh,
Ptr placeToPutDataPtr,
Boolean cancel);

dh Identifies the calling program’s connection to your
data handler component.

placeToPutDataPtr Specifies the location in memory that is to receive
the data. The value of this parameter identifies the
specific read request to be completed. If this
parameter is set to nil, the call affects all pending
read requests.

cancel Indicates whether the calling program wants to
cancel the outstanding request. If this parameter is
set to true, your data handler should cancel the
request (or requests) identified by the
placeToPutDataPtr parameter.

DESCRIPTION

Client programs use the DataHFinishData function either to cancel
outstanding read requests or to demand that the requests be serviced
immediately. Pre-roll operations are a special case of the immediate
service request. The client program will have queued one or more read
requests with their scheduled time of delivery set infinitely far into the
future. Your data handler queues those requests until the client program
calls the DataHFinishData function demanding that all outstanding read
requests be satisfied immediately.

Note that your component must call the client program’s data-handler
completion function for each queued request, even though the client
program called the DataHFinishData function. Be sure to call the
completion function for both canceled and completed read requests.

SEE ALSO

Client programs queue read requests by calling your component’s
DataHScheduleData function.

DataHGetScheduleAheadTime

The DataHGetScheduleAheadTime function allows your data-handler
component to report how far in advance it prefers clients to issue read
requests.

pascal ComponentResult DataHGetScheduleAheadTime
(DataHandler dh,
long *millisecs);

QuickTime 2.0 SDK: Toolbox Changes

Page 146 December 21, 1994

dh Identifies the calling program’s connection to your
data handler component.

millisecs Contains a pointer to a long. Your component
should set this field with a value indicating the
number of milliseconds you prefer to receive read
requests in advance of the time when the data must
be delivered.

DESCRIPTION

This function allows your data handler to tell the client program how far in
advance it should schedule its read requests. By default, the Movie
Toolbox issues scheduled read requests between 1 and 2 seconds before it
needs the data from those requests. For some data handlers, however, this
may not be enough time. For example, some data handlers may have to
accommodate network delays when processing read requests. Client
programs that call this function may try to respect your component’s
preference.

Note, however, that not all client programs will call this function. Further,
some clients may not be able to accommodate your preferred time in all
cases, even if they have asked for your component’s preference. As a
result, your component should have a strategy for handling requests that
do not provide enough advanced scheduling time. For example, if your
component receives a DataHScheduleData request that it cannot satisfy, it
can fail the request with an appropriate error code.

SEE ALSO

Client programs queue read requests by calling your component’s
DataHScheduleData function.

Writing Movie Data

As with reading movie data, data handlers provide two distinct write facilities. The
DataHPutData function is a simple synchronous interface that allows applications to
append data to the end of a container.

The DataHWrite function is a more-capable, asynchronous write function that is suitable
for movie capture operations. As is the case with the DataHScheduleData function, your
component calls the application’s data-handler completion function when you are done
with the write request.

There are several other helper functions that allow applications to prepare your data
handler for a movie capture operation. The DataHCreateFile function asks your
component to create a new container. The DataHSetFileSize and DataHGetFileSize
functions work with a container’s size, in bytes. The DataHGetFreeSpace function
allows applications to determine when to make a container larger. The DataHPreextend
function asks your component to make a container larger. Applications may call your
component’s DataHGetPreferredBlockSize function in order to determine how best to
interact with your data handler.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 147

Before writing data to a data reference, applications must call your component’s
DataHOpenForWrite function to open a write path to the container. The
DataHCloseForWrite function closes that write path.

Note that some data handlers may not support write operations. For example, some
shared devices, such as a CD-ROM “jukebox”, may be read-only devices. As a result, it
is very important that your data handler correctly report its write capabilities to client
programs. See “Selecting a Data Handler,” earlier in this chapter, for information about
the functions that client programs use to interrogate your data handler.

DataHOpenForWrite

Your component opens its current data reference for write-only access.

pascal ComponentResult DataHOpenForWrite (DataHandler dh);

dh Identifies the calling program’s connection to your
data handler component.

DESCRIPTION

After setting your component’s current data reference by calling the
DataHSetDataRef function, client programs call the DataHOpenForWrite
function in order to start writing to the data reference. Your component
should open the data reference for write-only access. If the data reference
is already open or cannot be opened, return an appropriate error code.

ERROR CODES

dataAlreadyOpenForWrite–2044 Data reference already open for write

DataHCloseForWrite

Your component closes write-only access to its data reference.

pascal ComponentResult DataHCloseForWrite (DataHandler dh);

dh Identifies the calling program’s connection to your
data handler component.

DESCRIPTION

Note that a client program may close its connection to your component (by
calling the Component Manager’s CloseComponent function) without
closing the write path. If this happens, your component should close the
data reference before closing the connection.

QuickTime 2.0 SDK: Toolbox Changes

Page 148 December 21, 1994

ERROR CODES

dataNotOpenForWrite –2043 Data reference not open for write
dataAlreadyClosed –2045 This reference already closed

DataHPutData

Your component writes data to its current data reference. This is a
synchronous write operation that appends data to the end of the current
data reference.

pascal ComponentResult DataHPutData (DataHandler dh, Handle
h, long hOffset, long *offset,
long size);

dh Identifies the calling program’s connection to your
data handler component.

h Specifies the handle that contains the data to be
written to the data reference.

hOffset Identifies the offset into the handle h to the data to
be written.

offset Contains a pointer to a long. Your component
returns the offset in the data reference at which your
component wrote the data.

size Specifies the number of bytes to write.

DESCRIPTION

The DataHPutData function provides a high-level write interface. This is a
synchronous write operation that only appends data to the end of the
current data reference. That is, the client program’s execution is blocked
until your component returns control from this function, and the client
cannot control where the data is written. As a result, most movie-capture
clients (for example, Apple’s sequence grabber component) use the
DataHWrite function to write data when creating movies.

ERROR CODES

dataNotOpenForWrite –2043 Data reference not open for write

SEE ALSO

Client programs can force your component to write any cached data by
calling your component’s DataHFlushData function.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 149

DataHWrite

Your component writes data to its current data reference. This can be a
synchronous write operation or an asynchronous operation, and can write
data to any location in the container.

pascal ComponentResult DataHWrite (DataHandler dh, Ptr data,
long offset, long size,
DHCompleteProc completion,
long refCon);

dh Identifies the calling program’s connection to your
data handler component.

data Specifies a pointer to the data to be written. Client
programs should lock the memory area holding this
data, allowing your component’s DataHWrite
function to move memory.

offset Specifies the offset (in bytes) to the location in the
current data reference at which to write the data.

size Specifies the number of bytes to write.

completion Contains a pointer to a data-handler completion
function. When your data handler finishes with the
client program’s write request, your component
must call this routine. Be sure to call this routine
even if the request fails. Your component should
pass the reference constant that the client program
provided with the refCon parameter.

The client program must provide a completion
routine for all asynchronous write requests. For
synchronous requests, client programs should set
this parameter to nil.

refCon Contains a reference constant that your data handler
component should provide to the data-handler
completion function specified with the completion
parameter.

For synchronous operations, client programs should
set this parameter to 0.

QuickTime 2.0 SDK: Toolbox Changes

Page 150 December 21, 1994

DESCRIPTION

The DataHWrite function provides both a synchronous and an
asynchronous write interface. Synchronous write operations work like the
DataHPutData function—the data handler component returns control to
the client program only after it has serviced the write request.
Asynchronous write operations allow client programs to queue write
requests. Your data handler queues the request and immediately returns
control to the calling program. After your component actually writes the
data, it calls the client program’s data-handler completion function.

ERROR CODES

dataNotOpenForWrite –2043 Data reference not open for write

SEE ALSO

Client programs can force your component to write any cached data by
calling your component’s DataHFlushData function.

DataHSetFileSize

Your component sets the size, in bytes, of the current data reference.

pascal ComponentResult DataHSetFileSize (DataHandler dh,
long fileSize);

dh Identifies the calling program’s connection to your
data handler component.

fileSize Specifies the new size of the container
corresponding to the current data reference, in
bytes.

DESCRIPTION

The DataHSetFileSize function is functionally equivalent to the File
Manager’s SetEOF function. If the client program specifies a new size that
is greater than the current size, your component should extend the
container to accommodate that new size. If the client program specifies a
container size of 0, your component should free all of the space occupied
by the container.

DataHGetFileSize

Your component returns the size, in bytes, of the current data reference.

pascal ComponentResult DataHGetFileSize (DataHandler dh,
long *fileSize);

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 151

dh Identifies the calling program’s connection to your
data handler component.

fileSize Contains a pointer to a long. Your component
returns the size of the container corresponding to
the current data reference, in bytes.

DESCRIPTION

The DataHGetFileSize function is functionally equivalent to the File
Manager’s GetEOF function.

DataHCreateFile

Your component creates a new container that meets the specifications of
the current data reference.

pascal ComponentResult DataHCreateFile (DataHandler dh,
OSType creator,
Boolean deleteExisting);

dh Identifies the calling program’s connection to your
data handler component.

creator Specifies the creator type of the new container. If
the client program sets this parameter to 0, your
component should choose a reasonable value (for
example, 'TVOD', the creator type for Apple’s
movie player).

deleteExisting Indicates whether to delete any existing data. If this
parameter is set to true and a container already
exists for the current data reference, your
component should delete that data before creating
the new container. If this parameter is set to false,
your component should preserve any data that
resides in the container defined by the current data
reference (if there is any).

DataHGetPreferredBlockSize

The DataHGetPreferredBlockSize function allows your component to
report the block size that it prefers to use when accessing the current data
reference.

pascal ComponentResult DataHGetPreferredBlockSize
(DataHandler dh,
long *blockSize);

QuickTime 2.0 SDK: Toolbox Changes

Page 152 December 21, 1994

dh Identifies the calling program’s connection to your
data handler component.

blockSize Contains a pointer to a long. Your component
returns the size of blocks (in bytes) it prefers to use
when accessing the current data reference.

DESCRIPTION

Different devices use different file system block sizes. This function
allows your component to report its preferred block size to the client
program. Note that the client program is not required to use this block size
when making requests. Some clients may, however, try to accommodate
your component’s preference.

DataHGetFreeSpace

Your component reports the number of bytes available on the device that
contains the current data reference.

pascal ComponentResult DataHGetFreeSpace (DataHandler dh,
unsigned long *freeSize);

dh Identifies the calling program’s connection to your
data handler component.

freeSize Contains a pointer to an unsigned long. Your
component returns the number of bytes of free
space available on the device that contains the
container referred to by the current data reference.

DataHPreextend

Your component allocates new space for the current data reference,
enlarging the container.

pascal ComponentResult DataHPreextend (DataHandler dh,
long maxToAdd,
long *spaceAdded);

dh Identifies the calling program’s connection to your
data handler component.

maxToAdd Specifies the amount of space to add to the current
data reference, in bytes. If the client program sets
this parameter to 0, your component should add as
much space as it can.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 153

spaceAdded Contains a pointer to a long. Your component
returns the number of bytes it was able to add to the
data reference, in bytes.

DESCRIPTION

This function is essentially analogous to the File Manager’s
PBAllocContig function. Your component should allocate contiguous
free space. If there is not sufficient contiguous free space to satisfy the
request, your component should return a dskFulErr error code.

Client programs use this function in order to avoid incurring any space-
allocation delay when capturing movie data.

Managing Data Handler Components

Your data handler component provides a number of functions that applications can use to
manage their connections to your handler. The most important among these is
DataHTask, which provides processor time to your handler. Applications should call this
function often so that your handler has enough time to do its work.

Applications may call your handler’s DataHPlaybackHints function in order to provide
you with some guidelines about how those applications play to use the current data
reference.

The DataHFlushData and DataHFlushCache functions allow applications to influence
how your component manages its stored data.

DataHTask

Client programs call your component’s DataHTask function in order to
cede processor time to your data handler.

pascal ComponentResult DataHTask (DataHandler dh);

dh Identifies the calling program’s connection to your
data handler component.

DESCRIPTION

This function is essentially analogous to the Movie Toolbox’s MoviesTask
function. Client programs call this function in order to give your data
handler component time to do its work. Your data handler uses this time to
do its work. Because client programs will call this function frequently, and
especially so during movie playback or capture, your data handler should
return control quickly to the client program.

QuickTime 2.0 SDK: Toolbox Changes

Page 154 December 21, 1994

DataHFlushCache

Your component discards the contents of any cached read buffers.

pascal ComponentResult DataHFlushCache (DataHandler dh);

dh Identifies the calling program’s connection to your
data handler component.

DESCRIPTION

Client programs may call this function if they have, in some way, changed
the container associated with the current data reference on their own.
Under these circumstances, data your component may have read and
cached in anticipation of future read requests from the client may be
invalid.

Note that this function does not invalidate any queued read requests (made
by calling your component’s DataHScheduleData function).

DataHFlushData

Your component forces any data in its write buffers to be written to the
device that contains the current data reference.

pascal ComponentResult DataHFlushData (DataHandler dh);

dh Identifies the calling program’s connection to your
data handler component.

DESCRIPTION

This function is essentially analogous to the File Manager’s PBFlushFile
function. The client program may call this function after any write
operation (either DataHPutData or DataHWrite). Your component should
do what is necessary to make sure that the data is written to the storage
device that contains the current data reference.

DataHPlaybackHints

The DataHPlaybackHints function allows the client program to provide
additional information to your component that you may use to optimize
the operation of your data handler.

pascal ComponentResult DataHPlaybackHints (DataHandler dh,
long flags,
unsigned long minFileOffset,

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 155

unsigned long maxFileOffset,
long bytesPerSecond);

dh Identifies the calling program’s connection to your
data handler component.

flags Reserved for use by Apple Computer, Inc. Client
programs should always set this parameter to 0.

minFileOffset Together with the maxFileOffset parameter,
specifies the range of data the client program
anticipates using from the current data reference.
This parameter specifies the earliest byte the
program expects to use (that is, the minimum
container offset value). If the client expects to
access bytes from the beginning of the container, it
should set this parameter to 0.

maxFileOffset Specifies the latest byte the program expects to use
(that is, the maximum container offset value). If the
client expects to use bytes throughout the container,
the client should set this parameter to –1.

bytesPerSecond Indicates the rate at which your data handler must
read data from the data reference in order to keep up
with the client program’s anticipated needs.

DESCRIPTION

Your component should be prepared to have this function called more than
once for a given data reference. For example, the Movie Toolbox calls this
function whenever a movie’s playback rate changes. This is a handy way
for your data handler to track playback rate changes.

Completion Function

When client programs schedule asynchronous read or write operations (by calling your
component’s DataHScheduleData or DataHWrite functions), they furnish your
component a data-handler completion function. Your component must call this function
when it completes the read or write operation, whether the operation was a success or a
failure.

Data-handler Completion Function

The client program’s completion function must present the following
interface:

pascal void DHCompleteProc (Ptr request, long refcon,
OSErr err);

QuickTime 2.0 SDK: Toolbox Changes

Page 156 December 21, 1994

request Specifies a pointer to the data that was associated
with the read (DataHScheduleData) or write
(DataHWrite) request. The client program uses this
pointer to determine which request has completed.

refcon Contains a reference constant that the client
program supplied to your data handler component
when it made the original request.

err Indicates the success or failure of the operation. If
the operation succeeded, set this parameter to 0.
Otherwise, specify an appropriate error code.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 157

CHAPTER 10 QUICKTIME‘ MUSIC ARCHITECTURE

This chapter describes the QuickTime Music Architecture. This chapter includes
descriptions of the data structures and functions that allow your application to control the
time-based music features included with QuickTime 2.0. With the QuickTime Music
Architecture your application allows users to play, edit, cut, copy and paste movie music
data in the same way they work with text and graphic elements today.

QUICKTIME MUSIC ARCHITECTURE OVERVIEW

The QuickTime Music Architecture (QMA) is a set of music events and three layers of
software components. Each component layer provides a set of functions that allow your
applications or QuickTime Movie music tracks to create and control music elements on
the Macintosh. Additional control for external MIDI devices is also provided.

Music “events” are used to specify the Instruments and notes of a musical composition,
called a sequence. A group of events is called a “sequence.” A sequence of events may
define a range of Instruments and their characteristics, along with a sequence of notes and
rests which, when interpreted, product the musical composition. Such event sequences
can be contained within a QuickTime music track or be produced by your application.
QMA interprets and plays the music from the sequence data.

The three layers of QMA provide different levels of access to the actual devices used to
create sound. The top-most component layer provides timing for the sequence and
minimizes the need to understand and manage the specific details for each synthesizer
device. The next component layer plays individual notes to a specified synthesizer device.
The lowest component level provides access to synthesizer device specifics.

The available QMA components are the:

• Tune Player

• Note Allocator

• Music Component

The Tune Player component plays a time-ordered sequence of events. The Tune Player
negotiates with the Note Allocator, described below, to determine which Music
Component to use. For example, if the music score requires a piano, the sequence will
request a “piano” resource. QMA provides an Instrument that best “fits” the request. At
the top-most layer the sequence is not required to know about the specific Instrument
type. The sequence only needs to know that it needs a piano. At the lowest layer however,
the Music Component provides specific details about each available sound producing
device.

The sequence of events is sent to the Note Allocator which in turn sends them to an
appropriate Music Component. The Tune Player handles all aspects of timing as defined
by the sequence of events.

QuickTime 2.0 SDK: Toolbox Changes

Page 158 December 21, 1994

The Note Allocator component can be used to play individual notes from a synthesizer.
Unlike the Tune Player, there are no timing services. The Note Allocator also contains
miscellaneous functions to handle external MIDI devices, create and maintain a database
of Music Components, and provide special functions to gain access to the details of each
Music Component.

Music Components are sound-playing software or software components utilizing external
hardware devices to produce music. These components either produce the sounds through
software-only means or interact with hardware devices which produce sound.

As the following diagram illustrates, QMA can be accessed by QuickTime Music tracks
or by applications. QuickTime Music tracks can contain a sequence of events and use a
standard Music Media Handler to access the Tune Player.

An application will usually access QMA through the Tune Player or the Note Allocator.
Some applications will access the Music Components directly but this is usually
unnecessary.

Instrument & Note
Allocator

Note Playing
Component

Sound Manager

QuickTime Music Track

Sequenced Sound
Media Handler

Tune Player

Note Allocator

Music
Component

Sound Manager

Music
Component
General MIDI

Music
Component
Brand X MIDI

Music Component
Nubus Synthesizer

“Music
Preferences”

Sequenced Sound
Media Handler

Music
Media Handler

Application

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 159

GENERAL TERMINOLOGY

DURATION:

Music sequences contain notes and rests. The length in time of either is
described by its duration. A duration is defined by a number of units-per-
second.

INSTRUMENT:

A particular sound on a synthesizer (see synthesizer below).

KNOB:

A user-modifiable Instrument adjustment value.

MICROTONES:

The musical scale most often used in modern Western music is the 12 tone
“equal tempered” scale. This scale divides each octave into 12 available
pitches (frequencies), called “semitones.” Any pitch that lies between two
semitones is called a “microtone.” The QuickTime Music Architecture lets
you specify 255 microtones between each pair of semitones.

MIDI:

Musical Instrument Digital Interface is a standard serial protocol for
communication between electronic musical devices.

MUSIC COMPONENT:

A software component, which adheres to the QMA Music Component
interface standard, to produce sound either through the Macintosh’s built-
in speaker or by controlling an external hardware device.

MUSIC TRACK:

A sequence of QMA events used to describe music in terms of the notes,
rests and Instruments to be used.

NOTE:

A sound defined by its pitch, volume (velocity) and duration.

NOTE CHANNEL:

An abstract reference to a synthesizer Part which can play notes.

QuickTime 2.0 SDK: Toolbox Changes

Page 160 December 21, 1994

POLYPHONY:

A number of simultaneous musical notes. The polyphony of a synthesizer
is the maximum number of notes it can play at one point in time. The
polyphony of a music track is the maximum number of notes it ever plays
at one point in time.

PART:

A single assignable Instrument slot within a synthesizer. A synthesizer
contains a number of Parts. This maximum number defines the
synthesizer's timbrality. Each Part can be set to one Instrument. An
initialized Part can be modified through its Knobs to produce a unique
Instrument. Modified Parts may be saved as new Instruments and later
recalled.

PITCH:

The relative position of a note in a scale as determined by its frequency.
Any of various standards that establish a frequency for each musical note,
used in the tuning of Instruments.

SYNTHESIZER:

A software or hardware device capable of creating sounds. To be used by
QuickTime, a synthesizer must have a corresponding Music Component
which provides the software interface to that synthesizer.

TIMBRE:

The quality of a sound which makes it uniquely identifiable regardless of
the sound's pitch or volume. The unique qualities or attributes that make
the sounds of a piano, tuba or oboe, all playing the same note, uniquely
identifiable.

TUNE PLAYER:

A software component used to assign available Instruments and to play a
sequence of QMA music events. The Tune Player provides abstract access
to Instruments and system timing for long sequences of music.

TRACK:

In the context of QMA, a track is a sequence of music events contained in
a QuickTime movie track.

VOICE:

Voices and oscillators are interchangeable terms. The maximum number
of voices available to a synthesizer defines its polyphony.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 161

VOLUME:

The amplitude or loudness of a sound. The audio level, described by QMA
as a number from 0.0 to 1.0, used to adjust the output of either a Part, an
entire synthesizer or both.

QuickTime 2.0 SDK: Toolbox Changes

Page 162 December 21, 1994

ADVANTAGES OF QUICKTIME MUSIC ARCHITECTURE VS. MIDI

• QMA is not limited to MIDI's 16 simultaneous timbres

• It supports generalized access to synthesizer specific features.

• Devices can report their details about device specifics.

• QMA offers a natural implementation of microtonal scales.

• QMA file format is simpler than standard MIDI format.

The QMA's API has no limitation on the number of timbres (Parts) available to an
application or music track. MIDI limits the number of timbres to 16.

The QMA supports generalized access to synthesizers. This ability eliminates the
requirements for an application to support a range of specific devices. In some case,
however, an application may need greater control to a specific type of synthesizer. Access
to a particular Music Components provides this type of control.

In addition to producing standard equal tempered notes, the QMA file format allows 256
microtonal values between each standard note.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 163

COMPONENTS OF QUICKTIME MUSIC ARCHITECTURE

The three layers of the QuickTime Music Architecture are the:

• Tune Player

• Note Allocator

• Music Component

The Tune Player component of the QuickTime Music Architecture can be used to play
sequences of notes and Rest event data in a simple manner.

The Note Allocator provides services to play individual notes out of a synthesizer. Unlike
the Tune Player, the Note Allocator has no ability to provide sequence timing.

The Music Component is a software component which is used to produce sound through
software-only algorithms or through an interface to external hardware. Generally an
application will not need to call the Music Component directly. Usually calls through the
Note Allocator will provide adequate service. Macintosh provides the Software
Synthesizer and General MIDI Music Components.

Tune Player

The Tune Player plays sequences of music. It also allocates the necessary note channels
for a particular sequence.

In addition, the Tune Player provides the timing support necessary to interpret and play a
music sequence, compared to the Note Allocator which has no timing support.

Any number of sequences may be played simultaneously as long as there is sufficient
polyphony (voices) within the specific Music Component allocated by the Tune Player.

Sequences can be played from beginning to end or only a portion of a sequence can be
played. An additional sequence, or sequence section, may be queued-up while one is
currently being played. Queuing sequences can provide a seamless way to transition
between sections.

The Tune Player is implemented as a component. Each instance of the Tune Player
component can play a sequence.

QuickTime 2.0 SDK: Toolbox Changes

Page 164 December 21, 1994

Note Allocator

The Note Allocator provides a way to access and manage the available synthesizers
without the need to understand a synthesizer’s specific details.

The Note Allocator, unlike the Tune Player, provides no timing related features to
manage the sequence. The Note Allocator's features are similar to the Music
Component's, as described below, although more generalized.

The Note Allocator's services fall into three categories:

• Note channel allocation and use

• System configuration

• Miscellaneous interface tools

Note channel allocation will create a note channel by selecting and allocating a Part,
within a synthesizer, based on the tone requested, provides detailed information about an
allocated note channel, and allows configuration of, and access to, external MIDI devices.

In addition, note channel allocation provides features to reserve in advance, and release
when finished or temporarily not needed, resources required to play a sequence. A
sequence's overall volume can be adjusted and the note channel can be engaged (default)
or disengaged while playing.

Note channel use will play individual notes, apply a specified controller to the allocated
note channel, provide access to Knobs to adjust a Part's characteristics, select an
Instrument based on a required tone, and modify or change the Instrument type on an
existing note channel.

System configuration provides services which create and maintain a database of Music
Components, save configuration information in a “Music Preferences” file and establish
connections to external MIDI devices.

The miscellaneous interface tools provide a set of user interface dialogs to select
individual Instruments, select Instruments within an arrangement and to provide
copyright information for a particular Instrument.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 165

Music Component

A Music Component is a software component used to produce sound. The method a
component uses to produce sound depends on the component.

An application generally accesses a Music Component through the Note Allocator or
Tune Player. Applications do not usually call music components directly.

The standard Macintosh Music Components include a software synthesizer and a General
MIDI music component.

In addition to these standard components, a Music Component can be created to control
an external hardware synthesizer. In this case, the sound is produced by the external
synthesizer, not the software component.

A Music Component provides synthesizer access similar to that of the Note Channel.
The Note Channel's access, however, is generalized and indirect. The Music Component
can directly access a particular synthesizer’s features and controls. This type of access is
available only through a Music Component.

To better understand the role of a Music Component it's important to understand the
features of a generic QMA synthesizer.

A synthesizer contains a number of Parts and Instruments. An Instrument is a very
specific description of the type of sound produced. Parts can be thought of as slots in
which the user installs particular Instruments.

Instruments are grouped into fixed (built-in) and user-modifiable InstrumentsSee
Modifiable Instruments. Instruments installed or loaded into a Part can be used as-is or
modified and saved into a user-modifiable Instrument for later recall.

An Instrument is accessible only after it is loaded into one of the synthesizer's Parts. An
Instrument loaded into a Part can be modified by changing the value of one of its Knobs,
and saving to one of the Modifiable Instruments using a new Instrument name.
Instruments cannot be saved to a Fixed Instrument location.

The diagram below illustrates the internal model of a Music Component (described here
as a generic synthesizer). The illustration shows the total number of Parts available from
the synthesizer, a group of fixed Instruments, 1 through n, and a group of user modifiable
Instruments, n+1 through n+m.

QuickTime 2.0 SDK: Toolbox Changes

Page 166 December 21, 1994

Generic Synthesizer Model

Note

Allocator
Part 1

Part q

Part 2
Part 3

Part 4
Part 5

Part 6

Part ...

Part 7

Part 8

Synthesizer Parts

Instruments

Synthesizer Knobs

Instrument 1
Instrument 2
Instrument 3
Instrument 4
Instrument ...
Instrument n
Instrument n+1
Instrument n+2
Instrument ...
Instrument n+m

Fixed
Instruments

m = ModifiableInstrumentCount
n = InstrumentCount

(Fixed & User Modifiable)

Modifiable
User

Instruments

q = Synthesizer Parts

The illustration above shows the synthesizer's Part 1 loaded with the Fixed Instrument 2.
Once an Instrument is loaded into a Part it may be modified and subsequently saved, with
a new Instrument name, to a user modifiable Instrument.

An example of a user modifiable Instrument is shown using Part 6. It uses the same
Instrument as Part 1. One Instrument can be used by two separate Parts. After an
Instrument is loaded into multiple Parts, either Part can be modified, through its Knobs,
to produce a unique variation from the original Instrument. In this example, Part 6 is
saved to the user modifiable Instrument n+1. Parts cannot be saved to the fixed
Instrument bank.

Each Part has its own set of Knobs. There is another set of Knobs that apply to the entire
synthesizer and not to a particular Instrument. These Knobs are typically for controlling
effects like audio effects (such as reverb) that may be built into a device. In addition to
the synthesizer Knobs are controllers which will also modify the characteristics of the
synthesizer.

The Music Component services fall into 4 categories:

• Synthesizer access

• Instrument access

• Part access

• Synthesizer timing

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 167

The Music Component synthesizer access functions provide services to obtain specific
information about the current synthesizer and obtain an Instrument which best fits a
requested type of sound. The synthesizer access will also play a note with a specified
pitch, volume and duration, get and set a particular synthesizer's Knob, obtain default
Knob information, and get and set external MIDI procedure name entry points.

The Music Component Instrument access provides services to initialize a Part to a
specified Instrument, to create and return an organized group of available synthesizer
Instrument and Drum names, and return the Instrument number assigned to the specified
Part. The Instrument access also stores modified Instruments from a Part into the
modifiable Instrument store, gets detailed information about each Instrument available
from the synthesizer, and returns detailed default Instrument Knob settings.

The Music Component Part access provides services to get and set synthesizer Part
parameters, to get and set a Part's human interface name, to get and set the value for a
particular Part Knob, to reset the Part to a default state and get and apply controller values
to individual Parts modifying their characteristics.

The Music Component synthesizer timing provides services to get and modify the master
reference timer used by the synthesizer.

QuickTime 2.0 SDK: Toolbox Changes

Page 168 December 21, 1994

EVENT SEQUENCE FORMAT

QMA defines music as a sequence of events. The events described in this section
initialize and modify sound producing music devices and define the notes and rests to be
played.

A sequence of events is required to produce music. The sequence of events is generally
contained within either a QuickTime movie track (which uses a media handler to provide
access to the Tune Player), or an application containing a sequence of events. The
application will pass them directly to the Tune Player.

Note: Using the MoviePlayer a standard MIDI sequence file will automatically be
converted to a QuickTime music track sequence. Refer the “Conversion of Standard
MIDI” chapter for additional details.

Events are constructed as a group of long words. The upper 1st four bits (nibble) of an
event's long word defines its type.

1st Nibble Long Words Event Type

000x 1 Rest

001x 1 Note

010x 1 Controller

011x 1 Marker

1000 2 (reserved)

1001 2 Note

1010 2 Controller

1011 2 Knobs

1100 2 (reserved)

1101 2 (reserved)

1110 2 (reserved)

1111 n General

It's important to understand that the Rest event specifies the duration before interpreting
the next event in the stream. A Rest event does not specify an independent period of
silence. The Rest event defines when to act on the next event in sequence. A Note event
will define its own end by the specific duration contained within the Note event.

Both the Note durations and the Rest durations are specified in units of the Tune Player's
time scale (default of 1/600ths of a second).

Consider the following musical fragment.

.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 169

Assuming 120 beats-per-minute, and a Tune Player's scale of 600, each quarter note’s
duration is 300. The music track data to describe this fragment would appear as follows.

NOTE Part 0, pitch 60, duration 1200 plays for four beats

NOTE Part 0, pitch 72, duration 300 plays for one beat

REST duration 300 delays start of next note

NOTE Part 0, pitch 72, duration 300 plays for one beat

REST duration 300 delays start of next note

NOTE Part 0, pitch 72, duration 300 plays for one beat

REST duration 300 delays start of next note

NOTE Part 0, pitch 74, duration 300 plays for one beat

REST duration 300 delays start of next note

t 0

PITCH

60

74

72

t
300

t600 t
900

t1200

Notes

Rests

The General event is used to specify the types of Instruments or sounds used for the
subsequent Note events.

The Note event causes a specific Instrument, previously defined by a General event, to
play a note at a particular pitch and velocity for a specified duration of time.

Additional event types allow sequences to apply controller effects to Instruments, define
rests and modify Instrument Knob values. The entire sequence is closed with the End
Marker event. The End Marker event is currently limited to this “end of sequence”
identifier. Future functionality is intended and reserved.

In most cases, the standard note and Controller events (2 long words) will provide
sufficient functionality for an application’s requirements.

The Extended Note event provides greater pitch range and microtonal note control for
music that requires these capabilities.

QuickTime 2.0 SDK: Toolbox Changes

Page 170 December 21, 1994

The Extended Controller event expands the number of Instruments and controller values
an application can specify.

General Event

The General event is currently only used to inform QMA of a synthesizer to be use by
subsequent events. A subtype of 1 must be used. The Tune Player call,
TuneSetHeader(), receives the General event described below.

General Event (Variable Length)

x xx x x x

 up to 2^16-3 (65533) longwords of data

x x x x x x x x x x x x x x x x

event length.16 (head & tail identical)type.4

1 111 x x x x x x x x x x

part.12

x x

x x x x x x x x x x x x x x

subtype.14

x x x x x x x x x x x x x xx x1 1

event length.16 (head & tail identical)

General event type field 1st nibble value = 1111

Part Instrument index number

Event length head: number of words in event

Variable data words noteRequest structure below

Subtype noteRequest subtype must be 1

Event length tail: must be identical to head

Event tail 1st nibble of last word = 11XX

typedef struct {
short polyphony; /* Preferred number of voices */
ToneDescription tone;

} NoteRequest;

struct ToneDescription {
OSType synthesizerType;
Str31 synthesizerName;
Str31 instrumentName;
long instrumentNumber;
long gmNumber;

};

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 171

The Part number bit field is uniquely defined and set by the application. The unique Part
number is used in all subsequent events where the Part is referenced. For example, to play
a note the application will use this Part number to specify which Instrument will play the
note. The General event allows specifying Part numbers of up to 12 bits. The standard
note and controller events allow Part number of up to 5 bits in length.

The event length bit fields contained in the first and last words of the message are
identical and are used as a message format check and to move both forward and
backward through the message.

The variable length data field contains information unique to the type of General event.
There is currently only a note request General event. The note request structure used to
define the Instrument or Part and is contained within the variable length data field.

The subtype bit field indicates the type of General event. Currently there is only a note
request General event with a subtype of 1. If the subtype is any other value, the event is
ignored.

Macro calls are used to stuff the General event's head and tail long words, but not the
structures described above:

_StuffGeneralEvent(w1, w2, instrument, subType, length)

Macros are used to extract field values from the event's head and tail long words.

_XInstrument(m, l)
_GeneralSubtype(m, l)
_GeneralLength(m, l)

Note Event

The standard Note event (as compared with the Extended Note event) supports most
music requirements. The Note event allows up to 32 Instruments and supports the
traditional equal tempered scale.

Note

x x x x xx x

part.5 pitch.6 (32-95) velocity.7 duration.11type.3

0 10

Note Event type field 1st nibble value = 001X

Part Part index number

Pitch numeric value of 0-63, mapped as 32-95

Velocity 0-127, 0 = no audible response

Duration Units of time the note will occur

The Part field is the Instrument number initially used during the TuneSetHeader () call.

QuickTime 2.0 SDK: Toolbox Changes

Page 172 December 21, 1994

The pitch bit field allows a range from 0-63 which is mapped to the values 32-95
representing the traditional equal tempered scale. For example, the value 23 (mapped to
60) is middle C.

The velocity bit field allows a range from 0-127 and translates into the volume of the
specified Part. A velocity value of 0 produces silences.

The duration bit field defines the number of units of time during which the Part will play
the pitch. The units of time are defined by the media time scale or Tune Player time scale.

Macro call used to stuff the Note event's long word:

_StuffNoteEvent(x, instrument, pitch, volume, duration)

Macro calls used to extract fields from the Note event's long word:

_Instrument(x)
_NotePitch(x)
_NoteVelocity(x)
_NoteVolume(x)
_NoteDuration(x)

Note: The standard Note event does not allow microtonal values, pitches below 32 or
above 95. For these extended features use the Extended Note event.

Extended Note Event

The Extended Note event, compared to the standard Note event, provides a wider range
of pitch values (traditional equal tempered scale), microtonal values to define any pitch,
and extended note duration. The Extended Note event requires two long words; the
standard Note event requires only one.

Extended Note

x x

x x1 0

part.12

duration.22

type.4

0 1 x x01 0

pitch.15

0 x x x x x x x

velocity.7

Extended Note type field 1st nibble value = 1001

Instrument extended Instruments index

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 173

Pitch 0-127 standard pitch , 60 = middle C
0x01.00 .. 0x7f.00 allowing 256
microtonal divisions
between each notes in the
traditional equal tempered scale.

Note Duration extended note duration

Note Velocity 0-127 where 0 = silence

Event tail 1st nibble of last word = 10XX

The Part number bit field is the Instrument index assigned to the Part when initialized by
the General event call to TuneSetHeader.

If the pitch field is less than 128, then it is interpreted as an integer pitch where 60 is
middle C. If the pitch is 128 or greater, it is treated as a fixed pitch.

Microtonal pitch values are produced when the 15 bits of the pitch field are split into an
upper 7 bits to define the pitch and a lower 8 bits to define the pitch’s fractional portion.
This is represented by 0x01.00 to 0x7F.00: where 0x01-0x7F defines the standard equal
tempered note with the lower 8 bits defining 256 microtonal divisions between the
standard notes.

Macro call used to stuff the extended Note event's long words:

_StuffXNoteEvent(w1, w2, instrument, pitch, volume, duration)

Macro calls used to extract fields from the extended Note event's long words:

_XInstrument(m, l)
_XNotePitch(m, l)
_XNoteVelocity(m, 1)
_XNoteVolume(m, l)
_XNoteDuration(m, l)

Rest Event

The Rest event specifies the period of time, defined by either the media time scale or the
Tune Player time scale, until the next Note event in the sequence will be played.

Rest

0 0 0 0

duration.24

00 x

type.3

0 00 x

Rest Event type field 1st nibble value = 000X

Duration Duration in units defined by media time
scale or Tune Player time scale.

QuickTime 2.0 SDK: Toolbox Changes

Page 174 December 21, 1994

The duration bit field specifies the number of units of time until the next Note event is
played.

Macro call used to stuff the Rest event's long word:

_StuffRestEvent(x, duration)

Macro call used to extract the Rest event's duration value:

_RestDuration(x)

Note: It is important to understand that the Rest events are not used to cause silence in
a sequence but to define the start of subsequent Note events.

End Marker Event

The End Marker event has subtype and value fields containing zero.

End Marker

type.3

1 10 x x 0 0 0 0 0 0 0 0

subtype.8

x x0 0

value.16

End Marker event type field 1st nibble value = 011X

End Marker subtype 8 bit unsigned subtype = 0

End Marker value 16 bit signed value = 0

The End Marker subtype bit field must contain zeros.

The End Marker value bit field must contain zeros.

Macro call used to extract fields from the Rest event's long word:

_MarkerSubtype(x)
_MarkerValue(x)

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 175

Controller Event

The Controller event changes the value of a controller on a specified Part.

Controller

x x

part.5 controller.8type.3

1 00

value.16

Controller event type field 1st nibble value = 010X

Part Instrument index number

Controller controller to be applied to Instrument

Value 8.8 bit fixed point signed controller
specific value

Currently defined controller types:

kControllerModulationWheel 0-7F.FF max effect

kControllerVolume 0-7f.ff max effect (default)

kControllerPan 0=left, 1.00=right

kControllerPitchBend 0x0100 raises the pitch by one
semi-tone and 0xFF00 lowers by one
semi-tone.

The Part field is the Instrument number initially used during the TuneSetHeader () call.

The controller bit field is a value which describes the type of controller used by the Part.

The value bit field is specific to the selected controller.

Macro call used to stuff the controller event's long word:

_StuffControlEvent(x, instrument, control, value)

Macro calls used to extract fields from the controller event's long word:

_Instrument(x)
_ControlController(x)
_ControlValue(x)

QuickTime 2.0 SDK: Toolbox Changes

Page 176 December 21, 1994

Extended Controller Event

The Controller event changes the value of a controller on a specified Part. The Extended
Controller event allows Parts and controllers beyond the range of the standard Controller
event.

Extended Controller

x x x x x x x x x x x x x x

controller.14

type.4

1 001 x x x x x x x x x x

part.12

x x

x x x x x x x x x x x x x xx x

value.16

1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Extended Controller type field 1st nibble value = 1010

Part Instrument index for controller

Controller Controller for Instrument

Value Signed controller specific value

Event tail 1st nibble of last word = 10XX

The Part field is the Instrument number initially used during the TuneSetHeader () call.

The controller bit field is a value which describes the type of controller to be used by the
Part.

The value bit field is specific to the selected controller.

Macro call used to stuff the Extended Controller event's long words:

_StuffXControlEvent(w1, w2, instrument, control, value)

Macro calls used to extract fields from the Extended Controller event's long words:

_XInstrument(m, l)
_XControlController(m, l)
_XControlValue(m, l)

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 177

Knob Event

The Knob event is used to modify a particular parameter within a specified Part.

Knob

type.4

1 101

x x x x x x x x x x

knob.14

x x

x x x x x x x x x x x x x x x x

value MSB.16

01 x x x x x x x x x x x x x x x x

value LSB.16

x x x x x x x x x x

part.12

x x

x x

Knob event type field 1st nibble value = 1011

Part Instrument index number

Knob number Knob number within specified Part

Knob value (LSW (0-15)) lower 16 bits of Knob value

Knob value (MSW (16-31)) upper 16 bits of Knob value

Event tail 1st nibble of last word = 10XX

The Part field is the Instrument number initially used during the TuneSetHeader () call.

The 32 bit value composed of the lower 16 and upper 16 bit field values is used to alter
the specified Knob.

The Knob bit field specifies which Knob is effected by the value.

Macro call used to stuff the Knob event's long words:

_StuffKnobEvent(w1, w2, instrument, knob, value)

Macro calls used to extract fields from the Knob event's long words:

_XInstrument(m, l)
_KnobValue(m, l)
_KnobKnob(m, l)

QuickTime 2.0 SDK: Toolbox Changes

Page 178 December 21, 1994

COMPONENT INTERFACES

The Note Allocator, Tune Player and Music Component APIs are described in the
following sections.

Tune Player

The QuickTime Music Architecture Tune Player component is used to play sequences of
notes and Rest event data in a straightforward manner.

An application need only open an instance of the Tune Player component, call
TuneSetHeader() with the appropriate header data, and call TuneQueue() with the
desired sequence data.

The Tune Player will handle all timing necessary to play a sequence of notes and rests. In
addition, the Tune Player provides services to set the volume, and to stop and restart an
active sequence.

Note: It is often easier to use the QuickTime Toolbox to play a movie that contains
music data rather than utilizing the Tune Player directly.

The Tune Player component provides a layer of abstraction from the actual underlying
synthesizer components. This allows the application to select musical components at a
general level and allows the Tune Player to pick the Instrument that is both available and
best fits the application's request.

The Tune Player is also used to specify details about a tune sequence, modify time base
and time scale and get detailed information about actual Instrument selections.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 179

Sequence Data

TuneSetHeader

The TuneSetHeader () function prepares the Tune Player to accept
subsequent music sequences by defining one or more Parts used by
sequence Note events.

pascal ComponentResult TuneSetHeader
(TunePlayer tp,
unsigned long *header);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*header A pointer to a list of NoteRequest (General,
subtype1) events terminated by an end marker.

DESCRIPTION

The TuneSetHeader () function is the first QMA call in a music
sequence. The *header parameter points to one or more initialized
General events.

The General event, described above, is composed of a group of long words
and used to define the Parts available to subsequent Note events by the
TuneQueue() calls. The *header parameter must conclude with an End
Marker event.

Only one call to TuneSetHeader() is required. Each TuneSetHeader()
call resets all previous General events.

ERROR CODES

noteChannelNotAllocatedErr
tuneParseErr
NoteAllocator errors

QuickTime 2.0 SDK: Toolbox Changes

Page 180 December 21, 1994

TuneQueue

The TuneQueue() function places a sequence of events into the play queue
to be played.

pascal ComponentResult TuneQueue
(TunePlayer tp,
unsigned long *tune,
Fixed tuneRate,
unsigned long
tuneStartPosition,
unsigned long
tuneStopPosition,
unsigned long queueFlags,
TuneCallBackUPP callBackProc,
long refCon)

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*tune Pointer to array of events, terminated by an end
marker.

tuneRate Fixed point speed at which to play the sequence.
0x00010000 is the “normal” speed.

tuneStartPosition
Sequence starting time.

tuneStopPosition
Sequence ending time.

queueFlags

kTuneStartNow Start after buffer implied. Play even
if another sequence is playing.

kTuneDontClipNotes
Allow notes to finish durations
outside sample.

kTuneExcludeEdgeNotes
Don't play notes that start at end of
tune.

kTuneQuickStart
Leave all controllers where they are,
ignore start time.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 181

kTuneLoopUntil
Loop a queued tune if there's nothing
else in the queue.

callBackProc Points to your callback function.
Your callback function must have the following
form:

pascal void MyCallBackProc
(QTCallBack cb, long refcon);

See “Callback Event Functions” on page 2-364 for
details.

refcon Contains a reference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

DESCRIPTION

The tuneStartPosition and tuneStopPosition specify, in time units
numbered from zero for the beginning of the sequence, which part of the
queued sequence to play. To play all of it, pass 0 and 0xFFFFFFFF
respectively.

If queueFlags = kTuneStartNow, the sequence will immediately begin
playing. If there is a sequence currently playing, the newly queued
sequence will begin as soon as the active sequence ends.

ERROR CODES

tunePlayerFullErr
TimeBase errors

QuickTime 2.0 SDK: Toolbox Changes

Page 182 December 21, 1994

Sequence Control

The following functions provide control over the Tune Player's current music sequence.

TuneStop

The TuneStop function stops a currently playing sequence.

pascal ComponentResult TuneStop
(TunePlayer tp,
long stopFlags);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

stopFlags Must be zero.

ERROR CODES

None

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 183

TuneGetVolume

The TuneGetVolume function returns the volume associated with the entire
sequence.

pascal ComponentResult TuneGetVolume
(TunePlayer tp);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

DESCRIPTION

The TuneGetVolume function's return value holds a value from 0.0 to 1.0.
Individual Instruments within the sequence maintain their current volume
levels.

ERROR CODES

None

TuneSetVolume

The TuneSetVolume function sets the volume for the entire sequence.

pascal ComponentResult TuneSetVolume
(TunePlayer tp, Fixed volume);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

volume 16.16 Fixed.

DESCRIPTION

The TuneSetVolume function sets the volume level of the active sequence
to the value of the volume parameter ranging from 0.0 to 1.0.

Note: Individual Instruments within the sequence can maintain
independent volume levels.

ERROR CODES

NoteAllocator errors.

QuickTime 2.0 SDK: Toolbox Changes

Page 184 December 21, 1994

TuneGetTimeBase

The TuneGetTimeBase function returns the current sequence TimeBase.
(TimeBase calls are described in the QuickTime tool box (need vol name))

pascal ComponentResult TuneGetTimeBase
(TunePlayer tp, TimeBase *tb);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*tb An initialized TimeBase object.

DESCRIPTION

The TuneGetTimeBase function returns the current TimeBase value used
to control the sequence timing. The sequence may be controlled in several
ways through its timebase. The rate of playback may be changed, or the
TimeBase may be slaved to a different clock or TimeBase than the default
of real time.

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 185

TuneGetTimeScale

The TuneGetTimeScale function returns the current time scale, in units-
per-second, for the specified Tune Player instance.

pascal ComponentResult TuneGetTimeScale
(TunePlayer tp,
TimeScale *scale);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*scale An initialized TimeScale object.

ERROR CODES

none

TuneSetTimeScale

The TuneSetTimeScale function sets the time scale, in units-per-second,
used by for the specified Tune Player instance.

pascal ComponentResult TuneSetTimeScale
(TunePlayer tp,
TimeScale scale);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

scale The time scale value to be used.

DESCRIPTION

The TuneSetTimeScale function sets the time scale data used by the Tune
Player's sequence data when interpreting time based events.

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

Page 186 December 21, 1994

TuneInstant

The TuneInstant function plays the particular sequence events active at
the position specified by TunePosition.

pascal ComponentResult TuneInstant
(TunePlayer tp,
unsigned long *tune,
long tunePosition)

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*tune Pointer to tune sequence data.

tunePosition Position within tune sequence data.

DESCRIPTION

The TuneInstant function plays the notes that are “on” at the specified
point in the sequence. The notes are started then left playing upon return.
The notes may be silenced by calling TuneStop. This call is useful for
enabling user “scrubbing” on a sequence.

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 187

TunePreroll

The TunePreroll function attempts to lock down all Tune Player
resources necessary in preparation of playing Tune Player sequence data.

pascal ComponentResult TunePreroll
(TunePlayer tp);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

DESCRIPTION

The TunePreroll function attempts to reserve note channels for each Part
in the sequence.

ERROR CODES

NAPreroll errors

TuneUnroll

The TuneUnroll function releases any note channels resources that may
have been locked down by previous calls to TunePreRoll for this Tune
Player.

pascal ComponentResult TuneUnroll
(TunePlayer tp);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

ERROR CODES

NAUnroll errors
Channel Information

QuickTime 2.0 SDK: Toolbox Changes

Page 188 December 21, 1994

TuneGetIndexedNoteChannel

The TuneGetIndexedNoteChannel function returns information about the
actual Instrument associated with the index passed (refer to
TuneSetHeader).

pascal ComponentResult TuneGetIndexedNoteChannel
(TunePlayer tp, short i,
NoteChannel *nc);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

i Note channel index.

*nc Allocated initialized note channel.

DESCRIPTION

The Tune Player allocates note channels that best satisfy the requested
Instrument in the tune header. The application may use this call to
determine which music device was actually used for each note channel.

The index is defined by the application and used initially in the
TuneSetHeader () call in the General event. The resulting note channel
is used by the NAnoteChannelInfo () call allowing access to the actual
music component allocated by the Tune Player.

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 189

TuneGetStatus

The TuneGetStatus returns an initialized structure describing the state of
the Tune Player instance.

pascal ComponentResult TuneGetStatus
(TunePlayer tp,
TuneStatus *status);

tp You obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*status An initialized TuneStatus structure.

struct TuneStatus {
unsigned long *tune; / sequence starting event
unsigned long *tunePtr; / event currently playing
TimeValue time; / current rel to start
short queueCount; / number of seq queued
short queueSpots; / number of avail slots
TimeValue queueTime; / total time used / queue
long reserved[3];

};

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

Page 190 December 21, 1994

Note Allocator

To play a single note, an application must open an instance of the Note Allocator
component and call NANewNoteChannel() with a NoteRequest structure - typically to
request a standard Instrument within the General MIDI Instrument set (refer to the
Appendix). With an open note channel, the application can call NAPlayNote() while
specifying the note's pitch and velocity. The note will then be played and remain playing
until a second call to NAPlayNote() is made specifying the same pitch, but with a
velocity of zero. The velocity of zero will cause the note to stop.

There are calls for registering and unregistering a Music Component. During registration,
the connections for that device are specified (typically, the connections are the MIDI
Manager port and client IDs). There is also a call for querying the Note Allocator for
registered devices, so that an application can offer a selection of the existing devices to
the user.

Secondly, the Note Allocator provides an application level interface for requesting note
channels with particular attributes. A note channel is similar in some ways to a Sound
Manager sound channel; it needs to be created and disposed, and can receive various
commands.

To create a note channel, the client specifies the desired polyphony and the desired tone.
The Note Allocator will return a note channel that best satisfies the request. Procedural
interfaces are provided to play notes and alter controller settings on the note channel.

Typically, an application will access Music Components through the Note Allocator,
rather than directly.

Lastly, there is an “Instrument picker,” which provides a standard user-interface for
choosing an Instrument sound.

The Note Allocator is implemented as a component. To use it, the application must find
the component and open an instance of it. When that instance is closed, any note channels
created with that instance are disposed.

Note Channel Allocation and Use

Note channel allocation will create a note channel by selecting and allocating a Part,
within a synthesizer based on the tone requested. It also provides detailed information
about an allocated note channel, and allows configuration of, and access to, external
MIDI devices.

Note channel use will play individual notes, apply a specified controller to the allocated
note channel, provide access to Knobs to adjust a Part's characteristics, select an
Instrument based on a required tone, and modify or change the Instrument type on an
existing note channel.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 191

NANewNoteChannel

The NANewNoteChannel function requests a new note channel with the
qualities described in the noteRequest structure.

pascal ComponentResult NANewNoteChannel
(NoteAllocator na,
NoteRequest *noteRequest,
NoteChannel *outChannel);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*noteRequest Attributes of note request.

*outChannel New note channel handle.

struct NoteRequest {
long polyphony;
Fixed typicalPolyphony;
ToneDescription tone;

};

struct ToneDescription {
OSType synthesizerType;
Str31 synthesizerName;
Str31 instrumentName;
long instrumentNumber;
long gmNumber;

};

DESCRIPTION

The NANewNoteChannel function may return a value in outChannel, even
if noteChannel request cannot initially be satisfied.

The Note Channel may become valid at a later time, as other Note
Channels are released or other music components are registered. If an error
occurs the noteChannel will be initialized to NIL.

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

Page 192 December 21, 1994

NADisposeNoteChannel

The NADisposeNoteChannel function deletes the specified note channel.

pascal ComponentResult NADisposeNoteChannel
(NoteAllocator na,
NoteChannel noteChannel);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel to be disposed.

ERROR CODES

illegalNoteChannelErr

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 193

NAGetNoteChannelInfo

The NAGetNoteChannelInfo function returns the index of the Music
Component for the allocated channel.

pascal ComponentResult NAGetNoteChannelInfo
(NoteAllocator na,
NoteChannel noteChannel,
long *index,
long *part)

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel to get info on.

*index Music component index.

*part Music component Part pointer.

DESCRIPTION

TheNAGetNoteChannelInfo function allows direct access to the Music
Component allocated to the note channel by the Note Allocator. The index
will be invalid if music components are subsequently registered or
unregistered (refer to the General Event used to initially install the Music
Component).

ERROR CODES

illegalNoteChannelErr

QuickTime 2.0 SDK: Toolbox Changes

Page 194 December 21, 1994

NAUseDefaultMIDIInput

The NAUseDefaultMIDIInput function defines an entry point to service
external MIDI device events.

pascal ComponentResult NAUseDefaultMIDIInput
(NoteAllocator na,
MusicMIDIReadHookUPP readHook,
long refCon,
unsigned long flags)

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

readHook Process pointer for MIDI service.

refcon Contains a reference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

flags Must contain zero.

DESCRIPTION

The NAUseDefaultMIDIInput function specifies an application's
procedure to service external MIDI events. The specified application's
procedure call, defined by readHook, will be called when the external
default MIDI device has incoming MIDI data for the application.

ERROR CODES

midiManagerAbsentErr

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 195

NALoseDefaultMIDIInput

The NALoseDefaultMIDIInput function removes the external default
MIDI service procedure call, if previously defined by
NAUseDefaultMIDIInput.

pascal ComponentResult NALoseDefaultMIDIInput
(NoteAllocator na);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

ERROR CODES

-1 Returned if default MIDI was not in use.

QuickTime 2.0 SDK: Toolbox Changes

Page 196 December 21, 1994

NAPrerollNoteChannel

The NAPrerollNoteChannel function attempts to reallocate the note
channel, if it was invalid previously.

pascal ComponentResult NAPrerollNoteChannel
(NoteAllocator na,
NoteChannel noteChannel);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel to be re-allocated.

DESCRIPTION

The NAPrerollNoteChannel function attempts to reallocate the note
channel, if it was invalid previously. It could have been invalid if there
were no available voices on any registered music components when the
note channel was created.

ERROR CODES

illegalNoteChannelErr
noteChannelNotAllocatedErr
MusicComponent errors for FindTone, SetInstrumentNumber

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 197

NAUnrollNoteChannel

The NAUnrollNoteChannel function marks a note channel as available to
be stolen.

pascal ComponentResult NAUnrollNoteChannel
(NoteAllocator na,
NoteChannel noteChannel);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel to be unrolled.

DESCRIPTION

The MIDI channel it resides on, and the synthesizer used to play it, might
be stolen by another note channel. As an example, a document whose
window is moved to the background might courteously unroll its note
channels.

ERROR CODES

illegalNoteChannelErr

QuickTime 2.0 SDK: Toolbox Changes

Page 198 December 21, 1994

NAEngageNoteChannel

The NAEngageNoteChannel function enables or engages the specified note
channel.

pascal ComponentResult NAEngageNoteChannel
(NoteAllocator na,
NoteChannel noteChannel);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel to engage.

DESCRIPTION

The NAEngageNoteChannel function engages the specified note channel if
it is currently disengaged. Any difference in notes or controllers between
the engaged state and the disengaged state are sent to the music
component. A note channel is engaged by default.

ERROR CODES

illegalNoteChannelErr

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 199

NADisengageNoteChannel

The NADisengageNoteChannel function causes a note channel to ignore
incoming note and controller commands.

pascal ComponentResult NADisengageNoteChannel
(NoteAllocator na,
NoteChannel noteChannel,
long silenceNotes);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel to disengage.

silenceNotes Silences currently playing notes.
If silenceNotes is 1, then any notes currently
playing are silenced.

DESCRIPTION

The NADisengageNoteChannel function is useful for fast-forwarding or
rewinding to a specific spot in a score.

While the note channel is disengaged, the state of notes and controllers is
still monitored, so that when the channel is engaged, the notes and
controllers will be playing as if the note channel had been continuously
engaged.

ERROR CODES

illegalNoteChannelErr

QuickTime 2.0 SDK: Toolbox Changes

Page 200 December 21, 1994

NAResetNoteChannel

The NAResetNoteChannel function turns “off” all currently “on” notes on
the note channel, and resets all controllers to their default values.

pascal ComponentResult NAResetNoteChannel
(NoteAllocator na,
NoteChannel noteChannel);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Specified note channel to reset.

DESCRIPTION

The NAResetNoteChannel function resets the specified note channel by
turning “off” any note currently playing. Any controller applied to the note
channel is also reset to its default state. The effects of the
NAResetNoteChannel call are propagated down to the allocated Part
within the appropriate Music Component.

ERROR CODES

illegalNoteChannelErr
errors from MusicResetPart()

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 201

NASetNoteChannelVolume

The NASetNoteChannelVolume function sets the volume on the specified
note channel.

pascal ComponentResult NASetNoteChannelVolume
(NoteAllocator na,
NoteChannel noteChannel,
Fixed volume);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Specified note channel to reset.

volume 16.16 volume value.

DESCRIPTION

The NASetNoteChannelVolume function sets the volume for the entire
note channel, which is different than a controller 7 (volume controller)
setting.

Both volume settings allow fractional values of 0.0 to 1.0. Each value will
modify the other. Example: controller set to .5 and
NASetNoteChannelVolume of .5 would result in a .25 volume level.

ERROR CODES

illegalNoteChannelErr

QuickTime 2.0 SDK: Toolbox Changes

Page 202 December 21, 1994

NAPlayNote

The NAPlayNote function plays a musical note on the specified note
channel with a particular pitch and velocity.

pascal ComponentResult NAPlayNote
(NoteAllocator na,
NoteChannel noteChannel,
long pitch, long velocity);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Specific note channel to play note.

pitch 0-127 where 60 is middle C.
256 (0x1.00) to 32767 (0x7f.00) are fixed PT
values.

velocity Value of 0 = silence.

DESCRIPTION

The NAPlayNote function plays a specific note. If the pitch is a number
from 0 to 127, then it is the MIDI pitch, where 60 is middle-C. If the pitch
is a positive number above 65535, then the value is a fixed point pitch
value. Thus, microtonal values may be specified. The range 256 (0x01.00)
through 32767 (0x7f.00), and all negative values, are not defined, and
should not be used.

The velocity refers to how hard the key was struck (if performed on a
keyboard-instrument), typically this translates directly to volume, but on
many synthesizers this also subtly alters the timbre of the tone.

ERROR CODES

illegalNoteChannelErr

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 203

NASetController

The NASetController function changes the specified controller on the
note channel to a particular value.

pascal ComponentResult NASetController
(NoteAllocator na, NoteChannel
noteChannel,
short controllerNumber, short
controllerValue);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel on which to change controller.

controllerNumber
Which controller.

controllerValue
Value for controller.
All controllers are reserved for use by Apple.

enum MusicControllers {
kControllerModulationWheel = 1,
kControllerBreath = 2,
kControllerFoot = 4,
kControllerPortamentoTime = 5,
kControllerVolume = 7,
kControllerBalance = 8,
kControllerPan = 10,
kControllerExpression = 11,
kControllerPitchBend = 32, /* Apple unique */
kControllerAfterTouch = 33, /* Apple unique */
kControllerSustain = 64,
kControllerPortamento = 65,
kControllerSostenuto = 66,
kControllerSoftPedal = 67,
kControllerReverb = 91,
kControllerTremolo = 92,
kControllerChorus = 93,
kControllerCeleste = 94,
kControllerPhaser = 95

};

QuickTime 2.0 SDK: Toolbox Changes

Page 204 December 21, 1994

ERROR CODES

illegalNoteChannelErr
illegalControllerErr

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 205

NASetKnob

The NASetKnob function sets a particular Knob, on the specified note
channel, to a particular value.

pascal ComponentResult NASetKnob
(NoteAllocator na,
NoteChannel noteChannel,
long knobNumber,
long knobValue)

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel on which to change knob.

knobNumber Knob to be set.

knobValue Knob value to be set.

ERROR CODES

illegalNoteChannelErr
illegalKnobErr
illegalKnobValueErr

QuickTime 2.0 SDK: Toolbox Changes

Page 206 December 21, 1994

NAFindNoteChannelTone

The NAFindNoteChannelTone function locates the best fitting Instrument
number on the note channel for the toneDescription requested.

pascal ComponentResult NAFindNoteChannelTone
(NoteAllocator na,
NoteChannel noteChannel,
ToneDescription *td,
long *instrumentNumber);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel to search for fit.

*td Description for Instrument fit.

*instrumentNumber
Instrument index of fit.

struct ToneDescription {
OSType synthesizerType;
Str31 synthesizerName;
Str31 instrumentName;
long instrumentNumber;
long gmNumber;

};

ERROR CODES

illegalNoteChannelErr
illegalControllerErr

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 207

NASetNoteChannelInstrument

The NASetNoteChannelInstrument function changes the Instrument
setting on the note channel to the Instrument requested.

pascal ComponentResult NASetNoteChannelInstrument
(NoteAllocator na,
NoteChannel noteChannel,
short instrumentNumber);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

noteChannel Note channel to apply Instrument.

instrumentNumber
Instrument number to apply.

ERROR CODES

illegalNoteChannelErr
Errors from MusicSetInstrumentNumber()

QuickTime 2.0 SDK: Toolbox Changes

Page 208 December 21, 1994

Miscellaneous Interface Tools

The miscellaneous interface tools provide a set of user interface dialogs to select
individual Instruments, select Instruments within an arrangement and to provide
copyright information for a particular Instrument.

NAPickInstrument

The NAPickInstrument function presents a user interface for picking an
Instrument.

pascal ComponentResult NAPickInstrument
(NoteAllocator na,
ModalFilterUPP filterProc,
StringPtr prompt,
ToneDescription *sd,
unsigned long flags,
long refCon, Ptr *reserved1,
long *reserved2)

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

filterProc Standard modal filter upp*.

prompt Dialog box prompt “New Instrument..”.

*sd Tone description initialized by pick.

flags Dialog flags to limit user options. Refer to list
below.

kPickDontMix Don't show Drum.

kPickSameSynth Don't allow options to other synths.

refcon Contains a reference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

*reserved1 Must contained zero.

*reserved2 Must contained zero.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 209

struct ToneDescription {
OSType synthesizerType;
Str31 synthesizerName;
Str31 instrumentName;
long instrumentNumber;
long gmNumber;

};

DESCRIPTION

The two flag values limit user options displayed within the dialog box.
kPickDontMix will not display a mix types of synthesizer types. For
example, if the current synthesizer is a Drum, the kPickDontMix flag will
display only available Drum Parts.

The kPickSameSynth will allow selections only within the current
synthesizer.

ERROR CODES

-1 Problem opening dialog.

QuickTime 2.0 SDK: Toolbox Changes

Page 210 December 21, 1994

NAStuffToneDescription

The NAStuffToneDescription function initializes the tone description
structure with the details of the note channel specified by the gmNumber.

pascal ComponentResult NAStuffToneDescription
(NoteAllocator na,
long gmNumber,
ToneDescription *td)

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

gmNumber Instrument number.

*td Tone description to be stuffed.

ERROR CODES

Errors from MusicGetInstrumentNames and calls to General MIDI Music
Component.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 211

NAPickArrangement

The NAPickArrangement function displays a dialog to allow Instrument
selection.

pascal ComponentResult NAPickArrangement
(NoteAllocator na,
ModalFilterUPP filterProc,
StringPtr prompt,
long partCount,
NoteRequest *noteRequestList,
Track t,
StringPtr songName)

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

filterProc Standard modal filter upp*.

prompt Dialog box prompt.

partCount Instrument selection count.

*noteRequestList
List of Instruments for selection.

t Arrangement track number.

songName Human readable string name displayed in dialog.

struct NoteRequest {
long polyphony;
Fixed typicalPolyphony;
ToneDescription tone;

};

ERROR CODES

-1 Problem opening dialog.

QuickTime 2.0 SDK: Toolbox Changes

Page 212 December 21, 1994

NACopyrightDialog

The NACopyrightDialog function displays a copyright dialog with
information specific to a music device.

pascal ComponentResult NACopyrightDialog
(NoteAllocator na,
PicHandle p, StringPtr author,
StringPtr copyright,
StringPtr other,
StringPtr title,
ModalFilterUPP filterProc,
long refCon)

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

p Picture image resource handle for dialog.

author Author information.

copyright Copyright information.

other Any additional information.

title Title information.

filterProc Standard modal filter upp*.

refcon Contains a reference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

ERROR CODES

-1 Problem opening dialog.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 213

System Configuration

System configuration provide calls which create and maintain a database of Music
Components, save configuration information in a “Music Preferences” file and establish
connections to external MIDI devices.

NARegisterMusicDevice

The NARegisterMusicDevice function registers a music component with
the Note Allocator.

pascal ComponentResult NARegisterMusicDevice
(NoteAllocator na,
unsigned long synthType,
Str31 name,
SynthesizerConnections *connections);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

synthType Subtype of the music component.

name Human readable synthesizer name.

*connections MIDI connection structure.

struct SynthesizerConnections {
OSType clientID;
OSType inputPortID;
OSType outputPortID;
long MIDIChannel;
long flags;
long reserved[3];

};

DESCRIPTION

The synthType is the same as the music component’s subtype. The name
is a means of distinguishing multiple instances of the same type of device.
The name parameter is also a human readable version of the synthesizer
name. If the synthName is not passed, the name defaults to the name of the
music component type. The name will also appear in the Instrument picker
dialog.

The connections parameter specifies the hardware connections to the
device.

QuickTime 2.0 SDK: Toolbox Changes

Page 214 December 21, 1994

The clientID, inputPortID and outputPortID are MIDI manager
identifiers. The MIDIChannel is the MIDI system channel value. The
flags and reserved values must be zero.

ERROR CODES

SynthesizerErr If too many synths registered.

midiManagerAbsentErr If MIDI not available.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 215

NAUnregisterMusicDevice

The NAUnregisterMusicDevice function removes a previously registered
music component from the Note Allocator.

pascal ComponentResult NAUnregisterMusicDevice
(NoteAllocator na,
unsigned long synthType,
SynthesizerConnections *connections);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

synthType Synthesizer type string.

*connections MIDI connection structure.

ERROR CODES

NoteAllocator errors from NAResetNoteChannel

errors from CloseComponent

QuickTime 2.0 SDK: Toolbox Changes

Page 216 December 21, 1994

NAGetRegisteredMusicDevice

The NAGetRegisteredMusicDevice function returns specifics about
music components registered to the specified Note Allocator instance.

pascal ComponentResult NAGetRegisteredMusicDevice
(NoteAllocator na, short index,
unsigned long *synthType, Str31 name,
SynthesizerConnections *connections,
MusicComponent *mc);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

index 0 or 1 - max music components.

*synthType Synthesizer type string.

name Human readable synthesizer name.

*connections MIDI connection structure.

*mc Music component instance.

DESCRIPTION

An index value of zero will cause NAGetRegisteredMusicDevice to
return a total count of registered music components. An index value of 1
through the maximum number of music components will return
information about the music component specified by the index.

The music component information returned by this call provides direct
access to the particular music component. Refer to the function calls in the
Music Component Interface section for additional details.

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 217

NAGetDefaultMIDIInput

The NASGetDefaultMIDIInput function is used to obtain external MIDI
connection information.

pascal ComponentResult NAGetDefaultMIDIInput
(NoteAllocator na,
SynthesizerConnections *sc);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*sc MIDI connection structure.

struct SynthesizerConnections {
OSType clientID;
OSType inputPortID;
OSType outputPortID;
long MIDIChannel;
long flags;
long reserved[3];

};

DESCRIPTION

The NASGetDefaultMIDIInput function returns an initialized
SynthesizerConnections structure containing information about any
default external MIDI device attached to the system. The external MIDI
device provides note input directly to the Note Allocator.

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

Page 218 December 21, 1994

NASetDefaultMIDIInput

The NASetDefaultMIDIInput function initializes an external MIDI
device used to receive external note input.

pascal ComponentResult NASetDefaultMIDIInput
(NoteAllocator na,
SynthesizerConnections *sc);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*sc MIDI connection structure.

DESCRIPTION

The SynthesizerConnections structure members clientID,
inputPortID and outputPortID (described in above) are MIDI
manager identifiers. The MIDIChannel is the MIDI system channel value.
The flags and reserved values must be zero.

ERROR CODES

none

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 219

NASaveMusicConfiguration

The NASaveMusicConfiguration saves the current list of registered
devices to a file.

pascal ComponentResult NASaveMusicConfiguration
(NoteAllocator na);

na You obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

DESCRIPTION

The NASaveMusicConfiguration saves the current list of registered
devices to a file. This file is read whenever a Note Allocator connection is
opened, restoring the previously configured list of devices. The file is
called “Music Preferences” and is placed in the “Preferences” subfolder of
the system folder.

ERROR CODES

-1 Returned if problem opening or creating the Music
Preferences file in the system folder.

QuickTime 2.0 SDK: Toolbox Changes

Page 220 December 21, 1994

Music Component Interface

The Music Components are not usually called directly unless an application is required to
access the music device directly. This is achieved by first allocating a noteChannel. By
using NAGetNoteChannelInfo() and NAGetRegisteredMusicDevice(), the application
can locate the specific music component and Part number.

This layer is of interest to application developers who wish to access low-level
functionality of synthesizers and for developers of synthesizers (nubus cards, MIDI
devices or software algorithms) who wish to make the capabilities of their synthesizers
available to QuickTime.

Synthesizer Access

Music Component synthesizer access provides services to obtain specific information
about the current synthesizer and obtain a best Instrument fit for a requested tone from
the available Instruments within the synthesizer. The synthesizer access can also play a
note with a specified pitch, volume and duration, get and set a particular synthesizer
Knob, obtain default synthesizer Knob information and get and set external MIDI
procedure name entry points.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 221

MusicGetDescription

The MusicGetDescription function returns a structure describing the
synthesizer controlled by the Music Component device.

pascal ComponentResult MusicGetDescription
(MusicComponent mc,
SynthesizerDescription *sd);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

*sd Pointer to synthesizer description.

struct SynthesizerDescription {
OSType type;
Str31 name;
unsigned long flags;
unsigned long voiceCount;
unsigned long partCount;
unsigned long instrumentCount;
unsigned long modifiableInstrumentCount;
unsigned long channelMask;
unsigned long drumPartCount;
unsigned long drumCount;
unsigned long modifiableDrumCount;
unsigned long drumChannelMask;
unsigned long outputCount;
unsigned long latency;
unsigned long controllers[4];
unsigned long gmInstruments[4];
unsigned long gmDrums[4];

};

DESCRIPTION

The MusicGetDescription function returns a structure describing the
specified music component device. The SynthesizerDescription record
is filled out by the particular music component.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

Page 222 December 21, 1994

MusicFindTone

The MusicFindTone function returns an Instrument number based on a
tone description.

pascal ComponentResult MusicFindTone
(MusicComponent mc,
ToneDescription *td,
long *instrumentNumber,
long *fit);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

*td Pointer to a tone description.

*instrumentNumber
Instrument number of match.

*fit Returns the fit quality.

kInstrumentMatchSynthesizerType

The requested synthesizer type was
found.

kInstrumentMatchSynthesizerName

The particular instance of the
synthesizer requested was found.

kInstrumentMatchName

The toneDescription's Instrument
name matched an appropriate
Instrument on the synthesizer.

kInstrumentMatchNumber

The toneDescription's Instrument
number matched an appropriate
Instrument on the synthesizer.

kInstrumentMatchGMNumber

The General MIDI equivalent was
used to find an appropriate
Instrument on the synthesizer.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 223

typedef struct
{

OSType synthesizerType; /* component subtype */
Str31 synthesizerName; /* instants name of synth */
Str31 instrumentName; /* human use name */
long instrumentNumber; /* instrument # if synth-type

matches */
long gmNumber; /* Best matching general MIDI

number */
} ToneDescription;

DESCRIPTION

The MusicFindTone function returns the best-matching Instrument
number for this device. How close a match was attained is returned in
“fit”.

The Music component should search in the following order:

1 If the synthesizer is a general MIDI device, use the gmNumber.

2 If synthesizerType matches, first try to match instrumentName,
else try instrumentNumber. Failing that, try the gmNumber.

3 If synthesizerType doesn’t match, try the instrumentName, then the
Instrument number.

If none of these rules apply, or the fields are “blank” (zero for the type or
numeric fields, or zero-length for the strings) then the call return
Instrument 1 and a fit value of zero. The synthesizerName field may be
ignored by the component; it is used by the Note Allocator when deciding
which music device to use.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalInstrumentErr

The Instrument number is out of valid range.

QuickTime 2.0 SDK: Toolbox Changes

Page 224 December 21, 1994

MusicPlayNote

The MusicPlayNote function plays a specific note on the specified Part
characterized by its pitch and velocity.

pascal ComponentResult MusicPlayNote
(MusicComponent mc, long part,
long pitch,
long velocity);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

part Part number to apply controller.

pitch 0-127 MIDI pitch. > 65535 microtonal.

velocity 0-127 where 0 = silence.

DESCRIPTION

The MusicPlayNote function is used to play notes with their pitch, if
MIDI, specified by a number from 0 to 127, if a MIDI pitch, where 60 is
middle-C. If the pitch is a positive number above 65535, then the value is
a fixed point pitch value. Thus, microtonal values may be specified. The
range 256 (0x01.00) through 32767 (0x7f.00), and all negative values, are
not defined, and should not be used.

Velocity refers to how hard the key is struck (if performed on a keyboard-
Instrument), typically this translates directly to volume, but on many
synthesizers this also subtly alters the timbre of the tone.

The current note continues to play until a MusicPlayNote() with the same
pitch and velocity of 0 turns the note off.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 225

MusicGetKnob

The MusicGetKnob function returns the value of the specified synthesizer
Knob.

pascal ComponentResult MusicGetKnob
(MusicComponent mc,
long knobNumber);

mc Music component instance.

knobNumber Instrument Knob number.

DESCRIPTION

The Knob controls an aspect of the entire synthesizer, not limited or
specific to a Part or Instrument within the synthesizer.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalKnobErr A Knob number outside the valid range
(1..knobCount) has been.

illegalKnobValueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

MusicSetKnob

The MusicSetKnob function modifies the value of the specified
synthesizer Knob.

pascal ComponentResult MusicSetKnob
(MusicComponent mc,
long knobNumber,
long knobValue);

QuickTime 2.0 SDK: Toolbox Changes

Page 226 December 21, 1994

mc Music component instance.

knobNumber Instrument Knob number.

knobValue Value for specified Knob.

DESCRIPTION

The Knob controls an aspect of the entire synthesizer, not limited or
specific to a Part or Instrument within the synthesizer.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalKnobErr A Knob number outside the valid range
(1..knobCount) has been.

illegalKnobValueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 227

MusicGetKnobDescription

The MusicGetKnobDescription function returns an initialized
KnobDescription structure pointer for a synthesizer's Knob. The Knob
controls an aspect of the entire synthesizer, not limited or specific to a Part
or Instrument within the synthesizer.

 pascal ComponentResult MusicGetKnobDescription
(MusicComponent mc,
long knobNumber,
KnobDescription *mkd);

mc Music component instance.

knobNumber Particular Knob.

*mkd Pointer to KnobDescription.

DESCRIPTION

The MusicGetKnobDescription function will return an initialized
KnobDescription structure pointer. This structure will provide the
application default values associated with the particular Knob. This call
allows the Knob to be reset to some known, usable value.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalKnobErr A Knob number outside the valid range
(1..knobCount) has been.

illegalKnobValueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

QuickTime 2.0 SDK: Toolbox Changes

Page 228 December 21, 1994

MusicGetMIDIProc

The MusicGetMIDIProc function returns the currently active function call
used to process external MIDI notes.

pascal ComponentResult MusicGetMIDIProc
(MusicComponent mc,
MusicMIDISendProcPtr *MIDISendProc,
long *refCon);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

*MIDISendProc Pointer into MIDI serial port call.

*refcon Contains a reference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

DESCRIPTION

The MusicGetMIDIProc function returns the active *MIDISendProc
pointer. This pointer provides a function call initialized by QMA, and
provides access to an external MIDI port for serial communications. If the
port is uninitialized *MIDISendProc will return zero.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalChannelErr A MIDI channel value outside the valid range (1..16
or 0) has been passed.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 229

MusicSetMIDIProc

The MusicSetMIDIProc function initializes the MIDISendProc value
specifying the procedure entry point for external MIDI serial
communications.

pascal ComponentResult MusicSetMIDIProc
(MusicComponent mc,
MusicMIDISendProcPtr MIDISendProc,
long refCon);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

MIDISendProc MIDI serial port call pointer.

refcon Contains a reference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalChannelErr
A MIDI channel value outside the valid
range (1..16 or 0) has been passed.

QuickTime 2.0 SDK: Toolbox Changes

Page 230 December 21, 1994

Instrument Control

Music Component Instrument access provides services that return or initialize a specified
Part to a particular Instrument, return an organized group of Instrument or Drum names
available, return the Instrument number assigned to a specified Part. In addition, the
Instrument access can store modified Parts into the modifiable Instrument store, get
detailed information about each available Instrument, and provide detailed default
settings for an Instrument's Knob settings.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 231

MusicGetInstrument

The MusicGetInstrument returns a handle containing an initialized
InstrumentData structure for the specified Part.

pascal ComponentResult MusicGetInstrument
(MusicComponent mc, long part,
InstrumentDataHandle *iH);

mc Music component instance.

part Instrument Part number.

*iH Data handle initialized by call.

struct InstrumentData {
ToneDescription tone;
long knobCount;
long knob[1];

};

struct ToneDescription {
OSType synthesizerType;
Str31 synthesizerName;
Str31 instrumentName;
long instrumentNumber;
long gmNumber;

};

Note: This handle is allocated in the caller’s heap, and must be disposed by the caller.

DESCRIPTION

Instruments can be stored either to disk or in the synthesizer's User
Modifiable Instrument range.

Instrument data saved to disk, for example, and restored to the synthesizer
at a later time (MusicSetInstrument) provides a means to modify and
restore Instruments between sessions.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

QuickTime 2.0 SDK: Toolbox Changes

Page 232 December 21, 1994

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

MusicSetInstrument

The MusicSetInstrument function initializes the specified Part on the
synthesizer with the passed instrument data handle.

pascal ComponentResult MusicSetInstrument
(MusicComponent mc,long part,
InstrumentDataHandle iH);

mc Music component instance.

part Instrument Part number.

iH Instrument data structure.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

MusicGetInstrumentNumber

The MusicGetInstrumentNumber function returns the Instrument number
currently assigned to that Part.

pascal ComponentResult MusicGetInstrumentNumber
(MusicComponent mc,
long part);

mc Music component instance.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 233

part Part number containing Instrument.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

Page 234 December 21, 1994

MusicSetInstrumentNumber

The MusicSetInstrumentNumber function assigns a particular
Instrument, within the specified music component, to the specified Part.
The resulting Instrument number may be determined with the
MusicFindTone().

pascal ComponentResult MusicSetInstrumentNumber
(MusicComponent mc, long part,
long instrumentNumber);

mc Music component instance.

part Part number to be set.

instrumentNumber
Instrument number used by Part.

DESCRIPTION

The Instrument number, resulting from the MusicSetInstrumentNumber
function call, can be determined with MusicFindTone() call.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalInstrumentErr

The Instrument number is out of valid range.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 235

MusicStoreInstrument

The MusicStoreInstrument puts whatever Instrument is on the specified
Part into the synthesizer’s Instrument store.

pascal ComponentResult MusicStoreInstrument
(MusicComponent mc,long part,
long instrumentNumber);

mc Music component instance.

part Part to store Instrument.

instrumentNumber
Instrument number to be stored in Part.

DESCRIPTION

The InstrumentNumber must be between 1 and the synthesizer’s
modifiableInstrumentCount, as defined by the synthesizer description.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalInstrumentErr

The Instrument number is out of valid range.

QuickTime 2.0 SDK: Toolbox Changes

Page 236 December 21, 1994

MusicGetInstrumentNames

The MusicGetInstrumentNames function returns a list of Instrument
names known by the specified Music Component.

pascal ComponentResult MusicGetInstrumentNames
(MusicComponent mc,
long modifiableInstruments,
Handle *instrumentNames,
Handle *instrumentCategoryLasts,
Handle *instrumentCategoryNames)

mc Music component instance returned by
NAGetRegisteredMusicDevice().

modifiableInstruments

Instrument count to return. A value of 0 will return
only a fixed Instrument count. A value of 1 will
return the fixed and user modifiable Instrument
count.

*instrumentNames
The requested list of Instrument names formatted as
a short followed by packed strings.

*instrumentCategoryLasts

A handle containing a group of short integers, the
first of which contains the number of shorts to
follow. Examples: {0},{1,20},{5,1,2,3,4,5}.

*instrumentCategoryNames

Instrument category names formatted as a short
followed by a list of names.

DESCRIPTION

The MusicGetInstrumentNames function returns a list of Instruments,
organized in groups. The Instrument list provides application
configuration information about the specified Music Component. The
information, and its format, is intended for application dialog support.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 237

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

Page 238 December 21, 1994

MusicGetDrumNames

The MusicGetDrumNames function returns a list of Drum names for the
music component. Unlike MusicGetInstrumentNames, which returns
names grouped in categories, MusicGetDrumNames returns a single list
containing all available Drum names.

pascal ComponentResult MusicGetDrumNames
(MusicComponent mc,
long modifiableInstruments,
Handle *instrumentNumbers,
Handle *instrumentNames)

mc Music component instance returned by
NAGetRegisteredMusicDevice().

modifiableInstruments
Maximum Drum count to return.

*instrumentNumbers
Handle to Instrument number.

*instrumentNames
Handle to Instrument names.

DESCRIPTION

The MusicGetDrumNames function returns a single list of names. This is
unlike the MusicGetInstrumentNames call which returns a set of named
groups.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 239

MusicGetInstrumentAboutInfo

The MusicGetInstrumentAboutInfo function fills out a structure
providing information about a specific Part within a particular Instrument.
This is intended to provide copyright information about the synthesizer or
its sounds, and may be seen by the user by clicking the “About...” button
in the synthesizer picker.

pascal ComponentResult MusicGetInstrumentAboutInfo
(MusicComponent mc,long part,
InstrumentAboutInfo *iai);

mc Music component instance.

part Part number to return information.

*iai Pointer to instrumentAboutInfo.

struct InstrumentAboutInfo {
PicHandle p;
Str255 author;
Str255 copyright;
Str255 other;

};

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

Page 240 December 21, 1994

MusicGetInstrumentKnobDescription

The MusicGetInstrumentKnobDescription function returns an
initialized KnobDescription structure pointer for the specified Instrument
Knob.

pascal ComponentResult MusicGetInstrumentKnobDescription
(MusicComponent mc,
long knobNumber,
KnobDescription *mkd);

mc Music component instance.

knobNumber Knob number to be retrieved.

*mkd Knob description structure pointer.

struct KnobDescription {
Str31 name;
long lowValue;
long highValue;
long defaultValue;
long flags;

};

DESCRIPTION

The MusicGetInstrumentKnobDescription function's
KnobDescription structure provides the application with low, high and
default values for the specified Knob. Setting every Knob to its default
value will produce a simple generic sound.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalKnobErr A Knob number outside the valid range
(1..knobCount) has been.

illegalKnobValueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 241

MusicGetDrumKnobDescription

The MusicGetDrumKnobDescription function returns a pointer to an
initialized KnobDescription structure for the specified Drum Knob.

pascal ComponentResult MusicGetDrumKnobDescription
(MusicComponent mc,
long knobNumber,
KnobDescription *mkd);

mc Music component instance.

knobNumber Drum's Knob number.

*mkd Knob description structure.

DESCRIPTION

The MusicGetDrumKnobDescription returns an initialized Knob structure
providing the application with default values for the specified Knob. This
call allows the specific Knob values, if necessary, to be restored (reset) to
a known usable state.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalKnobErr A Knob number outside the valid range
(1..knobCount) has been.

illegalKnobValueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

QuickTime 2.0 SDK: Toolbox Changes

Page 242 December 21, 1994

Part Access

Music Component Part access provides services to get and set synthesizer Part
parameters, get and set a Part's human interface name, get and set the value for a
particular Part Knob, and to reset a specified Part to a default state and to get and apply
controller values to individual Parts to modify their characteristics.

MusicGetPart

The MusicGetPart function returns the MIDI channel and maximum
polyphony for a particular Part in the *MIDIChannel and *polyphony
parameters.

pascal ComponentResult MusicGetPart
(MusicComponent mc, long part,
long *MIDIChannel,
long *polyphony)

mc The music component.

part The music component Part requested.

*MIDIChannel Pointer to long for MIDIChannel result.

*polyphony Pointer to long for polyphony result.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalChannelErr A MIDI channel value outside the valid range (1..16
or 0) has been passed.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 243

MusicSetPart

The MusicSetPart function sets the MIDI channel and maximum
polyphony for the specified Part in the MIDIChannel and polyphony
parameters.

pascal ComponentResult MusicSetPart
(MusicComponent mc, long part,
long MIDIChannel,
long polyphony)

mc Music component instance.

part Part to be set.

MIDIChannel The MIDI channel to be set to.

polyphony The maximum voices or polyphony.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

illegalVoiceAllocationErr

The Part request has exceeded the Parts available
for the specific synthesizer.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalChannelErr A MIDI channel value outside the valid range (1..16
or 0) has been passed.

QuickTime 2.0 SDK: Toolbox Changes

Page 244 December 21, 1994

MusicGetPartName

The MusicGetPartName function returns the string name of the requested
Part number.

pascal ComponentResult MusicGetPartName
(MusicComponent mc,long part,
Str31 name);

mc Music component instance.

part Music Part to get name.

name Returned music Part name.

DESCRIPTION

The name string is a human readable name used by selection dialogs or
configuration information.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

MusicSetPartName

The MusicSetPartName function initializes the name portion of the
specified Part number.

pascal ComponentResult MusicSetPartName
(MusicComponent mc,long part,
Str31 name);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

part Music Part to apply name.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 245

name Name to apply to music Part.

DESCRIPTION

The name string is a human readable name used by selection dialogs or
configuration information.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

MusicGetPartKnob

The MusicGetPartKnob function gets the current value of the specified
Part Knob.

pascal ComponentResult MusicGetPartKnob
(MusicComponent mc,long part,
long knobNumber);

mc Music component instance.

part The Part number.

knobNumber The Part Knob number.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

Page 246 December 21, 1994

illegalKnobErr A Knob number outside the valid range
(1..knobCount) has been.

illegalKnobValueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 247

MusicSetPartKnob

The MusicSetPartKnob function sets the specified Part Knob to the value
of KnobValue.

pascal ComponentResult MusicSetPartKnob
(MusicComponent mc,long part,
long knobNumber,
long knobValue);

mc Music component instance.

part The Part number.

knobNumber The Part Knob number to be set.

knobValue The new Part Knob value.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalKnobErr A Knob number outside the valid range
(1..knobCount) has been.

illegalKnobValueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

QuickTime 2.0 SDK: Toolbox Changes

Page 248 December 21, 1994

MusicResetPart

The MusicResetPart function silences all sounds on the specified Part,
and resets all controllers to their default values. The default value for all
controllers is 0 (zero), except volume. Volume is set to its maximum
32767 or, in hexadecimal, 7F.FF.

pascal ComponentResult MusicResetPart
(MusicComponent mc,
long Part);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

part Part number to apply controller.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

MusicGetController

The MusicGetController function returns the value of the specified
controller on the specified Part.

pascal ComponentResult MusicGetController
(MusicComponent mc, long part,
long controllerNumber);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

part Part number to apply controller.

contollerNumber Controller number.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 249

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegalControllerErr

The controller number is either out of the legal
range 1 through 128, or is not recognized by this
particular component.

QuickTime 2.0 SDK: Toolbox Changes

Page 250 December 21, 1994

MusicSetController

The MusicSetController function initializes the value of the specified
controller on the specified Part.

pascal ComponentResult MusicSetController
(MusicComponent mc, long part,
long controllerNumber,
long controllerValue);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

part Part number to apply controller.

contollerNumber
Controller number.

controllerValue
Value for controller.

Controllers 0 through 127 correspond roughly to the
standard MIDI controllers. The value is always a
signed 16 bit number where the lower 8 bits are
fractional. The range is -7F.FF through +7F.FF, or
-32767 to 32767, or 0x8001 to 0x7FFF.

Controller 32 is pitch bend, and it is defined to be in
semitones, where the lower 8 bits specify 256ths of
a semitone.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

illegalPartErr A Part number outside the valid range
(1..partCount) has been passed.

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 251

illegalControllerErr

The controller number is either out of the legal
range 1 through 128, or is not recognized by this
particular component.

QuickTime 2.0 SDK: Toolbox Changes

Page 252 December 21, 1994

Synthesizer Timing

Music component synthesizer timing provides services to get and modify the master
timer reference used by the synthesizer.

MusicGetMasterTune

The MusicGetMasterTune function returns the master reference timer
which is used as the base time clock.

pascal ComponentResult MusicGetMasterTune
(MusicComponent mc);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

MusicSetMasterTune

The MusicSetMasterTune function alters the master reference timer
which is used as the base time clock.

pascal ComponentResult MusicSetMasterTune
(MusicComponent mc,
Fixed masterTune);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

masterTune A fixed 16.16 number allowing shifts by fractional
values.

ERROR CODES

synthesizerErr A synthesizer specific error has occurred.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 253

cantSendToSynthesizerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

QuickTime 2.0 SDK: Toolbox Changes

Page 254 December 21, 1994

CONVERSION OF STANDARD MIDI

MoviePlayer 2.0 allows you to open and select a standard Macintosh MIDI file. Once
selected the open button will change to Convert.

After the file is converted, MoviePlayer will prompt to save the converted file with the
suffix movie.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 255

Once saved, a named QuickTime movie controller is displayed and the converted MIDI
file can be played.

MUSIC CONFIGURATION UTILITY

The following illustration is a preliminary version of the user configuration utility. The
printer port does not appear because LocalTalk is in use (on the computer this image was
taken from). The typical user would see only a General MIDI option, under MIDI
synthesizers, and Apple Music under Software Synthesizers. Other choices, such as the
ones visible below, would appear if appropriate system extensions have been installed.

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 257

APPENDIX

GENERAL MIDI INSTRUMENT NUMBERS

General MIDI Instrument Numbers
1 Acoustic Grand Piano 33 Wood Bass
2 Bright Acoustic Piano 34 Electric Bass Fingered
3 Electric Grand Piano 35 Electric Bass Picked
4 Honky-tonk Piano 36 Fretless Bass
5 Rhodes Piano 37 Slap Bass 1
6 Chorused Piano 38 Slap Bass 2
7 Harpsichord 39 Synth Bass 1
8 Clavinet 40 Synth Bass 2
9 Celesta 41 Violin
10 Glockenspiel 42 Viola
11 Music Box 43 Cello
12 Vibraphone 44 Contrabass
13 Marimba 45 Tremolo Strings
14 Xylophone 46 Pizzicato Strings
15 Tubular bells 47 Orchestral Harp
16 Dulcimer 48 Timpani
17 Draw Organ 49 Acoustic String Ensemble 1
18 Percussive Organ 50 Acoustic String Ensemble 2
19 Rock Organ 51 Synth Strings 1
20 Church Organ 52 Synth Strings 2
21 Reed Organ 53 Aah Choir
22 Accordion 54 Ooh Choir
23 Harmonica 55 Synvox
24 Tango Accordion 56 Orchestra Hit
25 Acoustic Nylon Guitar 57 Trumpet
26 Acoustic Steel Guitar 58 Trombone
27 Electric Jazz Guitar 59 Tuba
28 Electric clean Guitar 60 Muted Trumpet
29 Electric Guitar muted 61 French Horn
30 Overdriven Guitar 62 Brass Section
31 Distortion Guitar 63 Synth Brass 1
32 Guitar Harmonics 64 Synth Brass 2

QuickTime 2.0 SDK: Toolbox Changes

Page 258 December 21, 1994

General MIDI Instrument Numbers (continued)
65 Soprano Sax 97 Ice Rain
66 Alto Sax 98 Soundtracks
67 Tenor Sax 99 Crystal
68 Baritone Sax 100 Atmosphere
69 Oboe 101 Bright
70 English Horn 102 Goblin
71 Bassoon 103 Echoes
72 Clarinet 104 Space
73 Piccolo 105 Sitar
74 Flute 106 Banjo
75 Recorder 107 Shamisen
76 Pan Flute 108 Koto
77 Bottle blow 109 Kalimba
78 Shakuhachi 110 Bagpipe
79 Whistle 111 Fiddle
80 Ocarina 112 Shanai
81 Square Lead 113 Tinkle bell
82 Saw Lead 114 Agogo
83 Calliope 115 Steel Drums
84 Chiffer 116 Woodblock
85 Synth Lead 5 117 Taiko Drum
86 Synth Lead 6 118 Melodic Tom
87 Synth Lead 7 119 Synth Tom
88 Synth Lead 8 120 Reverse Cymbal
89 Synth Pad 1 121 Guitar Fret Noise
90 Synth Pad 2 122 Breath Noise
91 Synth Pad 3 123 Seashore
92 Synth Pad 4 124 Bird Tweet
93 Synth Pad 5 125 Telephone Ring
94 Synth Pad 6 126 Helicopter
95 Synth Pad 7 127 Applause
96 Synth Pad 8 128 Gunshot

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 259

GENERAL MIDI DRUMKIT NUMBERS

General MIDI DrumKit Numbers
35 Acoustic Bass Drum 51 Ride Cymbal 1
36 Bass Drum 1 52 Chinese Cymbal
37 Side Stick 53 Ride Bell
38 Acoustic Snare 54 Tambourine
39 Hand Clap 55 Splash Cymbal
40 Electric Snare 56 Cowbell
41 Lo Floor Tom 57 Crash Cymbal 2
42 Closed Hi Hat 58 Vibraslap
43 Hi Floor Tom 59 Ride Cymbal 2
44 Pedal Hi Hat 60 Hi Bongo
45 Lo Tom Tom 61 Low Bongo
46 Open Hi Hat 62 Mute Hi Conga
47 Low -Mid Tom Tom 63 Open Hi Conga
48 Hi Mid Tom Tom 64 Low Conga
49 Crash Cymbal 1 65 Hi Timbale
50 Hi Tom Tom 66 Lo Timbale

GENERAL MIDI KIT NAMES

General MIDI Kit Names
1 Dry Set
9 Room Set
19 Power Set
25 Electronic Set
33 Jazz Set
41 Brush Set
65-112 User Area
128 Default

QuickTime 2.0 SDK: Toolbox Changes

Page 260 December 21, 1994

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 261

INDEX

A
AddTrackReference function 16
amplitude 169
asynchronous decompression, scheduled

43
audio level 169

B
beats-per-minute 177
built-in 167, 173

C
cantSendToSynthesizerErr 230, 232,

234, 236, 237, 238, 239, 240, 243,
244, 245, 246, 248, 249, 250, 251,
252, 253, 254, 255, 256, 258, 259,
260, 249, 251, 252

CDBandDecompress function 47
CDCodecFlush function 47
CDCodecSetTimeCode function 48
CDPreDecompress function 46
chunk size, getting preferred 22
chunk size, setting preferred 21
clock 193
CloseComponent Component Manager

function 144, 152
CodecCapabilities structure 44
CodecDecompressParams structure 44
Component Interfaces 187
Component Manager 92

CloseComponent function 144, 152
component flags value 88, 92
component subtype value 88, 92
component type value 88, 92
FindNextComponent function 88
manufacturer value 88, 92
OpenComponent function 87
OpenDefaultComponent function 87
selector values for data handler

components 93
compressor capability structure 44
configuration information 172, 222, 255,

256
container 86

assigning 141
creating 155
retrieving 142

controller 172, 174, 175, 178, 179, 184,
185, 189, 199, 200, 208, 209, 210,
211, 213, 234, 253, 259, 260, 249,
250, 254

Controller Event 184
Controller events 178
Conversion of Standard MIDI 176
ConvertMovieToFile function 8
copyright 172, 220, 221, 250
cursor, hiding 50
_ControlController 184
_ControlValue 184

D
data handler components 3

appending data 91, 152
asynchronous read 145-148
asynchronous write 153-154
block size, preferred 156
buffers, flushing read 158
buffers, flushing write 159
cancelling a scheduled read 149
capabilities, determining 88
ceding processor time to a handler 158
closing data reference after read 143
closing data reference after write 152
completion function 90, 145-148, 149,

153-154, 160-161
component flags value 88, 92
Component Manager 82
component subtype value 86, 88, 92,

138
component type value 88, 92
connection, opening 87
creating a data handler component 92
data reference

types 86
device index 137
duties 85-86
enlarging a data reference 157
extending a data reference 157
flushing cached reads 158
flushing cached writes 159
free space, getting 157
hints, playback 159
index, device 137
manufacturer value 88, 92
media handler components 85
mounting volumes 135
movie data, reading 90
movie data, writing 90, 91

QuickTime 2.0 SDK: Toolbox Changes

Page 262 December 21, 1994

networked-device support 134
opening data reference for read 90, 143
opening data reference for write 151
playback hints 159
pre-roll operations 147
priority of read requests 148
processor time, granting to data

handler 91, 158
quality of service 89, 132, 134, 148
queued requests, completing 149
QuickTime

versions supported 81
QuickTime for Windows 81-82

version supported 81
random write 153-154
read, asynchronous 90, 145-148
read, synchronous 90, 144
read-ahead time, indicating preferred

150
reading movie data 90
removable volumes 135
responsibilities 85-86
retrieving movie data 90
schedule record 146-148
scheduled read 90, 145-148
scheduled read, cancelling 149
scheduled read, completing 149
selecting 88
selecting a data handler component 86
selecting with Movie Toolbox 22
selector values 93
size, getting data reference 155
size, setting data reference 154
storing movie data 90-91
subtype value, component 86, 88, 92,

138
synchronous read 144
synchronous write 152
type value, component 88, 92
unmounting volumes 135
volume list, getting 89, 132
write, asynchronous 91, 153-154
write, synchronous 91, 152
writing movie data 91

data reference
and component subtype value 92, 138
assigning to a data handler 89, 138
closing after read 143
closing after write 152
comparing 89, 140
creating container for 155
determining ability to support 89, 135
enlarging 157
equivalent 89

free space 157
getting size of 155
opening for read 90, 143
opening for write 90, 151
resolving 140
retrieving from a data handler 139
selecting a handler for 87
setting size of 154
several in one media 2, 20
types 88, 92, 138
working with 138

DataHCanUseDataRef function 89, 135
DataHCloseForRead function 143
DataHCloseForWrite function 152
DataHCompareDataRef function 89, 140
DataHCreateFile function 155
DataHFinishData function 90, 149
DataHFlushCache function 145, 148,

153, 158
DataHFlushData function 159
DataHGetData function 90, 144
DataHGetDataRef function 89, 139
DataHGetDeviceIndex function 137
DataHGetFileSize function 155
DataHGetFreeSpace function 157
DataHGetOSFileRef function 142
DataHGetPreferredBlockSize function

156
DataHGetScheduleAheadTime function

150
DataHGetVolumeList function 89, 132
DataHOpenForRead function 90, 143
DataHOpenForWrite function 90, 151
DataHPlaybackHints function 159
DataHPreextend function 157
DataHPutData function 91, 152
DataHResolveDataRef 140
DataHScheduleData function 90, 145-

148
DataHScheduleRecord structure 146-148
DataHSetDataRef function 89, 138
DataHSetFileSize function 154
DataHSetOSFileRef function 141
DataHTask function 91, 158
DataHVolumeListRecord structure 133
DataHWrite function 91, 153-154
decompression parameters structure 44
decompression, scheduled asynchronous

43
decompression, scheduling 37
DecompressSequenceFrameWhen

function 37
DeleteTrackReference function 17
dropframe timecode 24, 27

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 263

Drum names 175, 241, 249
duration 167, 175, 176, 177, 180, 181,

182, 189, 229

E
End Marker 178, 182, 183, 188
End Marker Event 182
engaged 199, 208, 209
equal tempered notes 170
Event Sequence Format 176
Extended Controller Event 185
Extended Note event 178, 181

F
file see container
file reference

assigning 141
retrieving 142

Fixed Instrument 173, 174
fixed pitch 181
FlattenMovie function 9
FlattenMovieData function 9
frame time structure 46
frequency 168
function name, longest 67

G
General event 177, 178, 188
General MIDI 171, 173, 199, 254, 255,

256, 257
generic synthesizer 173
GetDataHandler function 22, 87
GetMediaPreferredChunkSize function

22
GetMovieColorTable function 14
GetMovieIndTrackType function 15
GetNextTrackReferenceType function

19
GetTrackLoadSettings function 11
GetTrackReference function 18
GetTrackReferenceCount function 20
_GeneralLength 179
_GeneralSubtype 179

H
hiding the cursor 50
hints, playback 1

I
ICMDecompressComplete function 48
ICMFrameTime structure 46

ICMShieldSequenceCursor function 50
illegalChannelErr 239, 240, 253, 254
illegalControllerErr 214, 260, 250
illegalInstrumentErr 232, 245, 246
illegalKnobErr 214, 236, 237, 238, 251,

252, 257, 258
illegalKnobValueErr 214, 236, 237, 238,

251, 252, 257, 258
illegalNoteChannelErr 202, 203, 206,

207, 208, 209, 211, 212, 214
illegalPartErr 234, 242, 243, 244, 245,

246, 250, 253, 254, 255, 256, 258,
259, 260, 249

illegalVoiceAllocationErr 254
Image Compression Manager

decompression, scheduled
asynchronous 43

decompression, scheduling 37
timecode information, setting 41
timecode support 37

image compressor components
scheduled asynchronous

decompression 43-47
timecode information, setting 48
timecode support 43

Instrument 167, 173, 174, 175, 181, 185,
215, 216, 217, 220, 231, 236, 237,
241, 242, 243, 245, 246, 247, 249,
255, 256

Instrument Control 241
Instrument index number 178, 184, 186
Instrument number 175, 180, 184, 185,

186, 215, 231, 232, 233, 241, 243,
245, 246, 249

InstrumentAboutInfo 250
InstrumentData 242
_Instrument 180, 184

K
kControllerAfterTouch 213
kControllerBalance 213
kControllerBreath 213
kControllerCeleste 213
kControllerChorus 213
kControllerExpression 213
kControllerFoot 213
kControllerModulationWheel 184, 213
kControllerPan 184, 213
kControllerPhaser 213
kControllerPitchBend 184, 213
kControllerPortamento 213
kControllerPortamentoTime 213
kControllerReverb 213

QuickTime 2.0 SDK: Toolbox Changes

Page 264 December 21, 1994

kControllerSoftPedal 213
kControllerSostenuto 213
kControllerSustain 213
kControllerTremolo 213
kControllerVolume 184, 213
kDataHCanRead flag 133, 135
kDataHCanStreamingWrite flag 134,

137
kDataHCanWrite flag 133, 136
kDataHMustCheckDataRef flag 134
kDataHSpecialRead flag 133, 136
kDataHSpecialReadFile flag 133, 136
kDataHSpecialWrite flag 134, 136
kInstrumentMatchGMNumber 231
kInstrumentMatchName 231
kInstrumentMatchNumber 231
kInstrumentMatchSynthesizerName 231
kInstrumentMatchSynthesizerType 231
Knob 167, 168, 172, 173, 174, 175, 178,

186, 200, 229, 236, 237, 238, 241,
251, 252, 253, 257, 258

Knob Event 186
KnobDescription 251
kTuneDontClipNotes 189
kTuneExcludeEdgeNotes 189
kTuneLoopUntil 190
kTuneQuickStart 189
kTuneStartNow 189
_KnobKnob 186
_KnobValue 186

M
master reference timer 175, 251
media with several data references 2, 20
MediaForceUpdate function 79
MediaGetDrawingRgn function 78
MediaIdle function 77
microtonal 170, 178, 180, 181, 212, 234
Microtones 167
middle C 180, 181, 212
MIDI 164, 165, 167, 170, 171, 172, 173,

175, 176, 199, 204, 205, 207, 212,
222, 223, 224, 225, 226, 227, 229,
231, 232, 234, 235, 236, 237, 239,
240, 243, 244, 248, 250, 251, 252,
253, 254, 255, 256, 258, 259, 260,
249, 251, 252, 253, 254, 255, 256,
257

midiManagerAbsentErr 204, 223
Modifiable Instruments 173
movie data import components

file type, getting 76
Movie Toolbox

and data handler components 86, 87
and removable volumes 135
color table, getting 14
color table, setting 13
data handler, selecting 22
data references, multiple 2, 20
drawing-complete function, assigning

12
forcing it to check your data handler’s

capabilities 134
GetDataHandler function 87
hints 1
MoviesTask function 158
preloading tracks 1, 9, 11
read-ahead time 150
reads before opening data reference

143, 145, 148
track references 2, 16
tracking data handler components 132
tracks, adding track references 16
tracks, counting track references 20
tracks, deleting track references 17
tracks, modifying track references 18
tracks, reading track references 18
tracks, scanning track reference types

19
tracks, searching by characteristic 15

MovieImportGetFileType function 76
Music Component 164, 165, 167, 168,

170, 171, 172, 173, 174, 175, 187,
199, 203, 210, 222, 225, 229, 230,
241, 247

Music Component Interface 229
Music Media Handler 165
Music Preferences 172, 222, 228
music track 164, 168, 170, 176, 177
musical note 168
MusicFindTone 231
MusicGetController 259
MusicGetDescription 230
MusicGetDrumKnobDescription 252
MusicGetDrumNames 249
MusicGetInstrument 242
MusicGetInstrumentAboutInfo 250
MusicGetInstrumentKnobDescription

251
MusicGetInstrumentNames 247
MusicGetInstrumentNumber 243
MusicGetKnob 236
MusicGetKnobDescription 238
MusicGetMasterTune 251
MusicGetMIDIProc 239
MusicGetPart 253
MusicGetPartKnob 256

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 265

MusicGetPartName 255
MusicPlayNote 234
MusicResetPart 259
MusicSetController 249
MusicSetInstrument 243
MusicSetInstrumentNumber 245
MusicSetKnob 236
MusicSetMasterTune 251
MusicSetMIDIProc 240
MusicSetPart 254
MusicSetPartKnob 258
MusicSetPartName 255
MusicStoreInstrument 246
_MarkerSubtype 183
_MarkerValue 183

N
NACopyrightDialog 221
NADisengageNoteChannel 209
NADisposeNoteChannel 202
NAEngageNoteChannel 208
NAFindNoteChannelTone 215
NAGetDefaultMIDIInput 226
NAGetNoteChannelInfo 203
NAGetRegisteredMusicDevice 225
NALoseDefaultMIDIInput 205
NANewNoteChannel 200
NAPickArrangement 220
NAPickInstrument 217
NAPlayNote 212
NAPrerollNoteChannel 206
NARegisterMusicDevice 222
NAResetNoteChannel 210
NASaveMusicConfiguration 228
NASetController 213
NASetDefaultMIDIInput 227
NASetKnob 214
NASetNoteChannelInstrument 216
NASetNoteChannelVolume 211
NAStuffToneDescription 219
NAUnregisterMusicDevice 224
NAUnrollNoteChannel 207
NAUseDefaultMIDIInput 204
new movie, creating from user function

4
NewMovieFromFile function 7
NewMovieFromUserProc function 4
Note 180
Note Allocator 164, 165, 171, 172, 173,

187, 199, 200, 202, 203, 204, 205,
206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 220, 221, 222,
224, 225, 226, 227, 228, 232

Note Channel 168, 173, 199, 200
Note Channel Allocation and Use 199
note channels 171, 196, 197, 199, 207
Note event 176, 177, 178, 179, 182
NoteAllocator errors 188
noteChannelNotAllocatedErr 188, 206
NoteRequest 200
notes 164, 165, 167, 168, 170, 171, 172,

176, 181, 187, 189, 195, 199, 200,
208, 209, 210, 234, 239

_NoteDuration 180
_NotePitch 180
_NoteVelocity 180
_NoteVolume 180

O
OpenComponent Component Manager

function 87
OpenDefaultComponent Component

Manager function 87
oscillators 169
outputs, sequence grabber 51, 59-67

P
Part 168, 173, 174, 175, 178, 180, 184,

185, 186, 188, 210, 230, 234, 241,
244, 245, 246, 253, 254, 259, 249

Part Access 253
Part number 179, 181, 229, 234, 242,

243, 244, 245, 246, 250, 253, 254,
255, 256, 258, 259, 260, 249

pitch 167, 168, 175, 177, 178, 180, 181,
184, 199, 212, 229, 234, 249

playback hints 1
Polyphony 168, 200, 220
pre-roll operations 90
preloading tracks 1, 9, 11

Q
QMA 164, 165, 167, 168, 169, 170, 173,

176, 178, 188, 239
queued-up 171
queueFlags 190
QuickTime for Windows 90, 92
QuickTime movie track 168, 176
QuickTime Music Architecture 164,

167, 171, 187
QuickTime Music tracks 165

R
real time 193
Rest event 176, 182

QuickTime 2.0 SDK: Toolbox Changes

Page 266 December 21, 1994

rests 164, 167, 176, 178, 187
reverb 174
_RestDuration 182

S
scale 167, 168, 170, 176, 177, 179, 180,

181, 182, 187, 194
sequence 164, 165, 167, 168, 171, 172,

176, 178, 182, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 198,
199

Sequence Control 191
sequence data 164, 188
sequence grabber channel components

maximum data rate, getting 70
maximum data rate, setting 69

sequence grabber component
output, assigning to a channel 63

sequence grabber components
destination, determining 54
destination, specifying 51
mode, determining 57
output, configuring 64
output, creating a new 59
output, disposing of 62
output, getting remaining space 67
outputs 51, 59-67
timecode source identification

information, getting 58
timecode source identification

information, setting 58
timecode support 51

sequence grabber outputs 51, 59-67
SetDSequenceTimeCode function 41
SetMediaDefaultDataRefIndex function

20
SetMediaPreferredChunkSize function

21
SetMovieColorTable function 13
SetMovieDrawingCompleteProc

function 12
SetTrackLoadSettings function 9
SetTrackReference function 18
SGChannelGetDataSourceName

function 58
SGChannelGetRequestedDataRate

function 70
SGChannelSetDataSourceName function

58
SGChannelSetRequestedDataRate

function 69
SGDisposeOutput function 62

SGGetDataOutputStorageSpaceRemaini
ng function 67

SGGetDataRef function 54
SGGetMode function 57
SGNewOutput function 59
SGSetChannelOutput function 63
SGSetDataRef function 51
SGSetOutputFlags function 64
shielding the cursor 50
slaved 193
slots 173, 198
SMPTE timecode information 24
software component 164, 165, 167, 168,

171, 173
software synthesizer 173
standard note 170, 178, 179, 180, 181
stopFlags 191
subtype 178, 179, 182, 183
synthesizer 164, 165, 167, 168, 169, 170,

171, 172, 173, 174, 175, 178, 179,
187, 199, 200, 207, 212, 222, 225,
229, 230, 231, 232, 234, 235, 236,
237, 238, 239, 240, 242, 243, 244,
245, 246, 248, 249, 250, 251, 252,
253, 254, 255, 256, 258, 259, 260,
249, 251, 252, 254

Synthesizer Access 229
Synthesizer Timing 251
SynthesizerConnections 222, 226
SynthesizerDescription 230
SynthesizerErr 223, 230, 232, 234, 236,

237, 238, 239, 240, 242, 243, 244,
245, 246, 247, 249, 250, 251, 252,
253, 254, 255, 256, 258, 259, 260,
249, 251

System Configuration 222
_StuffControlEvent 184
_StuffGeneralEvent 179
_StuffKnobEvent 186
_StuffNoteEvent 180
_StuffRestEvent 182
_StuffXControlEvent 185
_StuffXNoteEvent 181

T
TCFrameNumberToTimeCode function

31
TCGetCurrentTimeCode function 29
TCGetDisplayOptions function 35
TCGetSourceRef function 33
TCGetTimeCodeAtTime function 29
TCGetTimeCodeFlags function 34
TCSetDisplayOptions function 35

QuickTime 2.0 SDK: Toolbox Changes

December 21, 1994 Page 267

TCSetSourceRef function 32
TCSetTimeCodeFlags function 33
TCTimeCodeToFrameNumber function

30
TCTimeCodeToString function 32
timbrality 168
Timbre 168
timbres 170
time scale 176, 180, 182, 187, 194
TimeBase 193
timecode definition structure 27-28
timecode media handler 3, 23-36

adding samples 26
and track references 25
control flags, getting 34
control flags, setting 33
converting frame number to timecode

time 31
converting timecode time to a string 32
converting timecode time to frame

number 30
converting timecode to media time 29
creating timecode media 25
display options, getting 35
display options, setting 35
displaying timecode information 25,

35
dropframe technique 24, 27
getting timecode information 29
sample description 26
source identification information 25
source identification information,

getting 33
source identification information,

setting 32
timecode definition structure 27
timecode record 28

timecode media, creating 25
timecode record 28
timing 164, 165, 168, 171, 172, 174,

175, 187, 193
ToneDescription 215, 242
ToneDescription { 200
track 167, 168, 220

adding track reference 16
counting track references 20
deleting track reference 17
modifying track reference 18
preloading 1, 9, 11
reading track reference 18
reference 2, 16
scanning track reference types 19
searching by characteristic 15

track references 2, 16

used with timecode media 25
Tune Player 164, 165, 168, 171, 172,

173, 176, 177, 178, 182, 187, 188,
189, 191, 192, 193, 194, 195, 196,
197, 198

TuneGetIndexedNoteChannel 197
TuneGetStatus 198
TuneGetTimeBase 193
TuneGetTimeScale 194
TuneGetVolume 191
TuneInstant 195
tuneParseErr 188
tunePlayerFullErr 190
TunePreroll 196
TuneQueue 189
TuneSetHeader 178, 180, 181, 184, 185,

186, 187, 188, 197
TuneSetTimeScale 194
TuneSetVolume 192
tuneStartPosition 190
TuneStop 191
tuneStopPosition 190
TuneUnroll 196

U
units of time 180, 182
units-per-second 167, 194
user interface dialogs 172, 220
user-modifiable Instruments. See

Modifiable Instruments 173

V
VDGetTimeCode function 73
VDSetDataRate function 71
velocity 167, 177, 180, 199, 212, 234
video digitizer components

limiting data rate 71
timecode information, retrieving 73
timecode support 71

Voice 169
volume 167, 168, 169, 172, 175, 180,

181, 187, 191, 192, 199, 211, 212,
229, 234, 259

Windows, QuickTime support see
QuickTime for Windows

X
_XControlController 185
_XControlValue 185
_XInstrument 179, 182, 185, 186
_XNoteDuration 182
_XNotePitch 182

QuickTime 2.0 SDK: Toolbox Changes

Page 268 December 21, 1994

_XNoteVelocity 182
_XNoteVolume 182

