

ð

3/12/97
CONFIDENTIAL — DO NOT REDISTRIBUTE
© Apple Computer, Inc. 1996, 1997

ð

Apple
Information Access Toolkit
v1.0

Programmer’s Guide 1

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

ð

Apple Computer, Inc.
© 1996, 1997 Apple Computer, Inc.
All rights reserved.
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
mechanical, electronic, photocopying, recording, or otherwise,
without prior written permission of Apple Computer, Inc.
Printed in the United States of America.
No licenses, express or implied, are granted with respect to
any of the technology described in this book. Apple retains all
intellectual property rights associated with the technology
described in this book.
Every effort has been made to ensure that the information in
this manual is accurate. Apple is not responsible for printing
or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh, and Mac OS are
trademarks of Apple Computer, Inc., registered in the United
States and other countries.
Adobe Illustrator and PostScript are trademarks of Adobe
Systems Incorporated, which may be registered in certain
jurisdictions.
FrameMaker is a registered trademark of Frame Technology
Corporation.
Helvetica and Palatino are registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered trademark of International
Typeface Corporation.

LIMITED WARRANTY ON MEDIA AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL
RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE
EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or
employee is authorized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so
the above limitation or exclusion may not apply to you. This
warranty gives you specific legal rights, and you may also have other
rights which vary from state to state.

The paper used in this book meets the EPA standards for
recycled fiber.

iii

Contents

Figures, Tables and Listings i

Preface

Overview of this Manual

v

Chapter 1

Introduction to the

Apple Information Access Toolkit

1-1

Some Possible Applications 1-3
RecipeSwap 1-3

How It Was Done 1-4
Indexing Facility 1-4
Search Facility 1-6
Analysis and Filtering 1-8
Storage and Document Type 1-9

Construction with IAT 1-10

Chapter 2

Overview of IAT Content

2-1

Facilities of IAT by Category 2-3
Index 2-4
Accessor 2-6
Analysis 2-8
Corpus 2-12
Storable 2-14
Storage 2-15

Chapter 3

Designing an Application

3-1

Determining High Level Requirements 3-2
Determining the External Interfaces 3-2

Mapping to IAT Classes 3-3
Internal Task Design 3-5

Recipe Query 3-6
Submit Recipe 3-11
Duplicate Recipe 3-15
Stop Word Maintenance 3-16
Database Creation 3-18

iv

Chapter 4

Common Practices in IAT

4-1

Primitive Types 4-3
Globals 4-3
Exceptions 4-3

Exception codes 4-4
Throwing Exceptions 4-4

Memory Allocation 4-5
The Memory Functions 4-6
Base Classes 4-10
IAObject 4-10
IAStruct 4-11
Deletion of Allocated Memory 4-13
IADeleteOnUnwind 4-13
IADeleteArrayOnUnwind 4-14
IADeletePointerArrayOnUnwind 4-15

Chapter 5

Index Category

5-1

Choosing an Index Type 5-3
Index Types Currently Available 5-4
Comparison of Searches Available 5-5
Index Size vs. Speed 5-7

Common Operations 5-8
Creating an Index 5-8
Establishing an Existing Index 5-11
Updating an Index 5-14
Iterating Through the Documents in an Index 5-19
Merging Indexes 5-20
Compacting an Index 5-22

Index Class Category Reference 5-23
Header Files in the Index Category 5-23
Class Specifications 5-25
DocInfo 5-25
FreqPosting 5-27
FreqPS 5-29
FreqTerm 5-31
IAIndex 5-31
IAIndexTypes 5-43
InVecIndex 5-45
InvertedIndex 5-46
TermIndex 5-49
TermInfo 5-59
TFComponent 5-63
TFVector 5-63
VectorDocInfo 5-66

v

VectorIndex 5-67
Class Utilities 5-72
Typedefs 5-74
 Extern Data 5-76
 Constants 5-77
Index Exceptions and Error Handling 5-78

Chapter 6

Accessor Category

6-1

Choosing an Accessor Type 6-3
Query Logic 6-4
Query Analysis 6-5
Common Operations 6-6

Building an Accessor 6-6
Answering Queries 6-7
Answering a Simple Ranked Query 6-8
Answering a Query by Example 6-11
Answering a Boolean Query 6-14
Describing a Document 6-16
Finding Related Words 6-18

Accessor Class Category Reference 6-20
Header Files in the Accessor Category 6-20
Class Specifications 6-22
IAAccessor 6-22
IAHit 6-26
IAProgressReport 6-29
InVecAccessor 6-32
InvertedAccessor 6-33
RankedAccessor 6-36
RankedHit 6-43
RankedProgress 6-45
RankedQueryDoc 6-46
TWComponent 6-47
TWVector 6-48
VectorAccessor 6-51
Typedefs 6-53
Constants 6-53
Accessor Exceptions and Error Handling 6-54

Chapter 7

Analysis Category

7-1

Understanding Tokens and Terms 7-3
Understanding Tokenizers 7-4
Understanding Filters 7-6

vi

Existing Filters 7-6
Filter Sequence 7-8

Creating Analysis Subclasses 7-9
Creating a SimpleAnalysis Subclass 7-9
Creating a Subclass of IAAnalysis 7-10
Creating a Subclass of IATokenFilter 7-12
Creating a Subclass of IATerm 7-13
Creating a Text Utility 7-13

Analysis Class Category Reference 7-15
Header Files in the Analysis Class Category 7-15
Class Specifications 7-17
AlphaTokenizer 7-17
DocTextCharStream 7-21
DowncaseFilter 7-23
IAAnalysis 7-24
IATerm 7-27
IAToken 7-31
 IATokenFilter 7-33
 IATokenStream 7-35
IACharStream 7-37
ShortWordFilter 7-42
SimpleAnalysis 7-43
StringTerm 7-45
Constants 7-47
Exceptions 7-48

Chapter 8

Corpus Category

8-1

Introduction 8-3
The HFS Implementation 8-4

HFS Corpus 8-4
HFSTextFolderCorpus 8-5

Common Procedures 8-5
Using a Corpus to Provide Documents 8-5
Creating a New Corpus 8-6
Establishing an Existing Corpus 8-7
Using an HFSCorpus to Locate a Document in HFS 8-7

Creating Corpus Subclasses 8-7
Creating a Subclass of IACorpus 8-8
Creating a Subclass of IADoc 8-9
Creating a Subclass of IADocIterator 8-10
Creating a Subclass of IADocText 8-11
Creating a Subclass of HFSIterator 8-13

Corpus Class Category Reference 8-16
Header Files in the Corpus Category 8-16
Class Specifications 8-17

vii

DirectoryInfo 8-17
HFSCorpus 8-17
HFSDoc 8-21
HFSDocText 8-25
HFSVolumeInfo 8-29
HFSIterator 8-32
HFSTextFolderCorpus 8-35
HFSTextFolderDoc 8-39
IACorpus 8-41
IADoc 8-47
IADocIterator 8-49
IADocText 8-50
Constants 8-51
Exceptions 8-51

Chapter 9

Storage Category

9-1

General Storage Logic 9-3
HFS Implementation 9-5
Creating New Storage 9-5

Sample Code to Create Storage 9-5
Opening Existing Storage 9-6

Sample Code for Establishing Existing Storage 9-6
Allocating and Deallocating Blocks of Storage 9-6
Reading and Writing Storage 9-8
Reporting on Storage 9-8
Compacting Storage 9-8
Using the Mutex Facility 9-9
Cloning Store Streams 9-10
Creating Storage Subclasses 9-10

Creating a Storage Construction Utility 9-10
Creating a Subclass of IAStoreStream 9-11
Creating a Subclass of IAMutex 9-15

Storage Class Category Reference 9-17
Header Files in the Storage Class Category 9-17
Class Specifications 9-18
HFSStoreStream 9-18
IAInputBlock 9-22
IAOutputBlock 9-25
IALock 9-28
IAMutex 9-28
IAStorage 9-30
IAStoreStream 9-39
Storage Class Utilities 9-45
Typedefs 9-48
Storage Exceptions and Error Handling 9-50

viii

Chapter 10

Storable Category

10-1

Understanding Storables and Ordered Storables 10-3
Creating Subclasses 10-4

Creating a Subclass of IAStorable 10-4
Creating a Subclass of IAOrderedStorable 10-6
Creating a subclass of IAOrderedStorableSet 10-7

Common Operations 10-7
Creating an Ordered Storable Set 10-7
Open an Existing Ordered Storable Set 10-8
Updating an Existing Ordered Storable Set 10-8
Sample Code for Updating an Ordered Storable Set 10-10
Searching and Iterating through an Ordered Storable Set 10-11

Storable Class Category Reference 10-13
Header File 10-13
Class Specifications 10-14
IAOrderedStorable 10-14
IAOrderedStorableIterator 10-17
IAOrderedStorableSet 10-18
IAStorable 10-27

Class Utilities 10-32
Externs 10-33
Exceptions and Error Handling 10-33

Appendix A

Alphabetical List of Functions

A-1

i

v1.0a100, Confidential. ©1997 Apple Computer, Inc. 3/12/97

Figures, Tables and Listings

Figure 1-1

An inverted index 1-5

Figure 1-2

A vector index 1-6

Figure 1-3

Sample output of a simple query 1-7

Figure 1-4

An example of output for a query-by-example. 1-8

Figure 1-5

The use of tokenizer and filters 1-9

Figure 1-6

The RecipeSwap corpus 1-10

Figure 1-7

The layers of an information access application 1-11

Table 2-1

Class categories within IAT 2-3

Figure 2-1

Relationships of the index classes 2-5

Figure 2-2

Index inheritance 2-6

Figure 2-3

Accessor hierarchy 2-7

Figure 2-4

Relationships in a ranked search 2-8

Figure 2-5

Relationships between analysis and tokens 2-9

Figure 2-6

Provided tokenizer and filters 2-10

Figure 2-7

A SimpleAnalysis 2-11

Figure 2-8

Analysis subclasses created for RecipeSwap 2-12

Figure 2-9

Corpus abstract classes 2-13

Figure 2-10

The Macintosh HFS subclasses 2-14

Figure 2-11

The storable classes 2-15

Figure 2-12

Logical relationships between storage classes 2-16

Figure 3-1

The external interface of RecipeSwap 3-2

Figure 3-2

RecipeSwap persistent data 3-3

Figure 3-3

The related categories 3-4

Table 2-2

Association with Classes 3-5

Figure 3-4

Subtasks of recipe query 3-7

Figure 3-5

Interaction diagram for establishing a recipe index 3-9

Figure 3-6

Interaction diagram for building an accessor 3-10

Figure 3-7

Interaction diagram for a simple query 3-11

Figure 3-8

The subtasks of submit recipe 3-12

Figure 3-9

Interaction diagram for add recipe 3-13

Figure 3-10

Interaction diagram for creating a RankedQueryDoc 3-14

Figure 3-11

Interaction diagram of query by example 3-15

Figure 3-12

Interaction diagram for deleting recipes from the index 3-16

Figure 3-13

An interaction diagram for a complete update 3-18

Figure 3-14

Interaction diagram for initializing an index 3-19

Listing 4-1

Defining and using your own memory allocator. 4-6

Figure 5-1

An overview of an index 5-3

Figure 5-2

Index inheritance tree 5-4

Figure 5-3

An inverted index 5-5

Figure 5-4

A vector index 5-6

Table 4-1

Comparison of index types for time and space 5-7

Figure 5-5

Interaction diagram for index creation 5-9

Listing 5-1

Creating an index 5-9

Listing 5-2

Differences when creating an index with a named block 5-11

Figure 5-6

Interaction diagram for establishing an existing index 5-12

ii

v1.0a100, Confidential. ©1997 Apple Computer, Inc. 3/12/97

Listing 5-3

Establish an existing index 5-13

Listing 5-4

Determining type of index 5-14

Figure 5-7

Interaction diagram of an update to match the corpus 5-16

Listing 5-5

An example of updating an index to match its corpus 5-16

Figure 5-8

Interaction diagram for individual update 5-17

Listing 5-6

Updating individual documents 5-17

Figure 5-9

Interaction diagram for iterating through an index 5-19

Listing 5-7

Iterating through an index 5-19

Figure 5-10

Interaction diagram for a merge 5-21

Listing 5-8

Merge a source index to a destination index 5-21

Listing 5-9

Compact an index 5-22

Figure 5-11

Index hierarchy 5-32

Figure 5-12

Overview of the index relationships 5-33

Figure 5-13

Inverted index overview 5-47

Figure 5-14

Vector index overview 5-69

Figure 6-1

Accessor inheritance tree 6-4

Figure 6-2

Query logic 6-5

Figure 6-3

Interaction diagram to build an accessor 6-6

Listing 6-1

Build an inverted vector accessor 6-6

Listing 6-2

Report search progress 6-7

Figure 6-4

Output from a simple ranked query 6-8

Figure 6-5

Interaction diagram for a simple ranked query 6-8

Listing 6-3

Answer a simple ranked query 6-9

Listing 6-4

Display search results 6-10

Listing 6-5

Get and print a document name 6-10

Figure 6-6

Sample output from a query by example 6-11

Figure 6-7

Interaction diagram for creating a RankedQueryDoc 6-12

Listing 6-6

Find documents matching example document 6-13

Figure 6-8

Sample output from a Boolean query 6-14

Listing 6-7

Find documents satisfying Boolean expression 6-15

Figure 6-9

Sample output from describing a document 6-16

Listing 6-8

Find the words that best describe a document 6-17

Figure 6-10

Sample output from finding related words 6-18

Listing 6-9 Find the words related to a given wordt 6-19
Figure 6-11 Accessor inheritance 6-22
Figure 6-12 IAHit relationships 6-27
Figure 6-13 IAProgressReport relationships 6-30
Figure 6-14 RankedAccessor relationships 6-37
Figure 7-1 Class diagram of tokens and terms 7-4
Figure 7-2 A tokenizer 7-5
Figure 7-3 Token and filter classes 7-6
Figure 7-4 Illustration of sequential filtering 7-8
Figure 7-5 Analysis subclass 7-10
Listing 7-1 SimpleAnalysis subclass header 7-10
Listing 7-2 SimpleAnalysis subclass body 7-10
Listing 7-3 IAAnalysis subclass header 7-11
Listing 7-4 IAAnalysis subclass body 7-11
Listing 7-5 StopWordFilter header 7-12
Listing 7-6 StopWordFilter implementation of GetNextToken 7-13
Listing 7-7 DocTextCharStream header 7-14
Listing 7-8 DocTextCharStream body 7-14

iii
v1.0a100, Confidential. ©1997 Apple Computer, Inc. 3/12/97

Figure 7-6 AlphaTokenizer relationships 7-18
Listing 7-9 Sample implementation of filtered MakeTokenStream 7-27
Listing 7-10 Sample Implementation of GetNextToken for an

IATokenFilter 7-35
Figure 8-1 Corpus relationships 8-3
Figure 8-2 HFS instantiation of corpus classes 8-4
Figure 8-3 Interaction diagram for iterating through a corpus 8-6
Listing 8-1 List text files 8-6
Listing 8-2 Establishing an existing corpus 8-7
Listing 8-3 Sample header file of an IACorpus subclass 8-8
Listing 8-4 Sample implementation of GetProtoDoc 8-9
Listing 8-5 Sample implementation of GetDocText 8-9
Listing 8-6 Sample header of an IADoc subclass 8-9
Listing 8-7 Sample Header for an IADocIterator subclass 8-11
Listing 8-8 Sample Implementation of GetNextDoc 8-11
Listing 8-9 Sample header of an IADocText subclass 8-12
Listing 8-10 Sample implementation of GetNextBuffer 8-12
Listing 8-11 Creating a custom corpus iterator—header file 8-13
Listing 8-12 IADocIterator subclass header 8-14
Listing 8-13 Corpus subclass body 8-14
Listing 8-14 IADocIterator subclass body 8-15
Listing 8-15 Using HFSIterator 8-34
Figure 8-4 IACorpus relationships 8-42
Figure 9-1 Logical storage classes 9-4
Listing 9-1 Constructing storage 9-5
Listing 9-2 Establish existing storage 9-6
Listing 9-3 Allocating a named block of storage 9-7
Listing 9-4 Opening a named block of storage 9-7
Listing 9-5 Report amount of space in storage 9-8
Figure 9-2 A sample result of compacting storage 9-9
Listing 9-6 A utility to construct storage 9-10
Listing 9-7 Sample header file of an IAStoreStream subclass 9-11
Listing 9-8 Sample implementation of Clone() 9-13
Listing 9-9 Sample implementation of IsWritable() 9-13
Listing 9-10 Sample implementation of IsOpen() 9-13
Listing 9-11 Sample implementation of Initialize() 9-13
Listing 9-12 Sample implementation of Open() 9-14
Listing 9-13 Sample implementation of GetEof() 9-14
Listing 9-14 Sample implementation of SetEof() 9-14
Listing 9-15 Sample implementation of Write() 9-14
Listing 9-16 Sample implementation of Read() 9-15
Listing 9-17 Current implementation of IAMutex 9-16
Figure 9-3 IAStorage relationships 9-31
Figure 10-1 Object storage structures 10-3
Listing 10-1 Sample header file for an IAStorable subclass 10-4
Listing 10-2 Sample Constructor 10-5
Listing 10-3 Sample Implementation of DeepCopy 10-5
Listing 10-4 Sample Implementation of Restore 10-5
Listing 10-5 Sample Implementation of StoreSize 10-6
Listing 10-6 Sample Implementation of Store 10-6
Listing 10-7 Sample Implementation of Equal 10-7

iv

v1.0a100, Confidential. ©1997 Apple Computer, Inc. 3/12/97

Listing 10-8 Sample Implementation of Less Than 10-7
Listing 10-9 Creating an IAOrderedStorableSet 10-8
Listing 10-10 Open an existing Ordered Storable Set 10-8
Listing 10-11 Adding a storable to an OrderedStorableSet 10-10
Listing 10-12 Updating additional data for an existing storable 10-10
Listing 10-13 Removing a storable from an OrderedStorableSet 10-11
Listing 10-14 Get an object by key 10-11
Listing 10-15 Make a sequential iterator 10-12
Listing 10-16 Make a positioned iterator 10-12
Figure 10-2 IAOrderedStorable relationships 10-15
Listing 10-17 Sample Implementation of Equal 10-16
Listing 10-18 Sample Implementation of LessThan 10-17
Listing 10-19 Sample Implementation of DeepCopy 10-28
Listing 10-20 Sample Implementation of Restore 10-29
Listing 10-21 Sample Implementation of StoreSize 10-30
Listing 10-22 Sample Implementation of Store 10-30
Listing 10-23 Sample Implementation of Deep Copy and Deep Copying 10-31
Listing 10-24 Sample Implementation of Restore and Restoring 10-32

©1996, 1997 Apple Computer, Inc. 3/12/97

Overview of this Manual

This manual is a combination of conceptual guide, programmer’s guide, and
reference for the Apple Information Access Toolkit.

As not all users will want all of this information, here is a guide to what is in
the chapters.

Chapter 1, “Introduction to the Apple Information Access Toolkit,” is a quick
introduction to the toolkit. It emphasizes information access in general, and
introduces an example application. This is the source for basic information
access definitions. Everyone should read this one; it is short, but basic.

Chapter 2, “Overview of IAT Content,” is the introduction to the tools of the
toolkit. This is key to the rest of the organization of the manual, and is the first
look inside the toolkit. Everyone should read this also.

Chapter 3, “Designing an Application,” is a overview of the design of the
application outlined in Chapter 1. It should be read by anyone doing
application development with IAT.

Chapter 4, “Common Practices in IAT,” documents those common classes
used by many others within IAT such as memory allocation or exceptions.

The remaining chapters are the programmer’s and reference guide to IAT. The
should be referred to as needed while doing application development.

Each of these chapters has some introductory material, common procedures
that are done with the classes, sample subclasses where they apply, and a
reference to the classes and their members.

Listing 1-0
Figure 1-0
Table 1-0

This manual is still in draft format. Please forward all corrections and
comments to v-twin@apple.com.

vi
©1996, 1997 Apple Computer, Inc. 3/12/97

P R E F A C E

C H A P T E R 1

1-1
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Introduction to the Apple
Information Access Toolkit 1

Some Possible Applications 3
RecipeSwap 3

How It Was Done 4
Indexing Facility 4
Search Facility 6
Analysis and Filtering 8
Storage and Document Type 9

Construction with IAT 10

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

1-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

In this chapter we

■ propose some sample applications that might be built using the IAT

■ provide an overview of information access items required to do these tasks

■ describe how IAT provides the features needed for strong information access
application development.

Listing 1-0
Figure 1-0
Table 1-0

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

Some Possible Applications 1-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

The Apple Information Access Toolkit (IAT) is an object-oriented information access
engine that provides required capabilities to index, search, and analyze large volumes of
documents. The IAT, formerly known by its code name “V-Twin,” is a collection of tools
which can be used separately or together to perform a variety of information access tasks.

1Some Possible Applications

IAT is a flexible toolkit that may be used in many applications. This is one possible
scenario that we’ve chosen to present some of its features.

RecipeSwap 1

Chef Irina Suflay has a very successful cookbook business going. She provides an on-line
service to other gourmet cooks to distribute recipes. They must provide one new recipe
per week (and a small fee...) to receive full access to her impressive database. This access
allows them to search the database for certain recipes.

The application that allows Chef Suflay this success does these things:

■ It automatically picks up e-mailed recipes, checks them against the database, files
ones that are unique, and produces a report of those that may be duplicates of ones
already on file.

■ It allows a rapid search and delivery of recipes by natural language query. This search
delivers the “top ten” recipes that fit the query closest.

For example, if Ira Goodcook sends in his favorite recipe for prune confit, Irina’s system
receives the recipe, matches it against the stored e-mails to see if there might already be a
recipe for prune confit, and indexes it if it is not likely to be a duplicate. If it might be
(perhaps a recipe for prune loaf exists), a report is produced listing those likely
candidates for duplication for Irina’s information. Irina can manually cause the system
to accept the recipe if she decides it is not a duplicate.

When Ira inquires to find a recipe that has kumquats, cilantro, and avocado (those being
the best things located at the produce market that day), the system will list the top ten
recipes most likely to be a match, and show which of those ingredients are found in the
recipe. These recipes will be in priority order, that is, one containing all three ingredients
and very little else will be at the top of the list; one containing only one among many
other ingredients will be found at the bottom.

And, currently, this system does it all on a Macintosh sitting in Irina’s extra large pantry.

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

1-4 How It Was Done

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

1How It Was Done

Indexing Facility 1

Applications of the RecipeSwap type require that indexes be made of a large set of
documents. A document is a collection of data containing some text. Documents may be
on different media, or in different formats. For example a word processing file, an e-mail
message, or a database record may be documents. An index is a representation of the
contents of a set of documents. Different types of indexes have different information
about the set so different operations may be run on the index.

Indexes generally contain terms. A term is the basic unit of text that gets indexed. A term
is typically a word, but may be a phrase or a modified form of a word.

There are different types of indexes. An inverted index is a table of all terms found in the
collection, with pointers to which documents contain the term. An inverted index is
similar to the index in the back of a book; rather than point to a page, it points the
document containing the term. Figure 1-1 shows an example of an inverted index.

❄

❄

❄

❄

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

How It Was Done 1-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 1-1 An inverted index

An inverted index makes it very easy to search for documents containing specific words.
However, Irina wants to be able to search for recipes similar to a given recipe. A vector
index can do this efficiently.

A vector index is a table of all documents stored in the collection which points to terms
that are contained in each document. In order to determine if a document exists that is
very similar, a vector index is used. Figure 1-2 shows an example of a vector index.

Prune Confit
12 Prunes

1 lb. Butter

1/2 c. Sugar

Mash the prunes until a paste. Line a

loaf pan with butter. Mix the prune

paste with sugar, then toss in the

pan. Refrigerate for 1 day before

eating.

Inverted Index
Term # Docs Doc Names # times in Doc

butter 35 ...

Prune Confit 2

Prune Danish 2

...

confit 2 Duck Confit 1

Prune Confit 1

danish 7 Apple Danish 1

Cheese Danish 1

Prune Danish 1

prune 2 Prune Confit 4

Prune Danish 3

Prune Danish
12 Prunes

2 Tb. Butter

1/2 c. Sugar
1 batch Puff Pastry
Icing
Mash the prunes until a paste. Add

the butter and sugar. Place in a puff

pastry shell. Bake as directed for

pastry. Frost with icing Refrigerate

for 1 day before eating.

❄

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

1-6 How It Was Done

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 1-2 A vector index

To allow more efficiency of time and space, IAT supports a single inverted vector index
that combines the organizations found in both inverted and vector. As RecipeSwap has
may uses for its index, it uses an inverted vector index.

Search Facility 1
The RecipeSwap system requires a ranked search facility for its queries. It promises a list
of the top ten recipes, not just any recipes that match the query from the patron. This
means the system must weigh the results of the search and know which documents are
the best match for the query. A ranked search provides a score for the closeness of the
match, which allows the system to list the search results from best to worst.

RecipeSwap system requires a search to find matches to a simple query. A simple query
is a list of terms. The search provides a ranked list of hits, that is the document that
contains at least one those terms, its score, and the terms it has. The patron requesting
recipes would be prompted to put in a few terms. Then the top recipes matching those
terms could be found. A request for prunes, butter, sugar would find all recipes
containing any of these, but would only report those with the whose score were among
the top ten, as seen in Figure 1-3. Recipes containing more than one of these terms,

Vector Index

Terms
Document Total # terms butter confit danish prune
Prune Confit 5 2 1 0 4

Prune Danish 9 2 0 1 3

Prune Confit
12 Prunes
1 lb. Butter
1/2 c. Sugar

Mash the prunes until a paste. Line a

loaf pan with butter. Mix the prune

paste with sugar, then toss in the pan.

Refrigerate for 1 day before eating.

Prune Danish
12 Prunes
2 Tb. Butter
1/2 c. Sugar
1 batch Puff Pastry
Icing

Mash the prunes until a paste. Add the

butter and sugar. Place in a puff pastry

shell. Bake as directed for pastry. Frost

❄

❄

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

How It Was Done 1-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

containing these terms many times, or containing very few other terms than these terms,
would get the highest scores.

Figure 1-3 Sample output of a simple query

A ranked search is more powerful than a Boolean search, found in older information
retrieval systems. A Boolean search requires the user to specify whether matches must
contain all the query words or only any of the query words. The result is often a “feast or
famine;” either a daunting unsorted list of too many items, or a sparse list of too few. A
query written with find prunes OR butter OR sugar would find every recipe made with
butter whether or not it had prunes. There would be an unranked long list. One written
as find prunes AND butter AND sugar would not find “Amazing Prune Danish” if it
used margarine rather than butter. (Note: The IAT does support Boolean search for those
applications that require it.)

There is another type of query in RecipeSwap. When a new recipe comes in, it is used as
the query with a request to find a similar recipe. That is, the recipe itself is used as a
source of terms, and the system is asked to locate the any documents that might be
duplicates. This is a query by example, which will start a ranked search using all of the
terms found in the sample document. These terms will be weighed by their frequency
both in this document and in all the documents within the index. This allows the search
to provide those documents which are most relevant, that is, most similar to the query
document. It would not be useful just to get a list of any document that contains any
term in the recipe, and nearly impossible to find a document containing exactly the same
terms as in the recipe. The search provides a list of the closest documents which are
scored for their closeness. This score provided is the relevance factor.

This search would produce output that lists just those documents scored sufficiently
high, as seen in Figure 1-4. Those which may have some hits, but are below a chosen
threshold, would not appear.

Recipes Containing Prune, Butter, Sugar

Score Document Name
1.0 Prune Confit (prune, butter, sugar)

.84 Prune Danish (prune, butter, sugar)

.74 Amazing Prune Danish (prune, sugar)

❄

❄

❄

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

1-8 How It Was Done

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 1-4 An example of output for a query-by-example.

Analysis and Filtering 1
A system must be able to identify the terms in a document to build an index from it. This
analysis of its content is done in several steps. First a document’s characters are grouped
into tokens. A token is a set of consecutive characters in a document which might be
considered a term upon further analysis. The tool which converts a text stream into
tokens is known as a tokenizer. An alphabetic tokenizer, for example, will take a text
stream and gathers consecutive alphabetic characters into tokens. When it finds a
number, space, or punctuation mark in the stream it ends the token it was building,
discards the intervening non-alphabetic characters, and starts the next token when it
finds an alphabetic character.

Indexes are more useful if the analysis filters tokens. A filter removes or alters tokens
based on certain rules. For example, the RecipeSwap index should not think that Prune,
with a leading upper-case character, and prune, all lower-case, are different terms. A
downcase filter will convert any upper-case character in a token to a lower case character.

IAT provides the ability for a developer to build and include specialized application
filters. This allows the facility for smarter queries. One of these might be a stop word
filter, which discards terms that are found in a stop list. Stop words are typically
common words that do not add to the meaning of a document such as “the,” but might
be terms that are not useful in a specific application. Few patrons would be interested in
locating recipes that contain the term “cup” in common. Irina needs the ability to
successively create a stop list, or those terms to be excluded by the stop word filter, of
words that should not be considered when comparing recipes. When the documents are
indexed, these words would not be taken into consideration.

Figure 1-5 shows the effects of the use of a tokenizer and successive filters on a phrase
from a recipe. The ShortWord Filter removes tokens that are under three characters. The
Downcase Filter turns all characters to lower case.

Possible Duplicates of Prune Danish

Score Document Name
1.0 Amazing Prune Danish

.90 Prune Puffs

.83 Apple-Prune Danish

.81 Prune Confit

❄

❄

❄

❄

❄

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

How It Was Done 1-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 1-5 The use of tokenizer and filters

Storage and Document Type 1

IAT uses the power of object-oriented design to keep the storage media and document
type separate from the indexing and analysis logic.

StopWordFilter

ShortWordFilter

DowncaseFilter

Add in 2 squares of Bakers Chocolate

Chocolate

squares

of

Bakers

in

Add

squares

Chocolate
Bakers

squares

add

chocolate

bakers

chocolate

bakers

Add

squares

AlphaTokenizer

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

1-10 Construction with IAT

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Indexes must be maintained in persistent storage, such as a hard disk. IAT builds its own
tools, or classes, for the logical storage of indexes. Developers may create sub-classes of
these classes to work optimally on their media, including cross-platform support.

IAT allows the developer to build an interface from the actual document to the logical
document used to build the indexes. Each index maintains a separate corpus, or body of
documents. This corpus does not contain the actual documents, but maintains a
directory of them. It can then access these documents and locate the text within them
much as a directory points to the actual files in a file system. A facility within the corpus
accesses the document and provides text streams for analysis. Because of this, the
RecipeSwap corpus, seen in Figure 1-6, needs only to provide a means of locating the
e-mail messages and translating them to a text stream for analysis. IAT remains
independent of the document type from there on.

Figure 1-6 The RecipeSwap corpus

IAT is written in ANSI C++ for compatibility with a variety of development and target
environments.

1Construction with IAT

The classes of the IAT toolkit constitute the core of an application. IAT contains base
classes to do the storage, analysis, etc. required for information access applications.
Many applications can be developed by adding little more than a GUI to the toolkit.

The power of object-oriented design, however, allows developers to modify the behavior
of the IAT classes by creating subclasses. For example, IAT provides a class to do a
simple analysis. RecipeSwap requires a slightly smarter analysis; it must not include
common terms that do not distinguish recipes in its index. The developer can create a

❄

❄

Document ID
and text

IAT Tools
E-Mail
Corpus
ClassesE-Mail

System

E-mail ID and
Information

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

Construction with IAT 1-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

subclass of the abstract filter class included in the toolkit, and just add the application
specific code. There is no need to “alter,” and possibly impair, the provided classes.
There is little need to duplicate logic already present in those classes.

A typical application will have three layers as seen in Figure 1-7. The core of the
application will be the classes provided by IAT. The developer will develop specialized
subclasses where required for his application in a second layer. The application itself will
provide the user interface to the system and add the procedural structure for using the
toolkit classes and functions.

Figure 1-7 The layers of an information access application

Application Specific Subclasses

Application Interface

IAT Tools

C H A P T E R 1

Introduction to the Apple Information Access Toolkit

1-12 Construction with IAT

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 2

Overview of IAT Content 2

Facilities of IAT by Category 3
Index 4
Accessor 6
Analysis 8
Corpus 12
Storable 14
Storage 15

C H A P T E R 2

Overview of IAT Content

2-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

In this chapter we

■ review the major categories, or related areas of tools, in IAT

■ show the major relationships between classes in those categories

■ discuss the possible subclasses that might be built for applications.

This chapter is an overview. Please see the later detailed chapters for more information
on each category.

Listing 2-0
Figure 2-0
Table 2-0

C H A P T E R 2

Overview of IAT Content

Facilities of IAT by Category 2-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

2Facilities of IAT by Category

The tools within the IAT are organized by category. Each category contains related
classes for an area of Information Access.

0

Each of the categories contains classes that provides base functionality. Many of the
classes can be used as a base class for subclasses which can provide additional,
application specific, functionality. The developer will generally have to add a control and
user interface framework to use the tools provided. This section describes each of the
class categories, some possible subclasses (many others not mentioned are possible), and

Table 2-1 Class categories within IAT

Index Mapping between documents and terms. The
construction and maintenance of indexes.

Accessor Use (usually search) of indexes.

Analysis Transform input text to index terms.

Corpus Definition of the set of documents; the means
of obtaining text from the documents

Storage Management of persistent storage, the storage
of indexes.

Storable Organization of persistent data. The data
structure of stored data.

C H A P T E R 2

Overview of IAT Content

2-4 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

the specific subclasses required for to implement the sample applications described in
the previous chapter.

The Class Diagram Notation

Index 2

The index category contains the classes required for the creation of an inverted index, a
vector index, and the combination of the two. This class locates the document text
through the corpus classes, extracts terms with the analysis classes, and builds the index.
This index is persistently stored using the storage classes.

Figure 2-1 shows the relationships between the major classes. An IAIndex points to one
IAAnalysis, which it uses to extract terms, one IACorpus, which is used to locate
documents and get text, and one IAStorage, where any information that must persist
(this includes the index, its corpus and its analysis) resides.

The class diagrams used in this chapter and
throughout the chapter are based on a modified Object
Modeling Technique (OMT) notation as used in the
book Gamma, Erich et al. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley
Publishing Company, Inc. Reading, Massachusetts,
1995. More can be found on the OMT notation in
Rumbaugh, James, et al. Object-Oriented Modeling and
Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

The arrowhead represents a relationship between
the two classes.

The relationship is labeled from the perspective of
the client class at the source of the arrow. A diamond at
the base of the relationship indicates an aggregate
relationship. This means the client “contains” the class,
that is, the class is a part of the client. A dark circle at
the end means that more than one of the client type
may be instaniated by a single source object.

A triangle indicates inheritance.

If the class name is in italics, such as IACorpus, it
is an abstract class and may not be instaniated. If it is
in regular font, such as HFSCorpus, it is an instantiable
subclass.

IACorpus

IADoc

manages

IACorpus

HFSCorpus

C H A P T E R 2

Overview of IAT Content

Facilities of IAT by Category 2-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-1 Relationships of the index classes

Possible Subclasses 2

Figure 2-2 shows the inheritance diagram for the index classes. Although TermIndex can
be instantiated, it is unlikely an application would want to. It is used as the base class for
InvertedIndex and VectorIndex.

IAAnalysis

IAIndex IAStorage

IACorpus

extracts terms using

locates docs using

resides in

C H A P T E R 2

Overview of IAT Content

2-6 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-2 Index inheritance

Most applications, including the RecipeSwap example, will not need to subclass an index.

For more information about this category, please see Chapter 5, “Index Category.”

Accessor 2
The accessor classes allow for the search and comparison of indexes.

There is a parallel inheritance structure for accessor classes (shown in Figure 2-3).

InVecIndex

IAIndex

TermIndex

InvertedIndex VectorIndex

C H A P T E R 2

Overview of IAT Content

Facilities of IAT by Category 2-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-3 Accessor hierarchy

The RankedAccessor provides a Ranked Hit for every document that contains terms
sought in a search. As seen in Figure 2-4, this RankedHit identifies the document, the
index containing the document, and a list of terms found in the document. It also
provides a score indicating how relevant this document is to the query.

IAAccessor

RankedAccessor

InvertedAccessor VectorAccessor

InVecAccessor

C H A P T E R 2

Overview of IAT Content

2-8 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-4 Relationships in a ranked search

Possible Subclasses 2

Like the Index category, the Accessor category contains a class, RankedAccessor, that is
the parent of the InvertedAccessor and VectorAccessor. Developers will only create an
accessor subclass if they create a different index.

No subclasses of accessor were required in the RecipeSwap examples above.

For more detail on this class category, please see Chapter 6, “Accessor Category.”

Analysis 2
The analysis category provides the tools for locating terms in a text stream. Figure 2-5
shows that the abstract class, IAAnalysis produces a token stream, IATokenStream. This
stream contains tokens, which are terms and the position of the term in the input text
stream.

RankedAccessor IADocTermIndex

RankedHit

IATerm

reports

searches

found in

indexed

matching

IAIndex* index;
IADoc* doc;
IATerm** matchingTerms;
float score;
uint32 matchingTermsLen;

C H A P T E R 2

Overview of IAT Content

Facilities of IAT by Category 2-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-5 Relationships between analysis and tokens

One implementation of IATokenStream must be a tokenizer; that is, the tool that takes a
stream of characters and provides tokens. A specialized subtype of a IATokenStream is
an IATokenFilter; that is, a tool which takes in a token stream, alters the stream in some
fashion, and provides a new token stream.

IAT provides an example set of analysis subclasses. Figure 2-6 shows the tokenizer and
filters provided.

IATokenStream

IAToken IATerm

IAAnalysis

makes

contains

contains

IATerm* term;
const uint32 startPos;
const uint32 endPos;

byte* data;
const uint32 dataLen;

C H A P T E R 2

Overview of IAT Content

2-10 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-6 Provided tokenizer and filters

AlphaTokenizer removes all blanks, punctuation and other special characters, and
numbers from the input text stream. It provides StringTerms, which is a subclass of
IATerm that implements terms as characters. The short word filter eliminates tokens
shorter than a certain length and the downcase filter converts all tokens to lower case
letters.

This category provides SimpleAnalysis, a subclass of IAAnalysis, which uses
AlphaTokenizer, DowncaseFilter, and ShortWordFilter. Figure 2-7 shows the analysis
implementation provided with IAT.

IATokenStream

ShortWordFilterDowncaseFilter

AlphaTokenizer

AlphaTokenizer(DocTextCharStream* charStream);

IATokenFilter

IATokenFilter(IATokenStream* source);

C H A P T E R 2

Overview of IAT Content

Facilities of IAT by Category 2-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-7 A SimpleAnalysis

DocTextCharStream is a utility which locates characters in an IADocText.

Possible Subclasses 2

The developer may wish to develop a specialized tokenizer that accepts a custom text
stream, or tokenizers for other languages requiring different logic for locating tokens.

The developer may wish to create a subclass of IATokenFilter to provide specialized
filters such as stemmers (those which shorten words to the root) or stop lists (lists of
terms not to be included in the index).

There are abstract classes IAToken and IATerm which may require creation of subclasses
if a non-textual language is chosen.

AlphaTokenizer DocTextCharStream

StringTerm

SimpleAnalysis

extracts

gets token stream from

gets characters from

DowncaseFilter

ShortWordFilter

filters

filters

C H A P T E R 2

Overview of IAT Content

2-12 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

New analysis subclasses will be required whenever different filters or tokenizers are
used than the combination provided in SimpleAnalysis. RecipeSwap, for example, will
require a new filter, StopWordFilter, and a new analysis subclass, StopWordAnalysis.

Figure 2-8 Analysis subclasses created for RecipeSwap

For more information on the analysis category, please see Chapter 7, “Analysis
Category.”

Corpus 2

The IAT index is written to work with a set of logical documents. It is the job of the
corpus classes to keep track of this set as it exists physically, and provide the text from
the documents in a consistent logical format. The corpus is the interface between the IAT
index and the actual items being indexed. This allows those items to be in a variety of
formats, such as text files in a Macintosh HFS folder, e-mail messages in a database, or
even subsets of text from a single physical document.
The logical document, characterized by the class IADoc, is similar to a directory entry: it
contains the location of the document and pertinent attributes, not the document itself.
When the document content is needed, it is obtained through the class IADocText. Figure
2-9 shows the relationships between the abstract classes.

Simple Analysis

StopWordAnalysis

IATokenFilter

StopWordFilter

IAT

Application

C H A P T E R 2

Overview of IAT Content

Facilities of IAT by Category 2-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-9 Corpus abstract classes

The classes of the corpus category provide the facility to locate the documents, detect
which have changed, which are new, or which have been deleted. The corpus maintains
an iterator which can provide a list of the documents used for a particular index.

This category currently contains implementations for HFS text files, and an iterator to
locate all text files in an HFS Folder. These are shown in Figure 2-10.

obtains from document file

GetNextBuffer(byte* buffer, uint32 bufferLen);

IADocText

IADocText* GetDocText(const IADoc* doc);

IACorpus

IADocIterator

obtains in order

constructs

IADoc

GetName()

C H A P T E R 2

Overview of IAT Content

2-14 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-10 The Macintosh HFS subclasses

Possible Subclasses 2

Any other type of document or storage medium besides Macintosh HFS will require a
subclass of IACorpus.

RecipeSwap, for example, would require an e-mail Corpus to locate the e-mail message
body within the e-mail mailboxes. This will include subclasses of IACorpus, IADoc, and
IADocText.

For more information, please see Chapter 8, “Corpus Category.”

Storable 2

The storable classes provide a data structure mechanism to allow the organization, and
access of very large sets of objects that must be quickly accessed from persistent storage.

HFSTextFolderDoc HFSTextFolderCorpusreads

reads

extracts

traverses folders

HFSVolumeInfo

short vRefNum;

HFSCorpus

HFSVolumeInfo** volumeInfos;

HFSDoc

unsigned short vRefID
short dirID;
StringPtr fileName;

HFSDocText

HFSDocText
	 (short vRefNum,
	 long dirID,
	 StringPtr name);

long rootDirId;long modDate;

HFSIterator(short vRefNum, long rootDirId=2)

CInfoPBRec* pb

HFSIterator

C H A P T E R 2

Overview of IAT Content

Facilities of IAT by Category 2-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 2-11 The storable classes

An IAStorable is the supertype of any object that may be stored in persistent data. It
provides for the access of storage. An IAOrderedStorable is a storable that can be
uniquely identified; any subclass of IAOrderedStorable will contain one or more data
members that can be used as a key, or unique identifier, for the item.

An IAOrderedStorableSet is the structure of IAOrderedStorables. It allows for the update
of the collection, and creates an IAOrderedStorableIterator, which obtains the stored
objects in sequence.

Possible Subclasses 2

These classes are mainly used internally in IAT. For example, IATerm and IADoc are
both IAOrderedStorables. Applications may wish to use the facility, however, to create
their own stored objects. To do so, a subclass must be created of IAOrderedStorable.
IAOrderedStorableSet and IAOrderedStorableIterator do not require subclasses; they
will work with any IAOrderedStorable subclass.

For more information, please see Chapter 10, “Storable Category.”

Storage 2
Storage contains those classes which allow for the access and creation of persistent files
on storage media. IAT contains its own logical storage system that maintains blocks of

IAStorable

IAOrderedStorable

IAOrderedStorableIterator

obtains in order

constructs

IAOrderedStorableSet

C H A P T E R 2

Overview of IAT Content

2-16 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

storage. Figure 2-12 shows the principal storage classes. IAStorage serves as the manager
of the blocks; it allocates and deallocates them and maintains a table of contents of the
blocks. IAStorage also creates the IAStoreStream. IAStoreStream does the actual I/O to
the storage medium.

Figure 2-12 Logical relationships between storage classes

IAT provides an implementation of storage for Macintosh HFS. No HFSStorage class is
needed; a utility, MakeHFSStorage, creates an HFSStoreStream and invokes the
constructor for IAStorage with that HFSStoreStream. HFSStoreStream provides the
access to the Macintosh Tool Box to open, read, and write the files.

IAStorage
IAStoreStream

IAInputBlock

addresses (friend)

contains

writes via (friend)

reads via (friend)

IAInputBlock
	 (IAStorage* storage,
	 IABlockID blockID);
ReadByte();

IABlockID Allocate()
 Deallocate(IABlockID)

IAOutputBlock

IAOutputBlock(IAStorage s,
 IABlockID bID,
 IABlockSize size);
WriteByte();

C H A P T E R 2

Overview of IAT Content

Facilities of IAT by Category 2-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Possible Subclasses 2

The developer may wish to subclass IAStoreStream to allow for storage on other media
or platforms than Mac HFS.
For more information, please see Chapter 9, “Storage Category.”

C H A P T E R 2

Overview of IAT Content

2-18 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 3

Designing an Application 3

Determining High Level Requirements 2
Determining the External Interfaces 2

Mapping to IAT Classes 3
Internal Task Design 5

Recipe Query 6
Submit Recipe 11
Duplicate Recipe 15
Stop Word Maintenance 16
Database Creation 18

C H A P T E R 3

Designing an Application

3-2 Determining High Level Requirements

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

This chapter discusses the required application design for the RecipeSwap scenario
outlined in the introduction. The focus is on choosing subclasses and the design of the
controlling programs.

Listing 3-0
Figure 3-0

3Determining High Level Requirements

Determining the External Interfaces 3

The application will provide the external interface of the system.

Figure 3-1 The external interface of RecipeSwap

Each of the dialogs illustrated in Figure 3-1 will become tasks.

Duplicate recipe: if the recipe submitted by a patron seems to be too close to another
already on the database, Irina is notified. She can decide whether to delete the submitted
recipe, or to keep it.

Database creation: the database must be initially created and stored. Chef Irina will
decide upon its name and place.

Stop word maintenance: Chef Irina decides which terms to add to the stop word list to
prevent them being used in indexing the recipes.

Submit recipe: patrons must submit at least one recipe per week. These come in by
e-mail, and are added to the index. Those which are close to other recipes on the
database may be flagged as possible duplicates, initiating a duplicate recipe dialog with
Irina.

Recipe query: patrons may ask for the ten closest recipes containing the terms in the
query.

submit recipe

recipe query

stop word maintenance

database creation

duplicate recipe

RecipeSwap

C H A P T E R 3

Designing an Application

Mapping to IAT Classes 3-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

The actual design of the dialogs is not directly connected with IAT, so we won’t discuss it
further. Our work is inside the box: the interface with IAT.

3Mapping to IAT Classes

One way to begin determining the IAT classes required is to examine the persistent data
required for the tasks. This data will most likely become stored objects.

Figure 3-2 RecipeSwap persistent data

Each of these can be assigned to the proper IAT category, then the category can be
researched to see the closest IAT match.

The index is clearly an Index; stop word is a part of Analysis. The remaining data types
are the storage of the recipes themselves. This is the corpus; the IAT classes will have to
interface with this stored object.

recipe indexstop word

email recipe email recipe database
persists in

indexed in filtered by

C H A P T E R 3

Designing an Application

3-4 Mapping to IAT Classes

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-3 The related categories

Corpus

Analysis

Indexrecipe indexstop word

email recipe email recipe database
persists in

indexed in filtered by

C H A P T E R 3

Designing an Application

Internal Task Design 3-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Table 2-2 Association with Classes

For information on how to create the corpus subclasses, please see “Creating Corpus
Subclasses” beginning on page 8-7.

For information on how to create the analysis subclasses, please see “Creating Analysis
Subclasses” beginning on page 7-9.

3Internal Task Design

Each of the dialogs listed above is associated with a task. This section will break down
each task into subtasks for clarity, and show the interaction with IAT objects.

Object
Associated
Classes Modification Required New Subclass

e-mail recipe IADoc Specific subclass for e-mail body and
related fields to locate this within
folder. EmailDoc.

EmailDoc

IACorpus Specific subclass for the e-mail. Relates
the doc to the text. EmailCorpus

EmailCorpus

IADocText Specific subclass to implement the
location of text within an e-mail body.
EmailDocText.

EmailDocText

IADocIterator Specific subclass to locate specific
e-mails within the e-mail corpus, and to
provide them in sequential order.
EmailIterator.

EmailIterator

recipe index InVecIndex Most powerful index. Query speed
important and must have ability to do
similarity checking. No subclass
required.

(none required)

InVecAccessor The accessor for an InVecIndex. No
subclass required.

(none required)

HFSStorage The required class to store the index;
the existing IAT implementation of
Macintosh storage is sufficient. No
modification required.

(none required)

stop word IATokenFilter A filter to be used to eliminate terms.
Subclass required; IAT provides no
specific filter. StopWordFilter

StopWordFilter

IAAnalysis An analysis that is able to apply the
stop word filter. Subclass required.
StopWordAnalysis.

StopWordAnalysis

C H A P T E R 3

Designing an Application

3-6 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

The subtasks are likely to reside in the same program; the decomposition is for clarity.

Recipe Query 3

Description 3

The patron will submit a query as a string of terms. The application will search the
recipes in the database, and provide those ten recipes that are the closest match to the
terms.

Subtasks 3

Recipe query is a simple query. The application must construct a dialog with the patron
to get a simple text query. Figure 3-4 shows the subtasks of this query.

recipe query

C H A P T E R 3

Designing an Application

Internal Task Design 3-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-4 Subtasks of recipe query

Establish recipe index 3

The recipe index is presumed to be existing. It must be located in storage and opened. It
is opened as read only as no update is involved. See “Establishing an Existing Index”
beginning on page 5-11 for a generic reference and sample code.

The new index object must be created with the same corpus type and analysis type as
those with which the recipe index was originally created. The emRecipeDB is the e-mail
Recipe Database folder. Opening the index allows the existing index to be read from
storage. Figure 3-5 shows which objects and operations will be used to establish the
recipe index.

1
Establish
Recipe
Index

3
Query

Accessor

recipeInVecIndex

email recipe database

query

2
Build Accessor

recipeInVecAccessor

4
Report

Recipes

matching recipe

(matched)
query

aRankedHitArray

C H A P T E R 3

Designing an Application

3-8 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

The Interaction Diagram Notation

Figure 3-5 and other similar diagrams used in this
manual are based on a modified interaction diagram
notation as used in the book Gamma, Erich et al.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts, 1995.

An interaction diagram shows the member
functions called over time during a specific task. Time
flows from top to bottom. A column shows an object
and its lifetime. Its vertical line is dashed before the
object exists. A rectangle lies on the line when the
object is active. A solid vertical line shows the object
exists, but is not active. Objects are generally named as
“aClassName.”

Arrows entering active objects are messages, or
calls to member functions. Those not coming from
another object are invoked by the task itself. Dashed
arrows construct an object.

This example shows the process of creating an
iterator and looping through documents. The task calls
GetDocIterator on an existing object, anInVecIndex.
This iterator will create the object anIADocIterator.
When the task invokes GetNextDoc(), it will create the
object anHFSDoc.

The code for this diagram would be as follows:

IADocIterator* anIADocIterator
anInVecIndex.GetDocIterator();

HFSDoc* anHFSDoc
while(anHFSDoc=(HFSDoc*)anIADocIterator->

GetNextDoc()) {
}

anInVecIndex

new

anIADocIterator

GetDocIterator()

GetNextDoc()

new

anHFSDoc

C H A P T E R 3

Designing an Application

Internal Task Design 3-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-5 Interaction diagram for establishing a recipe index

Build Accessor 3

After it is established, the recipe index can be used to create an accessor. Accessors can be
built to handle more than one index; although we only have one, we must place the
recipe index into an array for construction. Figure 3-6 shows the objects and operations
required to build an accessor.

See “Building an Accessor” on page 6-6 for more general information on constructing
accessors.

recipeStorage

new(emRecipeDB)

Open(readOnly)

aStopWordAnalysisanEmailCorpus

MakeHFSStorage
(vRefNum, dirID, name)

new (recipeStorage, anEmailCorpus, aStopWordAnalysis)

Open()

new

recipeInVecIndex

C H A P T E R 3

Designing an Application

3-10 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-6 Interaction diagram for building an accessor

Query Accessor 3

This is a simple query. See “Answering Queries” on page 6-7 for more information on
queries in general.

The application may wish to establish a progress reporting function. AProgressFunction
is a function located within the application program whose address is passed to the
accessor. The accessor will invoke this function every frequencyOfProgress ticks. See
“Reporting Progress” on page 6-7.

Figure 3-7 shows the objects and operations required for doing the search.

recipeInVecIndex

new

anInVecIndexArray recipeInVecAccessor

new(anInVecIndexArray, numberIndexes))

anInVecIndexArray[0]=recipeInVecIndex

C H A P T E R 3

Designing an Application

Internal Task Design 3-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-7 Interaction diagram for a simple query

Report Recipes 3

Each RankedHit will contain the necessary information to locate the email doc in the
database. Report Recipes matches the hits to the database, and passes along the top
matching recipes to the patron. This is application code outside of the IAT interface, so
we won’t show the internal design here.

Submit Recipe 3

Description 3

The patron submits recipes to the system via e-mail. Each recipe is added to the index.
The task then uses the recipe as a query to find similar recipes. These might be
duplicates. If similar recipes are found, they are reported to the chef.

Subtasks 3

Figure 3-8 shows the subtasks used to add the recipe.

aProgressFunction

new[numberDocs]

aRankedHitArray recipeInVecAccessor

RankedSearch(query,queryLen, NULL, 0, numberTermsPerDoc,
 aProgressFunction, frequency Of Progress)

.score

submit recipe

C H A P T E R 3

Designing an Application

3-12 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-8 The subtasks of submit recipe

Establish Recipe Index 3

The recipe index is already in storage and must be established. This is the same as recipe
query except that the storage must be opened “writable” to allow the index to be
updated. See “Establish recipe index” on page 3-7.

Add Recipe 3

The email recipe must be added to the corpus (which is done be adding it to the email
recipe database) and then added to the index. This is an individual update of the index;

1
Establish
Recipe
Index

5
Query By
 Example

recipeInVecIndex

email recipe database

aRankedQueryDoc

4
Build Accessor

recipeInVecAccessor

6
Report

Duplicates

duplicate recipe

aRankedHitArray

2
Add Recipe 3

Build
RankedQuery

DocanEmailDoc

C H A P T E R 3

Designing an Application

Internal Task Design 3-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

for more information on doing this in general, see “Updating by Individual Document”
on page 5-16.

Figure 3-9 shows the objects and operations required to add a document to the index.

Figure 3-9 Interaction diagram for add recipe

Build Ranked Query Doc 3

Locating possible duplicates requires a query by example. The recipe is used as an
example to an accessor built from the index. The accessor will locate recipes using
similar terms. Any recipe that is not the selected recipe but that scores above 0.8 is
considered to be a possible duplicate.

See “Answering a Query by Example” on page 6-11 for more information on doing a
query by example.

The first step in doing this query is to build the example document. This is a ranked
query doc; that is, a document that will be used for a ranked query on the index. Figure
3-10 shows the objects and operations for creating this example.

recipeInVecIndex

new

anEmailDoc recipeStorage

AddDoc(anEmailDoc)

Flush()

Commit()

C H A P T E R 3

Designing an Application

3-14 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-10 Interaction diagram for creating a RankedQueryDoc

Build Accessor 3

The accessor is built for the index just as it was in the recipe query. See “Build Accessor”
on page 3-9.

Query By Example 3

The query by example is similar to the simple query, only a RankedQueryDoc, rather
than a string of terms and its length, is provided to the RankedSearch function.

There may not be a progress function required if the application does not need to display
progress.

Figure 3-11 shows the objects and operations to do the search.

recipeInVecIndex

new

anInVecIndexArray

anInVecIndexArray[0]=recipeInVecIndex

anEmailDoc

new(anEmailDoc, anInVecIndexArray)

aRankedQueryDoc

C H A P T E R 3

Designing an Application

Internal Task Design 3-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-11 Interaction diagram of query by example

Report Duplicates 3

Report duplicates uses the array of ranked hits provided by the query. The top document
in this array is the submitted recipe. Those following are the closest matches, in order.

Each ranked hit contains anEmailDoc for the recipe. This object has the necessary
information to locate the recipe on the database and report any possible duplicates to the
chef.

Duplicate Recipe 3

Description 3

Recipes which might be duplicates are queued. The chef will initiate a review of these
recipes, and indicate which are to be deleted from the index.

Subtasks 3

This is also an individual update.

The recipe index must be established as above (see “Establish recipe index” on page 3-7).
The storage should be opened as “writable.” Each document will be deleted from the

aProgressFunction

new[numberDocs]

aRankedHitArray recipeInVecAccessor

RankedSearch(NULL, 0, aRankedQueryDoc,numberDocs,
numberTermsPerDoc, aProgressFunction, frequency Of Progress)

aRankedQueryDoc

.score

duplicate recipe

C H A P T E R 3

Designing an Application

3-16 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

index, then from the database. Storage is committed only after all deletions have been
done.

Figure 3-12 shows the objects and operations to delete recipes from the index.

Figure 3-12 Interaction diagram for deleting recipes from the index

This is another individual update. See “Updating by Individual Document” on page 5-16
for more general information.

Stop Word Maintenance 3

recipeInVecIndex

new

anEmailDoc recipeStorage

DeleteDoc(anEmailDoc)

Flush()

Commit()

Compact()

stop word maintenance

C H A P T E R 3

Designing an Application

Internal Task Design 3-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Description 3

The application will provide a means for the chef to review and update a list of stop
words, that is, words which should not be considered as content terms when found in a
recipe (such as cup).

When the stop list is updated, all recipes should be re-analyzed to reflect the new filter.
This is done by the Update() function, which will synchronize the index with its corpus
and re-analyze all documents.

Subtasks 3

This task is small enough that no subtasks are required.

Even though the storage already exists, the application should initialize the storage and
create the index as new for this update, as every document will be re-analyzed.

See “Synchronizing an Index to the Corpus” on page 5-15 for more information on this
function in general.

Figure 3-13 shows the objects and operations required to rebuild the index and reanalyze
all the documents.

C H A P T E R 3

Designing an Application

3-18 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-13 An interaction diagram for a complete update

Database Creation 3

Description 3

The creation of a new database is a “one-time” task. It initializes an empty database and
recipe index. The database initialization is application specific, and must be done before
the index creation.

For more general information on creating indexes, see “Creating an Index” on page 5-8.

Figure 3-14 shows the objects and operations required to create a new index.

recipeStorage

new(emRecipeDB)

Initialize()

aStopWordAnalysisanEmailCorpus

MakeHFSStorage
(vRefNum, dirID, name)

new (recipeStorage, anEmailCorpus, aStopWordAnalysis)

Update()

new

Commit()

recipeInVecIndex

Initialize()

database creation

C H A P T E R 3

Designing an Application

Internal Task Design 3-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 3-14 Interaction diagram for initializing an index

recipeStorage

new(folderName)

Initialize()

aStopWordAnalysisanEmailCorpus

MakeHFSStorage
(vRefNum, dirID, name)

new

new

Commit()

recipeInVecIndex

Initialize()

C H A P T E R 3

Designing an Application

3-20 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 4

Common Practices in IAT 4

Primitive Types 3
Globals 3
Exceptions 3

Exception codes 4
Throwing Exceptions 4

Memory Allocation 5
Base Classes 10
Deletion of Allocated Memory 13

C H A P T E R 4

Common Practices in IAT

4-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

There are certain classes and practices used throughout IAT and recommended for use
by applications. This chapter documents those practices including:

■ the utility classes used throughout IAT

■ general IAT error handling

■ memory allocation

■ copying without copy constructors

The header file IACommon.h contains these classes and utilities.
Listing 4-0
Figure 4-0
Table 3-0

C H A P T E R 4

Common Practices in IAT

Primitive Types 4-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

4Primitive Types

There are certain types defined and used throughout all classes in IAT:

typedef unsigned char byte;

typedef long int32;

typedef unsigned long uint32;

typedefint bool;

Other types are more specific to a particular class or class category, and are documented
in the reference for that category.

4Globals

IACommon defines this global, which is used to determine the default block size for
most I/O.

extern uint32 IADiskBlockSize

The default is 4096 bytes.

4Exceptions

IAT uses exceptions for error handling. There is a class IAException that contains data
members for an exception code, a brief message, and a debugging hint regarding the
location where the exception was raised. The message is specified when the exception
object is constructed.

IAException(const char* message);

and can be accessed by the What method

const char* What();

The other two data members can be obtained and modified through these access
methods:

const char* GetLocation();

C H A P T E R 4

Common Practices in IAT

4-4 Exceptions

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

void SetLocation(const char* location);

int32 GetCode();

void SetCode(int32 code);

However, exceptions can be set up more easily by using the assertion macros described
below under “Throwing Exceptions.”

Exception codes 4
The type IAExceptionCode is provided to allow definition of integer exception codes. .

typedef const int32 IAExceptionCode;

Several IAExceptionCodes are defined throughout the IAT classes, using 4-character
mnemonics. These are documented together with the classes that raise them. The
IAAssertion Failure is a general code used for error handling in classes.

IAExceptionCode IAAssertionFailure ='VTWN';

Throwing Exceptions 4

Several macros have been defined to facilitate use of IAT exceptions.

IAThrowException 4

Input

exception
the exception object to be thrown

Notes

The basic method for throwing an exception is IAThrowException(exception).

IAAssertion 4

Input

conditional
A test to be made.

C H A P T E R 4

Common Practices in IAT

Memory Allocation 4-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

message
A string describing the exception.

code
An integer exception code.

Notes

Takes any boolean expression as an argument. If the condition is not true, an exception
with the given code and message is thrown.

Usage

IDDoc* addIDDoc = (IDDoc*)iDDocs->Next();

IAAssertion(addIDDoc, “No more documents”, ‘VTWN’)

In this example, addIDDoc is NULL if the iterator has reached the end of the set.
IAAssertion will cause an abort if addIDDoc does not exist.

4Memory Allocation

IAT uses specialized versions of malloc() and free() for all of its memory allocation. This
is to improve performance; most provided malloc() functions perform poorly with large
numbers of small objects. This section lists the functions available.

At some level, IAT still must call an external allocator to be given memory. Developers
may register their own allocator to be called by setting the variables IAAllocationFunc
and IADeAllocationFunc. If you register an allocator, you must also register a deallocator.

IAAllocationFunc is declared as a pointer to a function with the following prototype:

void* funcName(size_t size);

IADeAllocationFunc is declared as a pointer to function with the following prototype:

void* funcName(void* object);

Listing 4-1 shows how you might define and register your own allocator.

C H A P T E R 4

Common Practices in IAT

4-6 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 4-1 Defining and using your own memory allocator.

void* MyAllocator(size_t size);

void* MyAllocator(size_t size)

{

void* mem = (void*)malloc(size);

return mem;

}

void* MyDeAllocator(void* obj);

void* MyDeAllocator(void* obj)

{

free(obj);

}

void main()

{

IAAllocationFunc = &MyAllocator; // allocation callback

IADeAllocationFunc = &MyDeAllocator; // deallocation callbac

// Now go ahead and call functions that will require memory…

…

StringPtr folder = “\pMacintoshHD:MyFolder:Documents”;

DemoUpdate(folder);

…

}

The Memory Functions 4

IAMalloc 4

Input

size_t size
amount of memory required

Output

void*

C H A P T E R 4

Common Practices in IAT

Memory Allocation 4-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IAFree 4

Input

void* object
The item whose memory is to be freed.

IAMallocSized 4

Input

size_t size

Output

void*

Notes

A sized version of IAMalloc. Use when you know the size at free time.

IAFreeSized 4

Input

void* object
The object to be deleted

size_t size
The size of the memory to be freed

IAMallocArray 4

Input

type
the type of the object in the array

length
The number of objects in the array

C H A P T E R 4

Common Practices in IAT

4-8 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

void*

Notes

This is a macro which will allocate the memory for sizeof(type) * length.

▲ W A R N I N G

Do not use this function if the class contains virtual members, or if the
default constructors do anything.

Use IAFreeArray to free the memory.

Usage

byte* name = IAMallocArray(byte, len + 1);

IAFreeArray 4

Input

void* object
the array to be freed

Notes

A macro that frees memory allocated by IAMallocArray.

IAMallocArraySized 4

Input

type
the type of the item in the array

length
the number of items in the array

Output

void*

C H A P T E R 4

Common Practices in IAT

Memory Allocation 4-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

A sized version of IAMallocArray; use when you know the size at free time. See
IAMallocArray.

IAFreeArraySized 4

Input

void* object
the array to be freed

Notes

See IAMallocSized and IAMallocArray.

IAMallocStruct 4

Input

structure
the structure to be allocated

Output

void*

Notes

This is a macro that does an IAMallocSized() allocation of a structure.

See IAMallocSized.

IAFreeStruct 4

Input

void* object
the object to be freed

type
the type of the object

C H A P T E R 4

Common Practices in IAT

4-10 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

This does an IAFreeSized of the structure. Used with IAMallocStruct

Base Classes 4
IAStruct and IAObject are base classes that serve as the parent for almost every IAT class
or structure. They do this to allow:

■ the use of IAMalloc and IAFree functions for new and delete functions

■ the prevention of a copy constructor; IAT does not support copy constructor due to
problems with C++; the base class defines a nil constructor in private to prevent
creation.

IAObject 4
Header: IACommon.h

Hierarchy 4

A public subclass of IAStruct. See “IAStruct” on page 4-11.

The base class of almost every IAT class.

Description 4

A class created to ensure the use of IAMalloc and IAFree for the new and deletion
operators, ensure the presence of a virtual destructor, and ensure that no copy
constructor exists for any of its subclasses.

Public Member Functions 4

constructor 4

destructor 4

Virtual.

Class

C H A P T E R 4

Common Practices in IAT

Memory Allocation 4-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

operator delete 4

Input

void* object
the item to be deleted

size_t type
the type of the object to be deleted

Output

void*

Notes

Calls IAFreeSized(object, size).

operator new 4

Input

size_t type
the type of the object to be created

Output

void*
the object

Notes

Calls IAMallocSized(size).

IAStruct 4
Header: IACommon.h

Hierarchy 4

The base class of almost every IAT class.

Class

C H A P T E R 4

Common Practices in IAT

4-12 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Description 4

A class created to ensure the use of IAMalloc and IAFree for the new and deletion
operators.

Functions 4

operator delete 4

Input

void* object
the item to be deleted

Output

void*

Notes

Calls IAFree(object).

operator new 4

Input

size_t size
the type of the object to be created

Output

void*
the object

Notes

Calls IAMalloc(size).

C H A P T E R 4

Common Practices in IAT

Memory Allocation 4-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Deletion of Allocated Memory 4

C++ does not ensure that memory is deleted when the stack is unwound, such as when
exceptions are thrown. IAT provides utility classes that can be used to ensure that any
IAObject or other item allocated with the IAMalloc() functions is deleted when an
exception is thrown.

IADeleteOnUnwind 4

Header: IACommon.h

Hierarchy 4

Base Class.

Description 4

A class that ensures the destruction of a pointer to an IAObject when an exception is
thrown. This should be constructed following the creation of a pointer.

Public Member Data 4

IAObject* object
The created object which is to be destroyed.

Public Member Functions 4

constructor 4

Input

IAObject* object

Usage

IATokenStream* ts =

analysis.MakeTokenStream(corpus.GetDocText(&doc));

IADeleteOnUnwind delTs(ts);

Class

C H A P T E R 4

Common Practices in IAT

4-14 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

destructor 4

IADeleteArrayOnUnwind 4

Header: IACommon.h

Hierarchy 4

Base Class.

Description 4

A class that ensures the destruction of an array allocated with IAMallocArray when an
exception is thrown. This should be constructed following the creation of an array. See
also IADeletePointerArrayOnUnwind, which should be used for an array of pointers to
IAObjects.

Public Member Data 4

void* array
The created array which is to be destroyed.

Public Member Functions 4

constructor 4

Input

void* array

Usage

DocID* docIDBases = IAMallocArray(DocID, indexCount);

IADeleteArrayOnUnwind delDocIDbases(docIDBases);

Class

C H A P T E R 4

Common Practices in IAT

Memory Allocation 4-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

destructor 4

IADeletePointerArrayOnUnwind 4

Header: IACommon.h

Hierarchy 4

Base Class.

Description 4

A class that ensures the destruction of a array of pointers to IAObjects when an
exception is thrown. This should be constructed following the creation of the array.

Public Member Data 4

IAObject** array
The created array which is to be destroyed.

uint32 length
The number of items in the array

Public Member Functions 4

constructor 4

Input

IAObject** array
The created array which is to be destroyed.

uint32 length
The number of items in the array

Usage

for (uint32 i = 0; i <= nDocs; i++) tfMaps[i] = Nil;

IADeletePointerArrayOnUnwind delTFMaps((IAObject**)tfMaps,

nDocs + 1);

Class

C H A P T E R 4

Common Practices in IAT

4-16 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

destructor 4

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 5

Index Category 5

Figure 5-0
Choosing an Index Type 3

Index Types Currently Available 4
Comparison of Searches Available 5
Index Size vs. Speed 7

Common Operations 8
Creating an Index 8
Establishing an Existing Index 11
Updating an Index 14
Iterating Through the Documents in an Index 19
Merging Indexes 20
Compacting an Index 22

Index Class Category Reference 23
Header Files in the Index Category 23
Class Specifications 25
DocInfo 25
FreqPosting 27
FreqPS 29
FreqTerm 31
IAIndex 31
IAIndexTypes 43
InVecIndex 45
InvertedIndex 46
TermIndex 49

C H A P T E R 5

Index Category

5-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

TermInfo 59
TFComponent 63
TFVector 63
VectorDocInfo 66
VectorIndex 67
Class Utilities 72
Typedefs 74
 Extern Data 76
 Constants 77
Index Exceptions and Error Handling 78

C H A P T E R 5

Index Category

Choosing an Index Type 5-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

The index is the heart of the IAT classes. The index uses the corpus to locate documents
and extract their text, gives it to the analysis to extract terms, and builds and stores the
mappings of terms to documents.

Once an index is created it can be searched. Searches can be alone or with other indexes.

Figure 5-1 shows the abstract class, IAIndex, and its major relationships.

Figure 5-1 An overview of an index

Listing 5-0
Table 4-0

5Choosing an Index Type

Designers optimize the content and organization of an index to allow it to perform select
functions efficiently. Different types of indexes exist to allow optimal performance of
different functions. You should choose the appropriate index to deliver the best
performance for the primary usage of the index.

IAAnalysis

IAIndex IAStorage

IACorpus

extracts terms using

locates docs using

resides in
IAAccessor

searches

C H A P T E R 5

Index Category

5-4 Choosing an Index Type

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 5-2 Index inheritance tree

Index Types Currently Available 5
As shown in Figure 5-2, the current implementation of IAT has these types of indexes:

■ term index (TermIndex), contains the primary structures and operations of any index
containing terms. While instantiable, it functions primarily as a base class

■ inverted index(InvertedIndex), which indexes each term to the documents in which it
occurs

■ vector index (VectorIndex), which maps each document to its terms

■ inverted and vector index (InVecIndex), which stores a combination of the
information found in inverted and vector indexes

For most uses of an index for ranked searching, your choice is between an inverted index
or an inverted and vector index. The vector index, alone, is used primarily for measuring
similarity between sets of documents.

When you choose an index type you are making a trade-off between functionality, the
time it takes to build an index, and the space the indexes occupy.

InVecIndex

IAIndex

TermIndex

InvertedIndex VectorIndex

C H A P T E R 5

Index Category

Choosing an Index Type 5-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Comparison of Searches Available 5

Inverted Index 5

An inverted index allows a rapid search by a term; that is, given a term, it will have the
location of all documents in the index that contain the term (see Figure 5-3). An inverted
index also stores how many documents have a given term, the size of the document, and
how frequently the term appears in the document. This allows ordering of the
documents by how frequently the terms appear compared to the size of the document,
that is, it allows the use of a statistically-based ranking system.

Figure 5-3 An inverted index

These questions could be rapidly answered based on an inverted index of a recipe
collection:

■ how many recipes contain cheddar cheese?

■ list the recipes containing cheddar cheese

■ which terms are used most often in this collection of recipes?

■ which recipes uses some combination of cheddar cheese, mushrooms, and white wine?

■ which recipe in this collection is closest to this example recipe?

Prune Confit
12 Prunes

1 lb. Butter

1/2 c. Sugar

Mash the prunes until a paste. Line a

loaf pan with butter. Mix the prune

paste with sugar, then toss in the

pan. Refrigerate for 1 day before

eating.

Inverted Index
Term # Docs Doc Names # times in Doc

butter 35 ...

Prune Confit 2

Prune Danish 2

...

confit 2 Duck Confit 1

Prune Confit 1

danish 7 Apple Danish 1

Cheese Danish 1

Prune Danish 1

prune 2 Prune Confit 4

Prune Danish 3

Prune Danish
12 Prunes

2 Tb. Butter

1/2 c. Sugar
1 batch Puff Pastry
Icing
Mash the prunes until a paste. Add

the butter and sugar. Place in a puff

pastry shell. Bake as directed for

pastry. Frost with icing Refrigerate

for 1 day before eating.

C H A P T E R 5

Index Category

5-6 Choosing an Index Type

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

The time it takes to search a collection with an inverted index is proportional to the
number of terms in the query, and, to a lesser extent, the total number of terms used by
all documents in the collection.

Vector Index 5

A vector index records the terms in each document (see Figure 5-4). It computes how
often terms occur in a single document relative to the distribution of terms over the
collection. The vector index provides the data and functions to allow efficient
comparison of two documents so you can judge how close they are in content. This
index might be used to route messages into the sub-collections they match best; for
example, a random set of recipes could be organized into groups with similar
ingredients.

Figure 5-4 A vector index

Although you can do other searches with just a vector index, it is typically slower than
using an inverted index as each vector must be read. The time to search is proportional
to the number of documents in the collection.

Vector Index

Terms
Document Total # terms butter confit danish prune
Prune Confit 5 2 1 0 4

Prune Danish 9 2 0 1 3

Prune Confit
12 Prunes
1 lb. Butter
1/2 c. Sugar

Mash the prunes until a paste. Line a

loaf pan with butter. Mix the prune

paste with sugar, then toss in the pan.

Refrigerate for 1 day before eating.

Prune Danish
12 Prunes
2 Tb. Butter
1/2 c. Sugar
1 batch Puff Pastry
Icing

Mash the prunes until a paste. Add the

butter and sugar. Place in a puff pastry

shell. Bake as directed for pastry. Frost

C H A P T E R 5

Index Category

Choosing an Index Type 5-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Inverted Vector Index 5

Unless index space is a particular concern, you will generally want to use an inverted
vector index. This will speed up certain powerful operations such as relevance feedback
(also known as query-by-example or similarity search), in which the application asks the
IAT to find “documents like this one.” In the case of the RecipeSwap, for example, Irina
uses this feature to find recipes similar to the newest one (when checking for potential
duplicates).

An inverted index can also perform relevance feedback. However, it must re-analyze the
text of the document in order to do so. To save this time (but at the expense of space), use
an inverted vector index.

Comparison of Time and Space Requirements 5

This table compares relative times to build the index and the amount of space the index
takes for a folder and sub-folders containing about 12,000 documents. The document set
occupies 36.6 MB. The indexing was done on a Power Macintosh 9500/132. Although
results will vary by document content, this may give some idea of the trade-offs
involved.

Note
The documents were SGML-tagged articles from the Wall Street Journal,
concatenated together in groups of about 100 per file. This is comparable
to a typical e-mail or database application, where many documents (or
records) are stored in a small number of storage files. For applications in
which each document is a separate file, greater file I/O will result in
substantially decreased performance.

Index Size vs. Speed 5

It takes much longer, proportionately, to update a very large index than to update
several smaller indexes. As the size of the collection grows and memory is held constant,
indexing speed will gradually decrease. For example, in one test indexing a 1 gigabyte
collection, performance was about 75 MB/hr. For this reason, you may wish to build
smaller indexes on partitions of your collection, and search them simultaneously.

Table 4-1 Comparison of index types for time and space

Index Type

Actual
Time in
Minutes MB Per Hour

Index
Space

 Index Space
Overhead

Inverted Index 11.18 196 5.9 MB 16.3%

Vector Index 6.83 321 6.9 MB 19.1%

Inverted Vector Index 11.03 199 10.8 MB 29.6%

C H A P T E R 5

Index Category

5-8 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Alternatively, you may wish to use the Merge function to consolidate several small
indexes into one.

5Common Operations

Creating an Index 5
Creating a new index requires that all items upon which it depends be created first. You
must create:

■ a storage in which the index will reside. See “Creating New Storage” on page 9-5.

■ a corpus to organize a collection of documents and extract their text.

■ an analysis for locating the terms in the documents.

This example just creates the index framework; to load the index, see “Updating an
Index” on page 5-14. The example creates an index for an HFSTextFolderCorpus using a
Simple Analysis.

C H A P T E R 5

Index Category

Common Operations 5-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 5-5 Interaction diagram for index creation

Listing 5-1 Creating an index

// include Mac types for HFS-related items

#include <Types.h>

// choose a storage implementation

#include "HFSStorage.h"

// choose a corpus implementation

#include "HFSTextFolderCorpus.h"

// choose an analysis implementation

#include "SimpleAnalysis.h"

// choose an index implemenation

#include "InVecIndex.h"

// get the user information (using constants for the sake of this example)

StringPtr name = "\precipes.index";

StringPtr HFSFolderName = "\pMacintosh HD:Corpora:recipes";

aStorage

new(HFSFolderName)

Initialize()

aSimpleAnalysisanHFSTextFolderCorpus

MakeHFSStorage
(vRefNum, dirID, name)

new (aStorage, anHFSTextFolderCorpus, aSimpleAnalysis)

new

Commit()

anInVecIndex

Initialize()

C H A P T E R 5

Index Category

5-10 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

short vRefNum = 0;

long dirID = 0;

// create storage for the index

IAStorage * aStorage = MakeHFSStorage(vRefNum, dirID, name);

IADeleteOnUnwind delInxStorage(aStorage);

aStorage->Initialize();

// create index for folder (creates corpus and analysis)

InVecIndex anInVecIndex(aStorage,

new HFSTextFolderCorpus(HFSFolderName), new SimpleAnalysis());

anInVecIndex.Initialize();

// commit the storage to disk

aStorage->Commit ();

Naming the Index Root Block 5

You can establish a block of storage and ensure the index root block is stored in this
block. This allows access to the index block at another time. This may be necessary if an
application needs to open this index and does not know which type of index it is. See
“Establishing an Index Whose Type is Unknown” on page 5-13.

When storage is allocated, you must allocate a named IO block. Then this block id can be
provided to the index constructor. See “Allocating and Deallocating Blocks of Storage”
on page 9-6 for more information.

InVecIndexType is a constant indicating this is an inverted vector index.

C H A P T E R 5

Index Category

Common Operations 5-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 5-2 Differences when creating an index with a named block

// create storage for the index

IAStorage* aStorage = MakeHFSStorage(vRefNum, dirID, name);

IADeleteOnUnwind delInxStorage(aStorage);

aStorage ->Initialize();

const char* aBlockName=”INDEXROOT”;

IABlockID anIABlockID=aStorage->AllocateNamedBlock(aBlockName);

// create index for folder (creates corpus and analysis)

InVecIndex anInVecIndex(aStorage,

new HFSTextFolderCorpus(HFSFolderName), new SimpleAnalysis(),

InVecIndexType, anIABlockID);

anInVecIndex.Initialize();

Establishing an Existing Index 5
To reuse a stored index, create a new index object using the same type of corpus and
analysis that is in the original object and the name of the storage where the index was
established. Then Open(), rather than Initialize(), this index to restore its contents. The
storage must be reestablished (and opened) first. See “Opening Existing Storage” on
page 9-6 for more on reestablishing storage.

This example establishes an inverted vector index with an HFSTextFileCorpus and a
SimpleAnalysis. The index is established as writable, but no update has begun. To
establish an index as read-only, open its storage as read only.

C H A P T E R 5

Index Category

5-12 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 5-6 Interaction diagram for establishing an existing index

aStorage

new(HFSFolderName)

Open(writable)

aSimpleAnalysisanHFSTextFolderCorpus

MakeHFSStorage
(vRefNum, dirID, name)

new (aStorage, anHFSTextFolderCorpus, aSimleAnalysis)

Open()

new

anInVecIndex

C H A P T E R 5

Index Category

Common Operations 5-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 5-3 Establish an existing index

// get the user information (using constants for the same of this example)

StringPtr name = "\precipes.index";

StringPtr HFSFolderName = "\pMacintosh HD:Corpora:recipes";

short vRefNum = 0;

long dirID = 0;

Boolean writable = true;

// reestablish storage for the index

IAStorage * aStorage = MakeHFSStorage(vRefNum, dirID, name);

IADeleteOnUnwind delInxStorage(aStorage);

aStorage ->Open(writable);

// reestablish index for folder (reestablishes corpus and analysis)

InVecIndex anInVecIndex(aStorage,

new HFSTextFolderCorpus(HFSFolderName), new SimpleAnalysis());

anInVecIndex.Open();

Establishing an Index Whose Type is Unknown 5

If you don’t know which type an index is, but you do know its index root name, analysis
and corpus types, you can test the root to determine the index type. See “Naming the
Index Root Block,” above, to create an index to a named root block.

The following code would replace the index construction in the “Establish an existing
index” code, above.

C H A P T E R 5

Index Category

5-14 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 5-4 Determining type of index

// get the pre-defined root block ID

const char* aBlockName = ”INDEXROOT”;

IABlockID anIABlockID = aStorage->TOC_Get(aBlockName);

// determine which index type it is

IAIndexTypes indexTypes;

IAIndex* index;

IAReadIndexTypes(aStorage, anIABlockID, &indexTypes);

switch(indexTypes.indexType) {

case InVecIndexType:

index = new InVecIndex(aStorage,

new HFSTextFolderCorpus(HFSFolderName),

new SimpleAnalysis(),

indexTypes.indexType, anIABlockID);

break;

case InvertedIndexType:

index = new InvertedIndex(aStorage,

new HFSTextFolderCorpus(HFSFolderName),

new SimpleAnalysis(),

indexTypes.indexType, anIABlockID);

break;

case VectorIndexType:

index = new VectorIndex(aStorage,

new HFSTextFolderCorpus(HFSFolderName),

new SimpleAnalysis(),

indexTypes.indexType, anIABlockID);

break;

default:

//throw exception

IAAssertion(false,”index type invalid”, ’VIIV’);

}

Updating an Index 5
There are two main ways to update an index:

■ ensure it is synchronized with its corpus by using the Update() function to apply any
changes to its corpus

■ individually add or delete documents

C H A P T E R 5

Index Category

Common Operations 5-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

No matter which means of updating you use, you must first ensure the index is
established and writable. This means it must be created and initialized (see “Creating an
Index” on page 5-8) or re-established from storage that has been opened as “writable”
(see “Establishing an Existing Index” on page 5-11). Following the update, you must
commit the storage to ensure the changes are stored in persistent storage.

Synchronizing an Index to the Corpus 5

The corpus maintains the collection of documents that is indexed in the index. If changes
have been made to this collection, the index may no longer reflect the corpus. For
example, if the index was for an HFSTextFolderCorpus, documents may have been
added or deleted from the corpus, or a documents text may have changed, without any
change to the index. The index would no longer be synchronized with its corpus.

You can ensure an index matches its corpus by using the Update() function of the index.
This function depends on having a corpus with an iterator, that is, one which can
provide a list of each document in the corpus.

This function will:

■ remove any documents from the index that are no longer found in the corpus

■ add any documents to the index that are in the corpus but not in the index

■ re-analyze any documents that have been modified since the last index update.

If a new filter has been added to an analysis (for example, more stop words) this update
will ensure every document has been reanalyzed to match that filter.

C H A P T E R 5

Index Category

5-16 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 5-7 Interaction diagram of an update to match the corpus

Listing 5-5 An example of updating an index to match its corpus

// establish the index in storage (see above)

// update index to match corpus and re-analyze all docs

anInVecIndex.Update();

// take care of changes caused by possible deletions

anInVecIndex.Compact();

// commit the changed storage to disk

aStorage->Commit();

Updating by Individual Document 5

You may wish to update an index without completely matching a corpus. For example, a
user may “touch” just those documents to be added, deleted, or re-analyzed.

aStorage

new(HFSFolderName)

Open(writable)

aSimpleAnalysisanHFSTextFolderCorpus

MakeHFSStorage
(vRefNum, dirID, name)

new (aStorage, an HFSTextFolderCorpus,aSimpleAnalysis)

Update()

new

Commit()

anInVecIndex

Open()

Compact()

C H A P T E R 5

Index Category

Common Operations 5-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Note
If your corpus class has a document iterator, and you add or delete a
document from the index, you must also, separately, add or delete the
document from the corpus.

AddDoc(IADoc*) and DeleteDoc(IADoc*) allow individual updates. After a call to
AddDoc, the index takes responsibility for the IADoc object passed in and will delete it
at destruct time. (This is not the case for DeleteDoc.)

After a number of insertions and deletions, Flush() must be called to make the changes
permanent in the index.

Figure 5-8 Interaction diagram for individual update

Listing 5-6 Updating individual documents

// get the user information (using constants for the same of this example)

StringPtr name = "\precipes.index";

StringPtr HFSFolderName = "\pMacintosh HD:Corpora:recipes";

short vRefNum = 0;

long dirID = 0;

Boolean writable = true;

anInVecIndex

new(anHFSCorpus, docVRefNum,
 docDirID, docName)

anHFSDoc aStorage

DeleteDoc(anHFSDoc)

Flush()

Commit()

AddDoc(anHFSDoc)

anHFSCorpus

Compact()

C H A P T E R 5

Index Category

5-18 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

// get the new document information

StringPtr docName = "\pInsertMe";

short docVRefNum = 0;

long docDirID = 0;

// create storage for the index

IAStorage * aStorage = MakeHFSStorage(vRefNum, dirID, name);

IADeleteOnUnwind delInxStorage(aStorage);

aStorage->Open(writable);

// create the corpus

HFSCorpusanHFSCorpus(HFSCorpusType);

// create the HFS Doc

HFSDoc *anHFSDoc =

new HFSDoc(&anHFSCorpus, docVRefNum, docDirID, docName);

// create index for folder (creates analysis)

InVecIndex anInVecIndex(aStorage, &anHFSCorpus, new SimpleAnalysis());

anInVecIndex.Open();

// do individual updates (iterate if multiple documents)

// add or delete it

anInVecIndex.AddDoc(anHFSDoc);

// complete the update

anInVecIndex.Flush();

// commit the storage to disk

aStorage->Commit ();

printf ("Successful Completion\n");

Functions for Updating 5

These functions exist for individual updates. See the reference for these functions in
“IAIndex” on page 5-31 for more information.

AddDoc

DeleteDoc

IsDocIndexed

RenameDoc

C H A P T E R 5

Index Category

Common Operations 5-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Note
If you want to re-analyze a document that is in the index (perhaps
because it has changed) , you should first delete it from the index and
then add it back. The document will be re-analyzed and the index
updated.

Iterating Through the Documents in an Index 5
There may be a need to list all documents found in an index, or to provide each
document to another task. This can be done with an index iterator.

Figure 5-9 Interaction diagram for iterating through an index

Listing 5-7 Iterating through an index

// establish the index

// establish the iterator

IADocIterator* anIADocIterator=anInVecIndex.GetDocIterator();

HFSDoc* anHFSDoc

// loop through the index // NULL returned at end

while (anHFSDoc = (HFSDoc*)anIADocIterator->GetNextDoc()) {

PrintDocName(anHFSDoc); // application provides

}

anInVecIndex

new

anIADocIterator

GetDocIterator()

GetNextDoc()

new

anHFSDoc

C H A P T E R 5

Index Category

5-20 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Merging Indexes 5

Two or more indexes may be merged into a single index using the merge member
function. This function requires several 100k/index and needs twice the disk space
during the merge.

Merges are about ten times faster than building an index, and as noted before, building
large indexes takes proportionally more time than building small ones. Because of this,
you may wish to build several small indexes and then merge them rather than build one
very large one.

Ensure these things before you merge indexes:

■ the indexes have the same type of corpus and analysis

■ no document is indexed in more than one of the indexes

■ there is sufficient disk space to do the merge

■ the indexes are not currently being updated.

Indexes must be in storage and opened before they can be merged. You may wish to
open the storage of the source indexes as read-only to save memory.

If a document is present in more than one of the indexes, the merge operation will throw
an exception with code IndexDocAlreadyIndexed (‘VIAI’).

C H A P T E R 5

Index Category

Common Operations 5-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 5-10 Interaction diagram for a merge

Listing 5-8 Merge a source index to a destination index

// establish the indexes as writable

// delete duplicates from source

// make an iterator

IADocIterator* anIADocIterator = sourceInVecIndex.GetDocIterator();

uint32 docCount = sourceInVecIndex.GetDocCount();

printf ("%lu documents in the source index before \n", docCount);

HFSTextFolderDoc* anHFSDoc;

// find dupes and delete them until source exhausted

while(anHFSDoc = (HFSTextFolderDoc*)anIADocIterator->GetNextDoc()) {

if (destinationInVecIndex.IsDocIndexed(anHFSDoc)) {

sourceInVecIndex.DeleteDoc(anHFSDoc);

PrintDocName(anHFSDoc);

printf ("is duplicated in destination index\n");

}

}

docCount = sourceInVecIndex.GetDocCount();

printf("%lu documents in purged source\n", docCount);

// flush the changes

sourceInVecIndex

new

arrayIAIndex[0] =
sourceInVecIndex

destinationInVecIndexarrayIAIndex destinationStorage

Commit()

Merge(arrayIAIndex,numberSourceIndexes)

C H A P T E R 5

Index Category

5-22 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

sourceInVecIndex.Flush();

sourceInVecIndex.Compact();

// do the actual merge

docCount = destinationInVecIndex.GetDocCount();

printf ("%lu documents in the index before\n", docCount);

// create the array of indexes

const uint32 numberSourceIndexes = 1;

IAIndex* anIAIndexArray[numberSourceIndexes];

anIAIndexArray[0] = &sourceInVecIndex;

// do the merger

printf("Merging\n");

destinationInVecIndex.Merge(anIAIndexArray, numberSourceIndexes);

docCount = destinationInVecIndex.GetDocCount();

printf("%lu documents in the index after merging\n", docCount);

Compacting an Index 5
When a document is deleted from an InvertedIndex using DeleteDoc, the function marks
the document as deleted and prevents the access to the document; the function does not
actually delete the references to the documents and those terms it uses exclusively.
Because of this, after many deletions, the index may contain unused information. You
should periodically compact the index to remove this unused information. The
recommended procedure is to compact the index just before committing the storage.

▲ W A R N I N G

You must compact the index at least once before committing the storage
after doing a number of deletes.

Compacting an index does not compact its storage. If you wish to regain the storage
used by the deleted documents, use the storage class Compact function following the
index compaction. See “Compacting Storage” on page 9-8 for more information.

Listing 5-9 Compact an index

// establish the index in storage

anInvertedIndex.Open();

anInvertedIndex.Compact();

aStorage->Commit();

C H A P T E R 5

Index Category

Index Class Category Reference 5-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5Index Class Category Reference

Header Files in the Index Category 5

FreqPosting.h 5

FreqPosting

HighFreqTerms.h 5

FreqTerm

IAIndex.h 5

IAIndex
IAIndexTypes
IAReadIndexTypes

InVecIndex.h 5

InVecIndex

InvertedIndex.h 5

FreqPS
InvertedIndex

C H A P T E R 5

Index Category

5-24 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

TermIndex.h 5

DocInfo
IDDoc
IDTerm
TermIndex
TermInfo

TFVector.h 5

TFComponent
TFVector

VectorIndex.h 5

VectorDocInfo
VectorIndex

C H A P T E R 5

Index Category

Index Class Category Reference 5-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class Specifications 5

DocInfo 5

Header: TermIndex.h

Hierarchy 5

Public subclass of IAOrderedStorable. See “IAOrderedStorable” on page 10-14.

Description 5

DocInfo is the relationship between the index and a document within the index.

Relationships 5

DocInfo contains IADoc 5

One doc info contains one IADoc.

Clients 5

See “FreqPosting maps to DocInfo” on page 5-28.

Public Member Functions 5

constructor() 5

constructor(IADoc* document, DocID docID) 5

Input

IADoc* The document.

DocID The ID for the document.

Class

C H A P T E R 5

Index Category

5-26 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

destructor 5

Deletes the document.

DeepCopy 5

See“IAStorable.DeepCopy” on page 10-28.

Equal 5

See“IAOrderedStorable.Equal” on page 10-15. DocInfo equals another DocInfo if the doc
equals the other doc.

GetDocID 5

Access method for DocInfo member data.

Output

DocID id
The identification number of the document within the index.

GetDocument 5

Access method for DocInfo member data.

Output

IADoc* doc
A pointer to the indexed document.

GetDocumentLength 5

Access method for DocInfo member data.

C H A P T E R 5

Index Category

Index Class Category Reference 5-27
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

DocLength length
The total number of indexed terms in the document.

LessThan 5

See “IAOrderedStorable.LessThan” on page 10-16. DocInfo is sequenced by its doc
member data.

Restore 5

See“IAStorable.Restore” on page 10-28.

SetDocument 5

Access method for DocInfo member data.

Input

IADoc* doc
The document object.

Store 5

See “IAStorable.Store” on page 10-30.

StoreSize 5

See “IAStorable.StoreSize” on page 10-29.

FreqPosting 5
Struct
Header: FreqPosting.h

Struct

C H A P T E R 5

Index Category

5-28 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Description 5

Represents an occurrence of a term in a document. FreqPosting is the relationship
between a term and an indexed document in which it occurs. See Figure 5-13 on
page 5-47.

Relationships 5

FreqPosting maps to DocInfo 5

One frequency posting maps to one doc info.

This is done by carrying the DocID, a unique identifier of DocInfo.

Clients 5

See “FreqPS contains FreqPosting” on page 5-30.

Public Functions 5

constructor 5

constructor(DocID docID, DocLength numberTerms) 5

Input

DocID The ID of the document

DocLength The number of terms in the document

GetDocID 5

Access method for FreqPS member data.

C H A P T E R 5

Index Category

Index Class Category Reference 5-29
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

DocID id
The identification number of the document in which the term occurred.

GetFreq 5

Access method for FreqPS member data.

Output

DocLength freq
The number of times the term occurred in the document.

StoreSize() 5

Output

IABlockSize
The size of the blocks used to store postings

StoreSize(FreqPosting* previous) 5

Input

FreqPosting* previous
The last posting stored

Output

IABlockSize
The size of the output block used.

FreqPS 5
Header: InvertedIndex.h

Hierarchy 5

Base Class.

Class

C H A P T E R 5

Index Category

5-30 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Description 5

FreqPS accesses the postings for a term in an inverted index from the storage provided.
It provides a stream from which FreqPostings can be retrieved.

Relationships 5

FreqPS contains FreqPosting 5

One FreqPS may contain many frequency postings.

Clients 5

See “InvertedIndex gets (by Term) FreqPS” on page 5-48.

Public Member Functions 5

constructor 5

Input

InvertedTermInfo*
 A pointer to the termInfo for the term to be posted.

BitArray* An array of deleted documents. Used to ensure those not physically
deleted yet are not given as postings.

IAStorage* The storage in which to place the postings. Storage must be open.

destructor 5

Next 5

Input

FreqPosting* Returns the address of the next posting in this slot.

C H A P T E R 5

Index Category

Index Class Category Reference 5-31
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

bool True if one returned, false if not.

Description

Copies the next FreqPosting from the stream into the provided FreqPosting. Returns
NULL at the end of the stream.

Usage

 for (bool go = fps->Next(&posting); go ;

go = fps->Next(&posting))

FreqTerm 5
Struct

Header: HighFreqTerms.h

Data 5

uint32 freq
The number of times the term appears.

IATerm* term
The term.

IAIndex 5

Heading: IAIndex.h

Hierarchy 5

Abstract base class.

Struct

Class

C H A P T E R 5

Index Category

5-32 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 5-11 Index hierarchy

Description 5

IAIndex is the base class of all the index classes. It controls the establishment of a corpus,
and the location of terms through analysis. It manages the storage for the index, corpus,
and analysis used.

The relationships with the analysis and corpora are stored in the index root block. This
block is stored upon Initialize() and FinishUpdate(). It is restored on an open. Subclasses
can add information to this root block by implementing the protected functions
RootSize(), StoreRoot() and RestoreRoot().

InVecIndex

IAIndex

TermIndex

InvertedIndex VectorIndex

C H A P T E R 5

Index Category

Index Class Category Reference 5-33
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 5

Figure 5-12 Overview of the index relationships

IAIndex locates docs using IACorpus 5

One index contains one and only one corpus.

IAIndex locates terms using IAAnalysis 5

One index contains one and only one analysis.

IAIndex is stored in IAStorage 5

One index is stored in one storage for its root, but allocates and stores items in many
storages internally.

IAAnalysis

IAIndex IAStorage

IACorpus

extracts terms using

locates docs using

resides in

C H A P T E R 5

Index Category

5-34 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 5

constructor 5

Input

IAStorage* storage
A pointer to the storage in which to place the index.

IACorpus* corpus
A pointer to the associated corpus.

IAAnalysis* analysis
A pointer to the analysis to be used to extract terms.

uint32 indexType
The index type constant.

IABlockID indexRoot
The block id of the root. Default is nil; the root will be allocated if not
defined.

destructor 5

Virtual

Deletes corpus and analysis.

AddDoc 5

Pure virtual.

Input

IADoc* document
A pointer to the IADoc for the document that is to be added to the index.

Description

Adds a document to the index. Also passes control of the IADoc object to the index. The
IADoc will be deleted automatically when the index is deleted.

C H A P T E R 5

Index Category

Index Class Category Reference 5-35
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

▲ W A R N I N G

AddDoc assumes the document does not already exist in the index. If
you are not sure if the document has been indexed, use IsDocIndexed()
to check. If you wish to replace the previous index information for a
document that has changed, you must delete the document and then
re-add it.

Usage

anIAindex.AddDoc(&anIADoc);

Compact 5

Virtual.

Attempts to compact the index; removes deleted items.

▲ W A R N I N G

If documents have been deleted, the index must be compacted before
storage is committed.

Usage

anIAIndex.Compact();

DeleteDoc 5

Pure virtual.

Input

IADoc* document
A pointer to the IADoc for the document that is to be removed from the
index.

Description

Marks a document as deleted. Prevents reporting of postings to this document.

Usage

anIAndex.DeleteDoc(&anIADoc);

C H A P T E R 5

Index Category

5-36 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Does not delete the caller’s IADoc from memory.

Flush 5

Virtual.

Flushes all changes and disables further changes. Typically called just before
aStorage->Commit().

Usage

anIAndex.Flush();

GetAnalysis 5

Access method for IAIndex member data.

Output

IAAnalysis*analysis
A pointer to the analysis used to extract terms.

GetCorpus 5

Access method for IAIndex member data.

Output

IACorpus* corpus
A pointer to the corpus used to interface with the physical documents.

GetDocCount 5

Pure virtual.

C H A P T E R 5

Index Category

Index Class Category Reference 5-37
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

uint32 numberDocuments
The total number of documents indexed.

Usage

for (uint32 i = 0; i < indexCount; i++)

 docCount += indices[i]->GetDocCount();

GetDocIterator 5

Pure virtual.

Output

IADocIterator*
A pointer to an iterator over the documents indexed.

Description

Returns an iterator over all the documents indexed. See IADocIterator.

Usage

IADocIterator* anIterator= anIAndex.GetDocIterator();

GetDocIterator(IADoc* start) 5

Pure virtual.

Input

IADoc* start
A pointer to the IADoc of the document that you wish to be the first in the
series accessed by the iterator.

Output

IADocIterator*
A pointer to an iterator over the documents indexed. Iterator is
positioned at IADoc if it exists in the index. If not, it is positioned at the
document which would logically follow that doc should it exist.

C H A P T E R 5

Index Category

5-38 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

IADocIterator* anIterator = index.GetDocIterator(startDoc);

GetIndexRoot 5

Access method for IAIndex member data.

Output

IABlockID indexRoot
The block ID of the index root storage block.

GetIndexType 5

Access method for IAIndex member data.

Output

uint32 indexType
A constant that indicates which type (e.g., inverted) of index this is.

GetIndexTypes 5

Input

IAIndexTypes* types
The struct of the type codes for the index.

Description

Accesses the types (storage, corpus, etc.) of an index. May be called at any time. See
“IAIndexTypes” on page 5-43.

Usage

IAIndexTypes types;

GetIndexTypes(&types);

C H A P T E R 5

Index Category

Index Class Category Reference 5-39
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetMaxDocumentSize 5

Access method for IAIndex member data.

Output

uint32 maxDocSize
The current maximum document size.

Notes

See SetMaxDocumentSize().

GetQueryAnalysis 5

Virtual.

Description

Gets the IAAnalysis to be used for processing queries on this index. If a preferred
analysis has been set (by SetPreferredAnalysis), then it will be returned. If a preferred
analysis has not been set, than GetQueryAnalysis will default to whatever analysis was
specified at index construction.

Output

IAAnalysis*analysis
A pointer to the analysis to be used for processing queries.

GetPreferredAnalysis 5

Access method for IAIndex member data.

Output

IAAnalysis*analysis
A pointer to a preferred analysis.

C H A P T E R 5

Index Category

5-40 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetStorage 5

Access method for IAIndex member data.

Output

IAStorage* storage
A pointer to the storage for the index, corpus, and analysis blocks.

Initialize 5

Virtual.

Description

Initializes a new empty index in a new empty storage.

Usage

anIAIndex.Initialize();

IsDocIndexed 5

Pure virtual.

Input

IADoc* doc
A pointer to the IADoc of the document that might be indexed.

Output

bool
True if the document is indexed; False if the document is not indexed.

Usage

anIAIndex.isDocIndexed(&doc);

C H A P T E R 5

Index Category

Index Class Category Reference 5-41
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Merge 5

Pure virtual.

Input

IAIndex** indexes
An array containing the indexes to be merged into this index.

uint32 indexCount
The number of indexes in the array.

Description

Merges an array of indexes into an index. The index, corpus and analysis classes must be
the same for all indices. The indices must be disjoint — no documents may be indexed in
more than one index. If a document is in more than one index, Merge will throw an
exception with code IndexDocAlreadyIndexed (‘VIAI’).

Usage

destIndex.Merge(indexes, indexCount);

Open 5

Virtual.

Description

Opens an existing index. By default, Calls Open() on the storage, corpus and analysis.

The index must have been constructed with the exact same types as that in the storage.

Usage

anIAndex.Open();

RenameDoc 5

Pure virtual.

C H A P T E R 5

Index Category

5-42 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

IADoc* oldName
A pointer to the IADoc containing the old name.

IADoc* newName
A pointer to a new IADoc containing the new name.

Description

Updates the indexes references to an (unchanged) document. Only the names need be
present in the IADocs. The new name must not already exist in the index. The index
must be opened for update.

Usage

anIAIndex.RenameDoc(oldDoc, newDoc);

SetMaxDocumentSize 5

Access method for IAIndex member data.

Input

uint32 maxDocSize
The number of unique words to be used as the maximum document size.

Notes

In order to prevent the potential for unbounded memory usage, indexes stop processing
documents after this number of unique index terms has been reached. (Note that
“unique index terms” is not the same as “unique words.” For example, if a stemmer is
being used, then all forms of a word with the same stem will be treated as a single
unique index term.) The default is 2000. If your application will be working with very
large documents, you should set this higher.

SetPreferredAnalysis 5

Access method for IAIndex member data.

Input

IAAnalysis* analysis
An analysis to be used for processing queries.

C H A P T E R 5

Index Category

Index Class Category Reference 5-43
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Description

Sets the analysis module that will be used to process new queries on the index. See
GetQueryAnalysis().

Usage

IAAnalysis *myNewAnalysis = new SimpleAnalysis();

anIAIndex.SetPreferredAnalysis(myNewAnalysis);

Update 5

Virtual.

Description

Uses the corpus iterator to add new documents and delete expired documents. Simple
applications should be able to maintain an index with just this method; complex
applications will need the more fine-grained control of other methods. See “Updating an
Index” on page 5-14.

The index must be open, but no update may be started.

▲ W A R N I N G

It is the responsibility of the corpus iterator to return documents in the
correct order. If documents are out of order, Update may either miss
some documents that require adding, or reindex unchanged documents.

Usage

anIAndex.Update();

IAIndexTypes 5
Struct

Header: IAIndex.h

Struct

C H A P T E R 5

Index Category

5-44 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Functions 5

constructor 5

Usage

IAIndexTypes types;

constructor(uint32 s, uint32 c, uint32 a, uint32 i) 5

Input

uint32 s
The storage type.

uint32 c
The corpus type.

uint32 a
The analysis type.

uint32 i
The index type.

Usage

IAIndexTypes types(storageType, corpusType,

analysisType, indexType);

Equal 5

Input

IAIndexTypes* other
The structure of types to which this might be equal.

Output

bool
True if equal; false if not.

C H A P T E R 5

Index Category

Index Class Category Reference 5-45
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Note
 Null types are not considered equal.

Usage

if (myTypes.Equal(theirTypes)) printf("Match\n");

Data 5

uint32 analysisType;

uint32 corpusType;

uint32 indexType;

uint32 osSetType;

uint32 storageType;

InVecIndex 5
Header: InVecIndex.h

Hierarchy 5

Public subclass of both InvertedIndex and VectorIndex.

Description 5

This combines both inverted and vector index.

Public Member Functions 5

constructor 5

Input

IAStorage* storage
A pointer to the storage in which to place the index.

IACorpus* corpus
A pointer to the associated corpus.

IAAnalysis* analysis
A pointer to the analysis to be used to extract terms.

Class

C H A P T E R 5

Index Category

5-46 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

uint32 type = InVecIndexType
The index type. InVecIndexType is a constant ‘I&V2’.

IABlockID indexRoot = NULL
The block id of the root. Will create one if not supplied.

InvertedIndex 5
Header: InvertedIndex.h

Hierarchy 5

Public subclass of TermIndex. Virtual.

Description 5

An inverted index keeps tracks of terms and points to which documents they are in.

Class

C H A P T E R 5

Index Category

Index Class Category Reference 5-47
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 5

Figure 5-13 Inverted index overview

FreqPS

InvertedIndex

TermInfo

FreqPosting

DocInfo

gets (by term) contains

maps to

contains

IADoc* 	 doc
DocID		 id
DocLength	 length

IATerm* 	 term
TermID	 id
TermFreq	 docCount

DocID		 docID
DocLength	 freq

C H A P T E R 5

Index Category

5-48 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

InvertedIndex contains TermInfo 5

One InvertedIndex contains many TermInfo

InvertedIndex gets (by Term) FreqPS 5

One Inverted Index creates and gets many FreqPS, one per term.

Public Member Functions 5

constructor 5

Input

IAStorage* storage
A pointer to the storage in which to place the index.

IACorpus* corpus
A pointer to the associated corpus.

IAAnalysis* analysis
A pointer to the analysis to be used to extract terms.

uint32 type = InvertedIndexType
The index type. Constant is ‘Inv6’.

IABlockID indexRoot = NULL
The block id of the root. Will create one if not supplied.

destructor 5

Compact 5

See “IAIndex.Compact” on page 5-48.

C H A P T E R 5

Index Category

Index Class Category Reference 5-49
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetDeletedDocCount 5

Output

uint32 numberDeletedDocs
The number of deleted documents since the last Compact.

Usage

uint32 numberDeletedDocs = GetDeletedDocCount();

GetFreqPostings 5

Input

TermInfo* termInfo
Pointer to the termInfo for the term.

Output

FreqPS *
A pointer to the frequency postings.

Usage

 FreqPS* fps = index.GetFreqPostings(ti);

Initialize 5

See “IAIndex.Initialize” on page 5-49.

Open 5

See “IAIndex.Open” on page 5-49.

TermIndex 5
Header: TermIndex.h

Class

C H A P T E R 5

Index Category

5-50 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Hierarchy 5

Public subclass of IAIndex.

Description 5

A term index is a general abstraction of any index which maintains a relationships
between terms and documents. It contains the general structures and functions for
creating and maintaining these indexes. TermIndex, although instantiable, serves as the
base class for InvertedIndex and VectorIndex.

Public Member Functions 5

constructor 5

Input

IAStorage* storage
A pointer to the storage in which to place the index.

IACorpus* corpus
A pointer to the associated corpus.

IAAnalysis* analysis
A pointer to the analysis to be used to extract terms.

uint32 type = TermIndexType
The index type. Constant is ‘Ter2’.

IABlockID indexRoot = NULL
The block id of the root. Will create one if not supplied.

destructor 5

AddDoc 5

See “IAIndex.AddDoc” on page 5-34.

C H A P T E R 5

Index Category

Index Class Category Reference 5-51
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

AddDoc(IADoc* document, DocID* returnID); 5

Input

IADoc* document
A pointer to document to add.

Input/Output

DocID* returnID
The document id; AddDoc assigns this and returns its address here.

Description

The same as AddDoc(IADoc* document), except the document ID is returned. Must have
a StartUpdate before calling.

DeleteDoc 5

See “IAIndex.DeleteDoc” on page 5-35.

Flush 5

See “IAIndex.Flush” on page 5-36.

GetDocCount 5

Output

DocID
The number of documents in the index.

Usage

 totalDocCount += i[j]->GetDocCount();

C H A P T E R 5

Index Category

5-52 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetDocInfo 5

Input

IADoc* document
The pointer to the document whose information is needed.

bool ignoreError = false
If false, will throw an Invalid document exception if the doc info is not
found. If true, DocInfo will be nil if no info found.

Output

DocInfo*
Pointer to the document information.

Usage

DocInfo* info = GetDocInfo(doc, true);

GetDocInfoIterator 5

Output

IAOrderedStorableIterator*
Pointer to an iterator over the set of document information.

Usage

IAOrderedStorableIterator* docs = index.GetDocInfoIterator();

GetDocInfoIterator(IADoc* start); 5

Input

IADoc* start
Pointer to an IADoc containing the document name at which you wish
this iterator to start.

Output

IAOrderedStorableIterator*
Pointer to an iterator over the set of document information.

C H A P T E R 5

Index Category

Index Class Category Reference 5-53
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Description

Same as GetDocInfoIterator, only the iterator will be positioned at the DocInfo for the
input document and continue from there. If the document is not found in the set, the
iterator will be positioned at the document which would logically follow this one.

GetDocIterator 5

See “IAIndex.GetDocIterator” on page 5-37.

GetDocIterator(IADoc* start) 5

See “IAIndex.GetDocIterator(IADoc* start)” on page 5-37.

GetFlushProgressData 5

Access method for TermIndex member data.

Output

void* pdata
A pointer to a the item whose progress is being reported.

GetFlushProgressFn 5

Access method for TermIndex member data.

Output

FlushProgressFn*flushProgressFn
A pointer to the function used for progress callbacks.

GetFlushProgressFreq 5

Access method for TermIndex member data.

C H A P T E R 5

Index Category

5-54 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

clock_t flushProgressFreq
The number of clock ticks between progress reports. Uses ANSI
clocks_per_sec.

GetIDDoc 5

Input

DocID id
The id of the document.

Output

IADoc*
The IADoc for the document.

Notes

The index must be open. This function will fail with an Invalid Doc ID exception if the
document ID does not exist.

Usage

StringDoc* doc = (StringDoc*)index.GetIDDoc(posting.docID);

GetIDTerm 5

Input

TermID id
The id of the term.

Output

IATerm*
The IATerm for the term.

Notes

The index must be open. This function will fail with an Invalid Term ID exception if the
term ID does not exist.

C H A P T E R 5

Index Category

Index Class Category Reference 5-55
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

IATerm* term = index.GetIDTerm(component->termID);

GetMaxDocID 5

Output

DocID
The next available document ID.

Notes

This is also used as the maximum count; that is the largest number of documents
including those which have been deleted but not actually physically purged.

Usage

DocID max = index->GetMaxDocID()

GetMaxTermID 5

Output

TermID
The next available term ID.

Notes

This is also used as the maximum count; that is the largest number of terms including
those which have been deleted but not purged.

Usage

TermID maxTermID = index->GetMaxTermID();

C H A P T E R 5

Index Category

5-56 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetTermCount 5

Output

TermFreq
The number of terms in the index.

GetTermInfo 5

Input

IATerm* term
The pointer to the term whose information is needed.

Output

TermInfo*
Pointer to the term information.

Notes

The index must be open. This will fail with an invalid term exception if the term does not
exist.

Usage

TermInfo* i = indices[j]->GetTermInfo(entry->term);

GetTermInfoIterator 5

Output

IAOrderedStorableIterator* iterator
Pointer to an iterator over the set of term information.

Usage

IAOrderedStorableIterator* terms =

 index->GetTermInfoIterator();

C H A P T E R 5

Index Category

Index Class Category Reference 5-57
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetTermInfoIterator(IATerm* start); 5

Input

IATerm*
The term at which the iterator should be positioned.

Output

IAOrderedStorableIterator*
Pointer to an iterator over the set of term information.

Description

Same as GetTermInfoIterator() except the iterator will be positioned at the input term. If
this term is not in the set, the iterator will be positioned at the term which would
logically follow.

Initialize 5

See “IAIndex.Initialize” on page 5-40.

IsDocIndexed 5

See “IAIndex.IsDocIndexed” on page 5-40.

Merge 5

See “IAIndex.Merge” on page 5-41.

Open 5

See “IAIndex.Open” on page 5-41.

C H A P T E R 5

Index Category

5-58 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

RenameDoc 5

See “IAIndex.RenameDoc” on page 5-41.

SetFlushProgressData 5

Access method for TermIndex member data.

Input

void* pdata
The item whose progress is to be reported.

SetFlushProgressFn 5

Access method for TermIndex member data.

Input

FlushProgressFn*fn
The function to be called for progress status during AddDoc(),
DeleteDoc(), and Flush().

SetFlushProgressFreq 5

Access method for TermIndex member data.

Input

clock_t freq
The number of clock ticks between progress reports. Uses ANSI
clocks_per_sec.

C H A P T E R 5

Index Category

Index Class Category Reference 5-59
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Protected Member Functions 5

GetBytesForUpdate 5

Access method for TermIndex member data.

Output

uint32 bytesForUpdate
Number of bytes allocated for certain indexing data structures.

Notes

BytesForUpdate is an internal value used as a hint to help allocate data structures
efficiently for indexing. See SetBytesForUpdate().

SetBytesForUpdate 5

Access method for TermIndex member data.

Input

uint32 bytesForUpdate
Number of bytes to allocate for certain indexing data structures.

Notes

BytesForUpdate is an internal value used as a hint to help allocate data structures
efficiently for indexing. The default is 1,000,000. Larger values will cause the indexing
application to use more memory, but it will process changes to the index in larger chunks
and therefore increase its performance.

TermInfo 5
Header: TermIndex.h

Hierarchy 5

Public subclass of IAOrderedStorable. See “IAOrderedStorable” on page 10-14.

Class

C H A P T E R 5

Index Category

5-60 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Description 5

Term Info is the basic information about a term as it relates to this index.

Relationships 5

TermInfo contains IATerm 5

One termInfo contains one and only one term.

Clients 5

See “InvertedIndex contains TermInfo” on page 5-48.
See “TFComponent maps to TermInfo” on page 5-63.

Public Member Functions 5

constructor() 5

constructor(IATerm* term, TermID termID) 5

Input

IATerm* term
The term.

TermID termID
The ID for the term.

destructor 5

Deletes the term.

C H A P T E R 5

Index Category

Index Class Category Reference 5-61
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

DeepCopy 5

See“IAStorable.DeepCopy” on page 10-28.

Equal 5

See“IAOrderedStorable.Equal” on page 10-15. TermInfo equals another TermInfo if the
term equals the other term.

GetDocumentCount 5

Access method for TermInfo member data.

Output

TermFreq docCount
The number of documents in which the term occurs.

GetTerm 5

Access method for TermInfo member data.

Output

IATerm* term
The term in question.

GetTermID 5

Access method for TermInfo member data.

Output

TermID id
The ID of the term.

C H A P T E R 5

Index Category

5-62 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

LessThan 5

See “IAOrderedStorable.LessThan” on page 10-16. TermInfo is sequenced by term.

Restore 5

See “IAStorable.Restore” on page 10-28.

SetDocumentCount 5

Access method for TermIndex member data.

Input

TermFreq docCount
The number of documents in which the term occurs.

SetTerm 5

Access method for TermIndex member data.

Input

IATerm* term
The term in question.

Store 5

See “IAStorable.Store” on page 10-30.

StoreSize 5

See “IAStorable.StoreSize” on page 10-29.

C H A P T E R 5

Index Category

Index Class Category Reference 5-63
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

TFComponent 5
Header: TFVector.h

Description 5

A TFComponent is the relationship between a document and a term it contains. See
Figure 5-14 on page 5-69.

Relationships 5

TFComponent maps to TermInfo 5

One TF component maps to one and only one term info.

This mapping is indirect; TFComponent contains a TermID, which uniquely points to a
single TermInfo.

Clients 5

See “TFVector contains TFComponent” on page 5-64.

Data 5

TermID termID
The TermID

TermFreq freq
The frequency of that term.

TFVector 5
Header: TFVector.h

Hierarchy 5

Base Class.

Description 5

The stream of TFComponents; the vehicle for obtaining the components of a document.

Class

Class

C H A P T E R 5

Index Category

5-64 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 5

TFVector contains TFComponent 5

One TFVector contains many TFComponents.

Clients 5

See “VectorIndex gets (by doc) TFVector” on page 5-69.

Public Member Functions 5

constructor(DocLength length) 5

Input

DocLength length
The number of components in the vector.

destructor 5

ComponentsRead 5

Input

IAInputBlock* input
The allocated and opened input block for the components

ComponentsSize 5

Output

IABlockSize
The block size used for component storage

C H A P T E R 5

Index Category

Index Class Category Reference 5-65
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

ComponentsWrite 5

Input

IAOutputBlock* output
The alllocated output block for the storage

GetComponents 5

Access method for TFVector member data.

Output

TFComponent*components
An array of TFComponents.

GetDocumentLength 5

Access method for TFVector member data.

Output

DocLength length
The number of components in the vector (i.e. the number of unique
indexed terms in the document).

SetComponents 5

Access method for TFVector member data.

Input

TFComponent*components
An array of TFComponents.

SetDocumentLength 5

Access method for TFVector member data.

C H A P T E R 5

Index Category

5-66 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

DocLength length
The number of components in the vector (i.e. the number of unique
indexed terms in the document).

VectorDocInfo 5
Header: VectorIndex.h

Hierarchy 5

Public subclass of DocInfo. See “DocInfo” on page 5-25.

Description 5

DocInfo for a vector index. This allows the storage of DocInfo as a block.

Client 5

See “VectorIndex contains VectorDocInfo” on page 5-70.

Public Member Functions 5

GetVectorBlockID 5

Access method for VectorDocInfo member data.

Output

IABlockID vectorBlock
The BlockID of the block where the vector is stored.

SetVectorBlockID 5

Access method for VectorDocInfo member data.

Class

C H A P T E R 5

Index Category

Index Class Category Reference 5-67
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

IABlockID vectorBlock
The BlockID of the block where the vector is stored.

constructor() 5

constructor(IADoc* document, DocID docID) 5

Input

IADoc* The document.

DocID The ID for the document.

DeepCopy 5

See“IAStorable.DeepCopy” on page 10-28.

Restore 5

See “IAStorable.Restore” on page 10-28.

Store 5

See “IAStorable.Store” on page 10-30.

StoreSize 5

See “IAStorable.StoreSize” on page 10-29.

VectorIndex 5

Header: VectorIndex.h

Class

C H A P T E R 5

Index Category

5-68 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Hierarchy 5

Public subclass of TermIndex. Virtual. See “TermIndex” on page 5-49.

C H A P T E R 5

Index Category

Index Class Category Reference 5-69
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 5

Figure 5-14 Vector index overview

VectorIndex gets (by doc) TFVector 5

A vector index create and gets many TFVectors, one per document.

TFVector

VectorIndex

TFComponent

gets (by doc)

contains

maps to

contains

VectorDocInfo

TermInfo

IATerm* 	 term
TermID	 id
TermFreq	 docCount

TermID 	 id
TermFreq	 freq

DocInfo

IADoc* 	 doc
DocID		 id
DocLength	 length

IABlockID vectorBlock

DocLength	 length
TFComponent** components

C H A P T E R 5

Index Category

5-70 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

VectorIndex contains VectorDocInfo 5

One vector index contains many VectorDocInfo, one per document.

Public Member Functions 5

constructor 5

Input

IAStorage* storage
A pointer to the storage in which to place the index.

IACorpus* corpus
A pointer to the associated corpus.

IAAnalysis* analysis
A pointer to the analysis to be used to extract terms.

uint32 indexType=VectorIndexType
The index type constant.

IABlockID indexRoot
The block id of the root. Default is nil; the root will be allocated if not
defined.

destructor 5

GetTFVector 5

Virtual.

Input

IADoc* doc
Pointer to the document.

Output

TFVector*
The vector.

C H A P T E R 5

Index Category

Index Class Category Reference 5-71
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

TFVector* vector = aVectorIndex.GetTFVector(di->doc);

C H A P T E R 5

Index Category

5-72 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class Utilities 5

GetHighFreqTerms 5

Header: HighFreqTerms.h

Input

TermIndex* index
A pointer to the index.

uint32* nTerms
The desired number of terms. Returns the actual number (n or less) found.

Output

FreqTerm*
A pointer to an array of freqTerms.

Notes

Results should be freed with IAFreeArray().

 Usage

FreqTerm* results = GetHighFreqTerms(&index, &resultCount);

IAReadIndexTypes 5

Input

IAStorage* storage
A pointer to the storage in which to place the index.

IABlockID indexRoot
The block id of the root.

IAIndexTypes* types
A pointer to the initialized index types structure. This will be returned
with the types read.

C H A P T E R 5

Index Category

Index Class Category Reference 5-73
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

IAIndexTypes indexTypes;

IAReadIndexTypes(storage, indexRoot, &indexTypes);

C H A P T E R 5

Index Category

5-74 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Typedefs 5

DocID 5

A unique identifier for a document.

Type

TermID

Header

TermIndex.h

DocLength 5

The number of terms in a document

Type

TermFreq

Header

TermIndex.h

FlushProgressFn 5

FlushProgressFn(float percent void* data); the progress function to be used
when building an index.

Type

void

Header

TermIndex.h

C H A P T E R 5

Index Category

Index Class Category Reference 5-75
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

TermFreq 5

The number of times a term appears in a document.

Type

uint32

Header

TermIndex.h

TermID 5

A unique identifier for a term.

Type

uint32

Header

TermIndex.h

C H A P T E R 5

Index Category

5-76 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

 Extern Data 5

extern “C”
Order function so that arrays of TFComponent can be sorted by qsort.

extern uint32TIMaxDocSize
The maximum number of tokens indexed per doc.
Documents longer than this are currently truncated. Default, set in
TermIndex, is 2000.

C H A P T E R 5

Index Category

Index Class Category Reference 5-77
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

 Constants 5

const uint32 InvertedIndexType=’Inv6’
InvertedIndex.h

const uint32 InVecIndexType=’I&V2’
InVecIndex.h

const uint32 TermIndexType=’Ter2’
TermIndex.h

const uint32 VectorIndexType=’Vec4’
VectorIndex.h

C H A P T E R 5

Index Category

5-78 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Index Exceptions and Error Handling 5

Errors That May Occur when Working with Indexes 5

These are errors that sometimes occur when working with indexes. IAT reports errors as
exceptions. The explanations suggest possible causes of the exception in the context of
working with indexes. See the exception code under its category for more detailed
information.

You can tell the category of an exception by its prefix: VA: accessor, VC: corpus, VS,
storage, VI, index. VTWN is a general exception code.

VCHE Validation of File Names (HFS Error) 5

There is no validation of the input storage and folder names. You must ensure they exist
or could exist under that name in the path specified.

VIIV Incompatible Index Type 5

You can get this exception when you try to establish an existing index as a corpus or
analysis type different from the one used in its creation.

VSPB Incompatible Corpus Type (Store Past Block End) 5

One way to read past the end of a block is to update an existing index that was created
with a text folder corpus with a text file not in that corpus. The update will work;
however, when you try to access the index after updating, you may get this error. You
may only have documents within the folder for a text folder corpus.

VTWN Incomplete Index 5

If the index was being built under the same storage name, and that build failed, you get
this exception.

C H A P T E R 5

Index Category

Index Class Category Reference 5-79
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Exceptions Thrown by Index Classes 5

VIAI 5

IndexDocAlreadyIndexed. Something has been renamed to a document already in the
index, or there is an attempt to merge an index with one which already contains the
document name.

Header

IAIndex.h

VIAO 5

IndexAlreadyOpen. The Initialize or Open functions were called when the index was
already initialized or open.

Header

IAIndex.h

VIDN 5

IndexDocNotIndexed. The document is not found.

Header

IAIndex.h

VIIV 5

Index Invalid. The types of an index opened from storage do not equal the types of the
constructed index.

Header

IAIndex.h

C H A P T E R 5

Index Category

5-80 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

VINO 5

IndexNotOpen. One of these functions have been called without opening or initializing
the index first.

IAIndex:

■ Compact

■ StartUpdate

Inverted Index

■ Get Deleted Doc Count

TermIndex

■ GetDocCount

■ GetDocInfo

■ GetDocInfoIterator

■ GetIDDoc

■ GetIDTerm

■ GetMaxDocID

■ GetMaxTermID

■ GetTermCount

■ GetTermInfo

■ GetTermInfoIterator

Header

IAIndex.h

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 6

Accessor Category 6

Listing 6-0
Figure 6-0

Choosing an Accessor Type 3
Query Logic 4
Query Analysis 5
Common Operations 6

Building an Accessor 6
Answering Queries 7
Answering a Simple Ranked Query 8
Answering a Query by Example 11
Answering a Boolean Query 14
Describing a Document 16
Finding Related Words 18

Accessor Class Category Reference 20
Header Files in the Accessor Category 20
Class Specifications 22
IAAccessor 22
IAHit 26
IAProgressReport 29
InVecAccessor 32
InvertedAccessor 33

C H A P T E R 6

Accessor Category

6-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

RankedAccessor 36
RankedHit 43
RankedProgress 45
RankedQueryDoc 46
TWComponent 47
TWVector 48
VectorAccessor 51
Typedefs 53
Constants 53
Accessor Exceptions and Error Handling 54

Table 5-0

C H A P T E R 6

Accessor Category

Choosing an Accessor Type 6-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

This accessor category contains the classes required to access IAT indexes. Accessors can
be used to search for documents in the index and get information about them. An
accessor provides the means to locate documents by query or to determine which
documents are similar to each other. All searches are done through an accessor.

Searches may vary based on the accessor type (Vector, Inverted, or InVec), the item used
to search (a text query or one or more sample documents), and the way the query is to be
interpreted (ranked or Boolean).

With ranked searching, the user describes his or her information need with an arbitrary
list of words (which may be a sample of natural language text, or even a question), and
the system determines which documents best satisfy that need. Because there is no single
“right answer,” the system computes a score for each potentially matching document
which represents its estimated relevance. The documents are then returned with the
scores, sorted from highest relevance to lowest.

With Boolean searching, users describe their information need with a logical expression
consisting of words connected by the Boolean operators AND, OR, and NOT.* While
Boolean searching is useful for some specialized tasks, studies consistently show that
users get better search results with ranked searching.

6Choosing an Accessor Type

As seen in Figure 6-1, the inheritance tree for an accessor parallels that of an index.
Generally you will wish to use the accessor that matches the index type used. Although
you may use an inverted accessor or a vector accessor with an InVecIndex, the InVec
accessor takes most advantage of the InVecIndex features.

* In information retrieval, the Boolean NOT operator is shorthand for BUT NOT. For example, the Boolean
query “dog NOT beagle” would find all items containing the word “dog” except those also containing the
word “beagle.”

C H A P T E R 6

Accessor Category

6-4 Query Logic

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 6-1 Accessor inheritance tree

6Query Logic

The primary work of the accessor is to search the index in answer to queries. When it
does this it reports hits, which match terms to documents. Figure 6-2 shows the abstract
classes used in a query.

IAAccessor

RankedAccessor

InvertedAccessor VectorAccessor

InVecAccessor

C H A P T E R 6

Accessor Category

Query Analysis 6-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 6-2 Query logic

One accessor may access many indexes. It reports an array of RankedHits in answer to a
query.

6Query Analysis

Queries, like documents, must be analyzed by an analysis module in order to extract the
terms to be searched. By default, the query is processed using the same analysis as was
used when indexing the documents. However, there may be cases where developers
may want to allow their applications to offer differ analysis options at search time.

For example, a collection of documents may be indexed using an analysis that uses all
the words in the text. An application may then offer the users the option of automatically
removing stop words (like “the”) from the query text. This would require the use of a
different analysis for queries.

To use a different analysis for queries, call the IAIndex function SetPreferredAnalysis
(page 5-42) after opening the index to be search with the accessor.

RankedAccessor IADocTermIndex

RankedHit

IATerm

reports

searches

found in

indexed

matching

IAIndex* index;
IADoc* doc;
IATerm** matchingTerms;
float score;
uint32 matchingTermsLen;

C H A P T E R 6

Accessor Category

6-6 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6Common Operations

Building an Accessor 6
An accessor is built for a set of indexes. The indexes should be established in storage and
opened (generally opened for read only access unless there is some other use than
accessing them).

Note
Changing the index (by adding or deleting documents) after opening an
accessor will cause the open accessor to become invalid.

The example below builds an accessor for a single index.

Figure 6-3 Interaction diagram to build an accessor

Listing 6-1 Build an inverted vector accessor

// establish an index in storage

// See (“Establish an existing index” on page 5-13)

// make an array of indexes to use (can be > one)

const uint32 numberIndexes = 1;

InvertedVectorIndex* anInVecIndexArray[numberIndexes];// make indexes

anInVecIndexArray[0] = &anInVecIndex;

// create the accessor

InVecAccessor anInVecAccessor(anInVecIndexArray, numberIndexes);

anInVecIndex

new

anInVecIndexArray anInVecAccessor

new(anInVecIndexArray, numberIndexes))

anInVecIndexArray[0]=anInVecIndex

C H A P T E R 6

Accessor Category

Common Operations 6-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Answering Queries 6
Accessors are the means by which indexes can be searched. The search request takes the
form of a query. There are two general types of queries against an index:

■ a simple ranked query, which, given a string of text, locates individual terms in that
text. The accessor then finds documents which have those terms.

■ a Boolean query, which, given a Boolean expression, locates documents that satisfy
that expression.

■ a query by example, which, given one or more documents that have been indexed and
their index, will locate the most similar documents.

Preparing for a Query 6

To prepare for a query, you must establish these items:

■ the maximum number of documents to retrieve(numberDocs). RecipeSwap, for
example, chooses to limit the number of recipes to give the patron to ten, so the
number of Ranked Hits is limited to ten

■ the maximum number of matching terms (numberTermsPerDoc) to show per query.
Those terms which contibute most to the document being retrieved are used.

You can then establish an array for the storage of the resulting RankedHits. This array
will have as many members as the maximum number of documents to list.

Reporting Progress 6

You may wish to have a report of progress as the search goes on. You may establish a
progress reporting function and pass that address to the search. The function you
develop will use the RankedProgress type as an input parameter. See “RankedProgress”
on page 6-45.

You provide the frequency of progress to the query; this parameter is the number of
clock_t between reports.

Note
Set a frequency of progress greater than 0. If you set the frequency of
progress to zero, you will have very frequent (about 1 ms) progress
reporting. This will make the accessor intolerably slow.

Listing 6-2 is an example of a primitive progress reporting function.

Listing 6-2 Report search progress

bool ReportQueryProgress(RankedProgress* progress, void* data) {

#pragma unused (data)

printf(“Percent Searched: %4.1f \n“, progress->percent);

return false;

}

C H A P T E R 6

Accessor Category

6-8 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Answering a Simple Ranked Query 6
Listing 6-3 is an example of a program which parses a simple string of terms and
matches that string against the terms in an inverted index. The results show which
documents have any of the terms, what their score is, and which terms they contain. The
terms are sorted according to how much they contributed to this document being
retrieved. Figure 6-4 shows an output display of this query.

Figure 6-4 Output from a simple ranked query

Figure 6-5 Interaction diagram for a simple ranked query

Query: Swiss, spinach, onion
searching: 0.0
searching: 100.0
search time: 00 hours, 00 minutes and 00 seconds.
5 hits
 1.00 : spinach-pizza [spinach]
 0.89 : quiche05 [spinach onion]
 0.82 : quiche10 [spinach]
 0.65 : quiche11 [spinach]
 0.63 : quiche09 [swiss onion]

aProgressFunction

new[numberDocs]

aRankedHitArray anInVecAccessor

RankedSearch(query,queryLen, NULL, 0, aRankedHitArray,numberDocs,
numberTermsPerDoc, aProgressFunction, frequency Of Progress)

.score

C H A P T E R 6

Accessor Category

Common Operations 6-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 6-3 Answer a simple ranked query

// create the accessor

// (see “Build an inverted vector accessor” on page 6-6)

InVecAccessor anInVecAccessor(anInVecIndexArray, numberIndexes);

anInVecAccessor.Initialize();

// set up display of results

const numberTermsPerDoc = 4; // max terms to show/doc

const numberDocs = 5; // max docs to list

RankedHit* aRankedHitArray[NumberDocs];

clock_t frequencyOfProgress = clocks_per_sec / 2; // tics btwn

// get the query and display it

char* query = GetQuery(); // application provided function

printf(“Query: %s\n”, query);

// do the search

uint32 numberHitsFound = accessor.RankedSearch(

(byte*)query, strlen(query),// query string and length

NULL, 0, // no query by example doc parameters

aRankedHitArray, numberDocs, numberTermsPerDoc,// final results

&ReportQueryProgress, frequencyOfProgress, NULL);

// report the results

DisplayResults(aRankedHitArray, numberHitsFound); // see Listing 6-4

C H A P T E R 6

Accessor Category

6-10 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 6-4 Display search results

void DisplayResults (RankedHit** aRankedHitArray,

uint32 numberHitsFound) {

// display number of hits

printf(“%lu hits\n”, numberHitsFound);

// show the documents that hit and their relevance score

for (uint32 i = 0; i < numberHitsFound; i++) {

 // show document name and relevance score

RankedHit* aRankedHit= aRankedHitArray[i];

 printf(“%5.2f : “, aRankedHit->GetScore());

// see Listing 6-5 for PrintDocName.

 PrintDocName(aRankedHit->GetDocument());

// show the top n terms/document(unless none)

if (aRankedHit->GetMatchingTermsLen()){

 printf(“ [“);

 for (uint32 j = 0;

j < aRankedHit->GetMatchingTermsLen(); j++) {

 printf(“ %s”,

 aRankedHit->GetMatchingTerms()[j]->GetData());

}

 printf(“]”);

}

printf(“\n”);

delete aRankedHit;

}

return;

}

Listing 6-5 Get and print a document name

void PrintDocName(IADoc* doc) {

uint32 docNameLength;

char* docName = (char*)doc->GetName(&docNameLength);

printf(“%s”, docName);

delete[] docName;

}

C H A P T E R 6

Accessor Category

Common Operations 6-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Answering a Query by Example 6
This type of search uses one or more documents as the query. It locates other documents
similar to the query documents, and scores their relevance to the sample document. The
result, is a ranked list of documents found.

Similarity is measured based on matching the statistical distribution of terms in the
example and hit documents. Roughly speaking, two documents will have high similarity
scores if they use many of the same words.

When you have a new document and you wish to see if a similar document exists
already, you must add the new document to the index before you can use it as a query.
Once you have added the document to the index, you can use it to create a
RankedQueryDoc. This is a pairing of the document with the index it is in. If you do not
wish to keep the new document in the index, you can delete it after the search.

Figure 6-6 Sample output from a query by example

adding Mom’s Chocolate Decadence
flushing: 0.00
flushing: 80.00
flushing: 100.00
Mom’s Chocolate Decadence
searching: 0.0
searching: 50.0
searching: 121.9 into
searching: 150.0
5 hits
 1.00 : Mom’s Chocolate Decadence [rasp choc genache decadance chambord]
 0.94 : Chocolate Decadence [rasp choc genache decadance chambord]
 0.18 : Hazelnut Cheesecake [paris gene min ken crust]
 0.13 : Cheesecake Collection [gelatin crust tbs oreos chocolate]
 0.13 : White Choc Cheesecake02 [gelatin mousse chocolate bittersweet pipe]
deleting Mom’s Chocolate Decadence

In this example, the second item has almost the same score as the first, suggesting that
this is probably the same recipe as the sample document.

Note
The sample document must be in an index that is contained in the array
used when constructing the accessor. If you are matching to a different
index, create the accessor with both indexes.

C H A P T E R 6

Accessor Category

6-12 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 6-7 Interaction diagram for creating a RankedQueryDoc

anInVecIndex anIADoc

new(anIADoc, anInVecIndex)

aRankedQueryDoc

C H A P T E R 6

Accessor Category

Common Operations 6-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Sample Code for Query-by-example 6

Listing 6-6 Find documents matching example document

// Set up the example doc with its index

StringPtr docName = "\pMom’s Chocolate Decadence";

HFSTextFolderCorpus* anHFSTextFolderCorpus =

(HFSTextFolderCorpus*)recipeIndex.GetCorpus();

HFSTextFolderDoc* anEmailDoc = new HFSTextFolderDoc(

(HFSTextFolderCorpus*)anHFSTextFolderCorpus, 0, docName, 0);

recipeIndex.AddDoc((HFSTextFolderDoc*)anEmailDoc->DeepCopy());

recipeIndex.Flush();

// Convert example doc to a RankedQueryDoc

RankedQueryDoc aRankedQueryDoc(anEmailDoc, &recipeIndex);

PrintDocName(anEmailDoc); // see Listing 6-5

printf("\n");

// Set up query results

const numberTermsPerDoc = 5; // amount to show/document

const numberDocs = 5; // top n docs to show

// Create the query structure

RankedHit* aRankedHitArray[numberDocs]; // array of hits

clock_t frequencyOfProgress = 30; // time btwn progress rpts

// Do the search

InVecAccessor anInVecAccessor(anInVecIndexArray, numberIndexes);

anInVecAccessor.Initialize();

char* query = NULL; //Null the term search parmeters

uint32 numberOfExamples = 1; //There is one sample doc

uint32 numberOfHitsFound = anInVecAccessor.RankedSearch(

(byte*)query, strlen(query),// query is nil

&aRankedQueryDoc, numberOfExamples,// feedback doc params

aRankedHitArray, numberDocs, numberTermsPerDoc,// results

&DemoRankedProgress, frequencyOfProgress, NULL);

// Report the results and remove new doc

DisplayResults(aRankedHitArray, numberOfHitsFound); // Listing 6-4

recipeIndex.DeleteDoc(anEmailDoc);}

C H A P T E R 6

Accessor Category

6-14 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Answering a Boolean Query 6
This type of search uses a Boolean expression as the query. It locates documents that
satisfy the Boolean expression. For example, the expression “cat AND dog” would be
satisfied by only those documents containing both the word “cat” and the word “dog.”
The result, as with a ranked query, is a ranked list of documents with relevance scores.

The actual characters to be interpreted as Boolean operators can be set by the application
using the member functions SetBooleanAndOperator (default is ‘&’),
SetBooleanOrOperator (default is ‘|’), and SetBooleanNotOperator (default is ‘!’). In
addition, Boolean expressions can be nested, and the nesting operators can be set using
the functions SetBooleanLeftFence and SetBooleanRightFence; left and right parentheses
are the defaults.

Figure 6-8 Sample output from a Boolean query

accessor initialization: 00 hours, 00 minutes and 01 seconds.
Query: (chocolate & cinnamon) ! liqueur
searching: 0.0
searching: 100.0
search time: 00 hours, 00 minutes and 00 seconds.
5 hits
 1.00 : Cinn Choc Chip Cookies
 0.76 : Vegan Choc Pudding
 0.75 : Chocolate Cheesecake06
 0.69 : White Choc Fruitcake
 0.68 : Chocolate Pecan Pudding

C H A P T E R 6

Accessor Category

Common Operations 6-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Sample Code for Boolean Query 6

Listing 6-7 Find documents satisfying Boolean expression

const uint32 kMaxDocuments = 5;

InVecAccessor accessor(indices, nIndices);// make appropriate accessor

accessor.Initialize();

RankedQueryDoc rqd1[kMaxDocuments];

printf("Query: %s\n", query);// display query

RankedHit* results[kMaxDocuments];// allocate array for results

uint32 resultCount = 0;

resultCount = ((InvertedAccessor*)accessor)->RankedSearchBoolean

((byte*)query, strlen(query),// query string

results, kMaxDocuments, // result array

&DemoRankedProgress, 30, NULL);//progress args

DisplayResults(&results, resultCount);// see Listing 6-4

C H A P T E R 6

Accessor Category

6-16 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Describing a Document 6

In addition to searching, accessors can also provide a list of words that best describe the
document. You may use the GetDocTopic function for this purpose.

In this context, “best describe” means “most differentiate from other documents in the
index.” So, for example, if your collection of documents consists of 500 items all about
Pizza, the word “pizza” would probably not be one of the words, since it does not help
distinguish one document from another. Instead, you would expect to see words like
“vegetarian” or “pepperoni.” The terms are sorted from most to least descriptive.

Figure 6-9 Sample output from describing a document

Terms Describing Document: Ice Cream Xmas Pudding
australian
cherry
ice
rising
cherries
marshmallows
christmas

C H A P T E R 6

Accessor Category

Common Operations 6-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Sample Code for Describing a Document 6

Listing 6-8 Find the words that best describe a document

DemoAccessor accessor(indices, nIndices);// make appropriate accessor

accessor.Initialize();

IATerm* results[MaxResultCount];// allocate array for results

// For this example, get most recently added document

DocID maxID = index.GetMaxDocID();

IADoc* doc = index.GetIDDoc(maxID - 1);

IADeleteOnUnwind delDoc(doc);

RankedQueryDoc rqd(doc, &index);

uint32 resultCount = accessor.GetDocTopic(&rqd, results, MaxResultCount,

&DemoRankedProgress, 30, NULL);

printf("Terms Describing Document: ");

PrintDocName(doc);

printf("\n");

for (uint32 i = 0; i < resultCount; i++) {

IATerm* term = results[i];

printf(" %s\n", term->GetData());

delete term;

}

C H A P T E R 6

Accessor Category

6-18 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Finding Related Words 6

Accessors can also provide a list of words related to a given word.

In this context, “related to” means “commonly occurs in the same contexts.” In a
collection of recipes, the word “pepperoni” might have “pizza,” “crust,” and “sausage”
as some of its related terms. The terms are sorted from most to least related.

Figure 6-10 Sample output from finding related words

accessor initialization: 00 hours, 00 minutes and 02 seconds.
searching: 0.0
searching: 0.0
searching: 100.0
searching: 0.0
searching: 100.0
Terms related to: dijon
mustard
tblsp
seed
herb
age
honey
grainy
instructions
vinegar

C H A P T E R 6

Accessor Category

Common Operations 6-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Sample Code for Finding Related Words 6

Listing 6-9 Find the words related to a given wordt

// Make accessor & storage, etc -- see 6-1

InVecIndex index(storage);

index.Open();

const uint32 nIndices = 1;

InVec* indices[nIndices];// make indices

indices[0] = &index;

InVecAccessor accessor(indices, nIndices);// make appropriate accessor

accessor.Initialize();

IATerm* termResults[MaxResultCount];// allocate array for results

uint32 resultCount = accessor.GetTermsRelated(

(byte*)query, strlen(query),// query string

termResults, MaxResultCount,// result array

&DemoRankedProgress, 30, NULL);// progress args

printf ("Terms related to: %s\n", query);

printf("related terms:");

for (uint32 i = 0; i < resultCount; i++) {

IATerm* term = termResults[i];

printf(" %s\n", term->GetData());

delete term;

}

C H A P T E R 6

Accessor Category

6-20 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6Accessor Class Category Reference

Header Files in the Accessor Category 6

IAAccessor 6

IAAccessor

IAHit

IAProgressReport

InVecAccessor 6

InVecAccessor

InvertedAccessor 6

InvertedAccessor

RankedAccessor 6

RankedAccessor

RankedHit

RankedProgress

RankedQueryDoc

TWVector 6

TWComponent

TWVector

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

VectorAccessor 6

VectorAccessor

IARound

C H A P T E R 6

Accessor Category

6-22 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class Specifications 6

IAAccessor 6
Header: IAAccessor.h

Hierarchy 6

Abstract Base Class.

Figure 6-11 Accessor inheritance

Description 6

IAAccessor is the base class for providing access (such as a search) to an index.

Class

IAAccessor

RankedAccessor

InvertedAccessor VectorAccessor

InVecAccessor

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 6

IAAccessor accesses IAIndexes 6

One accessor may access many indexes.

IAAccessor reports an IAHit 6

One accessor may report many hits

IAAccessor reports status with IAProgressReport 6

One accessor uses one Progress Report

Public Member Functions 6

constructor 6

Input

IAIndex**
The array of indexes to search.

uint32
The number of indexes in the array.

destructor 6

Virtual.

Note that this destructor does not delete the indexes.

C H A P T E R 6

Accessor Category

6-24 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetAccessorType 6

Access method for IAAccessor member data.

Output

uint32 accessorType
The type of the accessor used.

GetIndexCount 6

Access method for IAAccessor member data.

Output

uint32 indexCount
The number of indexes being accessed by the accessor.

GetIndices 6

Access method for IAAccessor member data.

Output

IAIndex** indices
An array of the indexes being accessed by the accessor.

Initialize 6

Virtual.

Input

IAStorage*
storage for the accessor; default is NULL; generally the named block in
the index is used.

IABlockId
the blockID for the storage, if provided. Default is 0.

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Must be called after constructor but before any other methods. This is required because
constructors cannot call virtual methods.

If the accessor initialization data was stored, it is restored. Otherwise it is computed from
scratch, which may be slow for large indexes.

Usage

accessor->Initialize();

IsInitializationValid 6

Input

IAStorage*
storage for the accessor; default is NULL; generally the named block in
the index is used.

IABlockId
the blockID for the storage, if provided. Default is 0.

Output

bool
True if the initialization has been stored.

Notes

Checks to see if the accessor initialization data was stored. If not, Initialize() will be slow.
Calling StoreInitialization will initialize and store so subsequent initializations will be
faster.

SetAccessorType 6

Access method for IAAccessor member data.

Input

uint32 accessorType
The type of the accessor used.

C H A P T E R 6

Accessor Category

6-26 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetIndexCount 6

Access method for IAAccessor member data.

Input

uint32 indexCount
The number of indexes to be accessed by the accessor.

▲ W A R N I N G

The index count must match the number of indexes in the array passed
by the SetIndices method.

SetIndices 6

Access method for IAAccessor member data.

Input

IAIndex** indices
An array of indexes to be accessed by the accessor.

StoreInitialization 6

Input

IAStorage*
storage for the accessor; default is Nil; generally the named block in the
index is used.

IABlockId
the blockID for the storage, if provided. Default is 0.

Notes

Both initializes and stores the accessor initialization data. Accessor should not be
initialized when this is called.

IAHit 6
Header: IAAccessor.h

Class

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-27
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Hierarchy 6

Base class.

Description 6

Base class for search results. A hit is the connection between a document that matches
the query and its index.

Relationships 6

Figure 6-12 IAHit relationships

IAHit finds matching IADoc located in IAIndex 6

An IAHit identifies one doc in one index.

IADoc

IAHit

IAIndex

finds matching

located in

C H A P T E R 6

Accessor Category

6-28 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Clients 6

See “IAAccessor reports an IAHit” on page 6-23.

Public Member Functions 6

constructor 6

Input

IAIndex* index
Pointer to the index containing the matching document.

IADoc* doc
Pointer to the matching document.

destructor 6

Virtual.

GetDocument 6

Access method for IAHit member data.

Output

IADoc* doc
A pointer to the document found by the hit.

GetIndex 6

Access method for IAHit member data.

Output

IAIndex* index
A pointer to the index in which the hit document was found.

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-29
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetDocument 6

Access method for IAHit member data.

Input

IADoc* doc
A pointer a document to be used by a hit.

SetIndex 6

Access method for IAHit member data.

Input

IAIndex* index
A pointer to the index in the hit document resides.

IAProgressReport 6
Header: IAAccessor.h

Hierarchy 6

Base class.

Description 6

Base class for progress reports. Progress reports are used by user-provided progress
functions.

Class

C H A P T E R 6

Accessor Category

6-30 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 6

Figure 6-13 IAProgressReport relationships

IAProgressReport reports which IAIndex is being processed 6

One progress report reports on one index at a time.

IAProgressReport reports which IADoc is being processed 6

One progress report reports on one document.

Clients 6

See “IAAccessor reports status with IAProgressReport” on page 6-23.

IADoc

IAProgressReport

IAIndex

reports which

reports which

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-31
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 6

GetDocument 6

Access method for IAProgressReport member data.

Output

IADoc* doc
A pointer to the document whose progress is being reported. NULL if not
applicable.

GetIndex 6

Access method for IAProgressReport member data.

Output

IAIndex* index
A pointer to the index whose progress is being reported. NULL if not
applicable.

GetPercent 6

Access method for IAProgressReport member data.

Output

float percent
A number between 0.0 and 100.0 inclusive, representing the percent of the
search (or other access operation) completed.

SetDocument 6

Access method for IAProgressReport member data.

C H A P T E R 6

Accessor Category

6-32 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

IADoc* doc
A pointer to the document whose progress is being reported.

SetIndex 6

Access method for IAProgressReport member data.

Input

IAIndex* index
A pointer to the index whose progress is being reported.

SetPercent 6

Access method for IAProgressReport member data.

Input

float percent
A number between 0.0 and 100.0 inclusive, representing the percent of the
search (or other access operation) completed.

InVecAccessor 6
Header: InVecAccessor.h

Hierarchy 6

Public subclass of InvertedAccessor and VectorAccessor. See “InvertedAccessor” on
page 6-33 and “VectorAccessor” on page 6-51.

Description 6

Accelerates searches on InVec indexes.

Class

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-33
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 6

constructor 6

Input

IAIndex** indexes
The array of indexes to search.

uint32 indexCount
The number of indexes in the array.

uint32 type = InVecAccessorType

destructor 6

RankedSearch 6

See “RankedAccessor.RankedSearch” on page 6-41.

InvertedAccessor 6
Header: InvertedAccessor.h

Hierarchy 6

Public subclass of RankedAccessor. See “RankedAccessor” on page 6-36.

Description 6

An inverted accessor accesses inverted indexes for searches for terms.

Class

C H A P T E R 6

Accessor Category

6-34 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 6

constructor 6

Input

InvertedIndex** indexes
The array of indexes to search.

uint32 indexCount
The number of indexes in the array.

uint32 InvertedAccessorType
The type of accessor. Constant ‘Inv0’.

destructor 6

RankedSearch 6

See “RankedAccessor.RankedSearch” on page 6-41.

RankedSearchBoolean 6

Input

byte* booleanTextQuery
 The query text, in the form of a Boolean expression.

uint32 textQueryLen
 The number of bytes in the query text.

RankedHit** results
An array in which to place the resulting hits.

uint32 resultLen
The maximum number of hits desired.

RankedProgressFn* progressFn
A pointer to the progress function to use.

clock_t progressFreq
The number of ticks between progress reports.

void* appData
A user-supplied parameter to the progress reporting function.

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-35
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

uint32
 The number of hits found matching the Boolean expression.

Notes

The Boolean expression assumes the Boolean operators set by the accessor functions
SetBooleanAndOperator, SetBooleanOrOperator, SetBooleanNotOperator,
SetBooleanLeftFence, and SetBooleanRightFence.

Protected Member Functions 6

GetInvertedRankedQueryMaxTerms 6

Access method for InvertedAccessor member data.

Output

uint32 value
The maximum number of terms to be included in the query.

Notes

See notes for SetInvertedRankedQueryMaxTerms.

GetInvertedRankedQueryMinTerms 6

Access method for InvertedAccessor member data.

Output

uint32 value
The number of terms below which no query truncation will occur.

Notes

See notes for SetInvertedRankedQueryMinTerms.

C H A P T E R 6

Accessor Category

6-36 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetInvertedRankedQueryMaxTerms 6

Access method for InvertedAccessor member data.

Input

uint32 value
The maximum number of terms to be included in the query.

Notes

InvertedAccessors optimize performance by truncating extremely long queries. All terms
are used up to a certain minimum truncation threshold (set by
SetInvertedRankedQueryMinTerms). Then the query is truncated by discarding terms
whose weights are so low that they will have little or no effect on the results of the
search. Finally, only the top N (highest weighted) remaining terms are kept. This
function sets the value of N. The default is 50. For no query truncation, set both values to
0xFFFFFFFF.

SetInvertedRankedQueryMinTerms 6

Access method for InvertedAccessor member data.

Input

uint32 value
The number of terms below which no query truncation will occur.

Notes

InvertedAccessors optimize performance by truncating extremely long queries. All terms
are used up to a certain minimum truncation threshold (set by this function). The default
is 10. Then the query is truncated by discarding terms whose weights are so low that
they will have little or no effect on the results of the search. Finally, only the top N
(highest weighted) remaining terms are kept, where N is the value set by the function
SetInvertedRankingQueryMaxTerms. For no query truncation, set both values to
0xFFFFFFFF.

RankedAccessor 6
Header: RankedAccessor.h

Class

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-37
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Hierarchy 6

Public subclass of IAAccessor. See “IAAccessor” on page 6-22.

Description 6

An abstract class that searches any type of index and ranks the results.

Relationships 6

Figure 6-14 RankedAccessor relationships

RankedAccessor uses sample RankedQueryDoc 6

One Ranked Accessor uses one RankedQueryDoc per query by example, but may use
many.

RankedAccessor

uses sample

RankedQueryDoc

IADocTermIndex

RankedHit

IATerm

reports

searches

sample location

found in

indexed

matching

sample

C H A P T E R 6

Accessor Category

6-38 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

RankedAccessor searches TermIndex 6

OneRankedAccessor may search many TermIndexes.

RankedAccessor reports RankedHit 6

One RankedAccessor will report many RankedHits per query.

Public Member Functions 6

constructor 6

Input

IAIndex** indexes
 A pointer to an array of indexes to be used in the search.

uint32 indexCount
 The number of indexes.

uint32 type
the constant indicating the kind of accessor.

destructor 6

GetDocTopic 6

Virtual.

Input

RankedQueryDoc* doc
The sample document and its index.

IATerm** results
The terms that characterize the document.

uint32 resultLen
The maximum number of terms to report.

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-39
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

RankedProgressFn* progressFn
A pointer to the progress reporting function to use.

clock_t progressFreq
The frequency of reporting progress.

void* appData
User-provided parameter to the progress reporting function.

Output

uint32
 The number of terms found in the document (actual number of results).

Notes

Identifies the terms which best represent the document’s content. Orders them by
weights indicating their importance.

Usage

 RankedQueryDoc rqd(doc, &index);

 uint32 resultCount = accessor.GetDocTopic

(&rqd, results, MaxResultCount,

&DemoRankedProgress, 30, NULL);

HitEqual 6

Virtual

Input

IAindex* index1
 The index containing the first hit.

const IADoc* doc1
 The document containing the first hit.

IAIndex* index2
The index containing the second hit.

const IADoc* doc2
The document containing the second hit.

Output

bool
 True, these are the same documents; false, they are not.

C H A P T E R 6

Accessor Category

6-40 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Determines merging of hits; current implementation returns equal if IADocs are equal.
Used to determine whether hits from two different indexes are actually the same
document.

HitLessThan 6

Virtual

Input

IAindex* index1
 The index containingf the first hit.

const IADoc* doc1
The document containing the first hit.

IAIndex* index2
The index containing the second hit.

const IADoc* doc2
The document containing the second hit.

Output

bool
 Returns True if the doc is less than the second doc.

IsHit 6

Virtual

Input

IAindex* index
 The index.

const IADoc* doc
 The document in the index.

Output

bool
 Always true .

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-41
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

This is provided to allow subclasses to filter hits by other criteria, like date. It must be
overridden to be useful.

MergeHits 6

Virtual

Input

const RankedHit* hit1
 The first of two hits on the same document.

const RankedHit* hit2
 The second of two hits on the same document.

 Output

RankedHit
 That hit with the highest score of the two.

Notes

Merges hits that are HitEqual() into one hit — default copies higher scoring. This may
occur when a document is indexed in more than one index.

RankedSearch 6

Pure virtual.

Input

byte* textQuery
 The query text.

uint32 textQueryLen
 The number of bytes in the query text.

RankedQueryDoc* docQuery
A pointer to an array of sample documents and their index.

uint32 nDocs
The number of sample documents.

RankedHit** results
An array in which to place the resulting hits.

C H A P T E R 6

Accessor Category

6-42 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

uint32 resultLen
The maximum number of hits desired.

uint32 matchingTermsLen
The maximum number of terms to report in ranked hits.

RankedProgressFn* progressFn
A pointer to the progress function to use.

clock_t progressFreq
The number of ticks between progress reports.

void* appData
A user-supplied parameter to the progress reporting function.

Output

uint32
 The number of hits found.

RankedSearch 6

Pure virtual.

Input

IADocText* query
 The query object.

RankedQueryDoc* docQuery
A pointer to an array of sample documents and their index.

uint32 nDocs
The number of sample documents.

RankedHit** results
An array in which to place the resulting hits.

uint32 resultLen
The maximum number of hits desired.

uint32 matchingTermsLen
The maximum number of terms to report in ranked hits.

RankedProgressFn* progressFn
A pointer to the progress function to use.

clock_t progressFreq
The number of ticks between progress reports.

void* appData
A user-supplied parameter to the progress reporting function.

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-43
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

uint32
 The number of hits found.

Notes

Applications may wish to use this variant of RankedSearch when they need the query
text to be part of a real object. For example, they may require some metadata — such as a
language code — to be passed along with the query text.

RankedHit 6
Header: RankedAccessor.h

Hierarchy 6

Public subclass of IAHit. See “IAHit” on page 6-26.

Relationships 6

Ranked Hit contains matching IATerm 6

1 hit may match many terms.

Client 6

See “RankedAccessor reports RankedHit” on page 6-38.

Public Member Functions 6

constructor 6

Input

IAIndex* index
A pointer to the index containing the document

IADoc* doc
A pointer to the document.

Class

C H A P T E R 6

Accessor Category

6-44 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

float score
The score of the hit.

IATerm** terms
The array of matching terms.

uint32 termLen
The number of matching terms.

destructor 6

Deletes matchingTerms.

DeepCopy 6

const

Output

RankedHit*
a copy of this ranked hit, including matching terms.

GetMatchingTerms 6

Access method for RankedHit member data.

Output

IATerm** matchingTerms
An array of the top scoring terms in the intersection of the document with
the query.

GetMatchingTermsLen 6

Access method for RankedHit member data.

Output

uint32 matchingTermsLen
The number of matching terms in the intersection of the document with
the query.

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-45
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetScore 6

Access method for RankedHit member data.

Output

float score
The relevance score of the hit. The relative strength of this document’s
match to the query. Scaled from 0.0 to 1.0.

SetScore 6

Access method for RankedHit member data.

Input

float score
A relevance score to be assigned to the hit.

RankedProgress 6
Header: RankedAccessor.h

Hierarchy 6

Public subclass of IAProgressReport. See “IAProgressReport” on page 6-29.

Description 6

An extension of the progress report that adds reporting by the current term being
processed.

Class

C H A P T E R 6

Accessor Category

6-46 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 6

constructor 6

GetTerm 6

Access method for RankedProgress member data.

Output

IATerm* term
When non-NULL, reports the term currently being processed.

SetTerm 6

Access method for RankedProgress member data.

Input

IATerm* term
Used to report the term currently being processed.

RankedQueryDoc 6
Struct
Header: RankedAccessor.h

Description 6

The document that is used as an example for query by example. This document must
reside in an index used by the accessor. This struct identifies that index.

Struct

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-47
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 6

RankedQueryDoc connects a sample IADoc to its location in a TermIndex 6

1 query connects a single doc to a single index.

Client 6

See “RankedAccessor uses sample RankedQueryDoc” on page 6-37.

 Public Member Data 6

IADoc* doc

TermIndex* index

Public Member Functions 6

constructor 6

constructor(IADoc* doc, TermIndex* index) 6

Input

IADoc* doc
A pointer to the document.

TermIndex* index
A pointer to the index it resides in.

TWComponent 6
Struct
Header: TWVector.h

Description 6

A term and its weight. Used in relationship to a document.

Struct

C H A P T E R 6

Accessor Category

6-48 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 6

TWComponent points to an IATerm 6

1 component points to one term.

Clients 6

See “TWVector contains TWComponent” on page 6-48.

Public Data 6

TermID termID
The unique ID of the term.

float weight
The normalized weight of the term.

TWVector 6
Header: TWVector.h

Hierarchy 6

Base Class.

Description 6

A collection of weighted terms associated with a document.

Relationships 6

TWVector contains TWComponent 6

One TWVector may contain many TWComponents.

Client 6

See “VectorAccessor contains TWVector” on page 6-51.

Class

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-49
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 6

constructor 6

Input

DocLength length
The number of components in the vector.

destructor 6

GetComponents 6

Access method for TWVector member data.

Output

TWComponent*components
An array of TWComponents.

GetDocumentLength 6

Access method for TWVector member data.

Output

DocLength length
The number of components in the vector.

Normalize 6

Adjusts the weights of the vector components so that the Euclidean length of the vector
is 1.

Note
To compare vectors using the Similarity() function, normalize them first.

C H A P T E R 6

Accessor Category

6-50 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetComponents 6

Access method for TWVector member data.

Input

TWComponent*components
An array of TWComponents.

SetDocumentLength 6

Access method for TWVector member data.

Input

DocLength length
The number of components in the vector.

Similarity 6

Input

TWVector* other
The vector to compare to this one.

Output

float score
The score of similarity. How similar the two docs are to each other.

Notes

The score is increased by the product of the weights of any terms which appear in both
vectors. (In mathematical terms, the similarity score is the inner product of the two
vectors.)

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-51
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Sum 6

Input

TWVector* other
The vector to be added to this one.

Output

TWVector*
A new vector whose length is the sum of this vector and the other vector.

VectorAccessor 6
Header: VectorAccessor.h

Hierarchy 6

Public subclass of RankedAccessor. See “RankedAccessor” on page 6-36.

Description 6

An accessor which allows a ranked search over a vector index.

Relationships 6

VectorAccessor contains TWVector 6

One Vector Accessor contains many TWVector, one per document.

Public Member Functions 6

constructor(VectorIndex** indices, uint32 indexCount uitn32 type); 6

Input

VectorIndex** indexes
The array of indexes to search.

Class

C H A P T E R 6

Accessor Category

6-52 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

uint32 indexCount
The number of indexes in the array.

uint32 type
The kind of accessor. Defaults to VectorAccessorType, ‘Vec0’.

constructor(VectorIndex** index_ptr_ptr, TermIndex* context); 6

Input

VectorIndex** indexes
The array of indexes to search.

TermIndex* context
An example index to locate the most similar.

destructor 6

GetDocTopic 6

See “RankedAccessor.GetDocTopic” on page 6-38.

GetTWVector 6

Input

IADoc* doc
The document whose components are needed.

uint32 index
The number of the index (position in the indexes array).

Output

TWVector
A pointer to the container of the components.

Notes

Returns the vector for a doc from the Nth index of this accessor

C H A P T E R 6

Accessor Category

Accessor Class Category Reference 6-53
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

RankedSearch 6

See “RankedAccessor.RankedSearch” on page 6-41.

Typedefs 6

RankedProgressFn 6

The function for reporting progress during a search,

Usage

RankedProgressFn

(const RankedProgress* progress, void* data)

Type

bool

Header

RankedAccessor.h

Constants 6

const uint32 InVecAccessorType ='I&V0'

const uint32 InvertedAccessorType ='Inv0'

const uint32 VectorAccessorType ='Vec0'

C H A P T E R 6

Accessor Category

6-54 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Accessor Exceptions and Error Handling 6
Errors are currently handled by throwing exceptions.

VAAI 6

IAAccessorAlreadyInitialized
May mean that initialize has been called when the accessor has already been initialized.

VANI 6

IAAccessorNotInitialized
May mean that RankedSearch or GetDocTopic has been called and the accessor has not
been initialized.

VAIV 6

IAAccessorInitInvalid
A saved accessor initialization is no longer valid (most likely due to the fact that
documents have been added or deleted).

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 7

Analysis Category 7

Table 6-0
Listing 7-0
Figure 7-0

Understanding Tokens and Terms 3
Understanding Tokenizers 4
Understanding Filters 6

Existing Filters 6
Filter Sequence 8

Creating Analysis Subclasses 9
Creating a SimpleAnalysis Subclass 9
Creating a Subclass of IAAnalysis 10
Creating a Subclass of IATokenFilter 12
Creating a Subclass of IATerm 13
Creating a Text Utility 13

Analysis Class Category Reference 15
Header Files in the Analysis Class Category 15
Class Specifications 17
AlphaTokenizer 17
DocTextCharStream 21
DowncaseFilter 23
IAAnalysis 24
IATerm 27
IAToken 31

C H A P T E R 7

Analysis Category

7-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

 IATokenFilter 33
 IATokenStream 35
IACharStream 37
ShortWordFilter 42
SimpleAnalysis 43
StringTerm 45
Constants 47
Exceptions 48

C H A P T E R 7

Analysis Category

Understanding Tokens and Terms 7-3
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

The analysis classes provided by IAT provides the abstract classes for the location of
terms within text.

The classes within this category can do these functions:

■ scan text to locate tokens from which terms are extracted

■ filter tokens to change them or remove them.

In this chapter we will refer to an example analysis module included with the IAT called
“SimpleAnalysis.” More powerful analysis modules may also be available; these may be
linked in as separate libraries.

7Understanding Tokens and Terms

IAT distinguishes “token” and “term.” A “token” is a passage of text that might be a
term. A “term” is a token that, after filtering, has been accepted in the index. A term is
typically a word; it may be, however, the root of a word or a phrase.

The analysis provides a token stream. This stream contains many tokens, each of which
generally corresponds to a single term. Figure 7-1 shows the abstract class relationships.

C H A P T E R 7

Analysis Category

7-4 Understanding Tokenizers

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 7-1 Class diagram of tokens and terms

7Understanding Tokenizers

A tokenizer is a class that creates tokens. Tokenizers take input streams from text and, by
applying logic for determining the logical beginning and end of a possible term, create
tokens. Figure 7-2 illustrates one type of tokenizer, an alphabetic one.

A typical tokenizer might break the string

I’m going on a date with R2D2 to the Galaxy Restaurant
into the tokens:

I date the

M with Galaxy

IATokenStream

IAToken IATerm

IAAnalysis

makes

contains

contains

IATerm* term;
const uint32 startPos;
const uint32 endPos;

byte* data;
const uint32 dataLen;

C H A P T E R 7

Analysis Category

Understanding Tokenizers 7-5
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 7-2 A tokenizer

AlphaTokenizer, the example tokenizer provided with SimpleAnalysis, creates a token
stream from an input character stream. AlphaTokenizer, as any subclass of
IATokenStream, provides a GetNextToken function. It creates tokens by selecting
contiguous “chunks” of alphabetic characters under a maximum length. Non-alpha
characters are skipped (however a new token is begun following non-alphabetic
characters).

The AlphaTokenizer uses the ANSI function isalpha() to determine alphabetic
characters.

This tokenizer only works with 8-bit characters; if you are using a larger character such
as UNICODE, you must provide another tokenizer.

Applications may wish to create their own tokenizer for the initial creation of tokens.

going R Restaurant

on D

a to

AlphaTokenizer

DocTextCharStream

IATokenStream

SimpleAnalysis

extracts

gets token stream from

gets characters from

StringTerm

C H A P T E R 7

Analysis Category

7-6 Understanding Filters

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

7Understanding Filters

A filter is also a subclass of IATokenStream. Unlike tokenizers, however, they depend
upon receiving a token stream as input. Filters also provide the “Get Next Token”
facility; they only pass on tokens that are acceptable or that have been changed to be
acceptable.

Figure 7-3 Token and filter classes

Existing Filters 7

Two sample filters are provided with IAT: Short Word Filter and Downcase Filter.

The Short Word Filter requires a source token stream. Its GetNextToken function will get
the next token from that stream until it finds a token equal to or greater than its
minimum length. The default minimum length (used by SimpleAnalysis) is three.

IATokenStream

IATokenFilter

ShortWordFilterDowncaseFilter

AlphaTokenizer

IACharStream

DocTextCharStream

gets characters from

C H A P T E R 7

Analysis Category

Understanding Filters 7-7
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

The DowncaseFilter turns all uppercase characters to lowercase using the ANSI function
tolower().

Other common types of filters, which applications will probably want to provide,
include stop word filters and stemmers. Stop Word filters match the tokens against a list
of tokens which are not desired for a given application. In the example in Figure 7-4,
“with” and “the” are likely to be stopped by a common stop list. Stemmers remove
affixes (which are generally suffixes in English) to recognize common variations of a
term. For example, “going” would be reduced to “go.” This results in a normalization of
terms.

Successive Filtering 7

A token stream is successively passed through a series of filters to achieve the desired
effect. Figure 7-4 illustrates one such sequence.

C H A P T E R 7

Analysis Category

7-8 Understanding Filters

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 7-4 Illustration of sequential filtering

Filter Sequence 7
The sequence of filtering is important. For example, a stemmer would have to filter

AlphaTokenizer

ShortWordFilter

DowncaseFilter

StopWordFilter

I’m going on a date with R2D2 to the Galaxy Restaurant

tothe

Restaurant

R

a

Galaxy

on

date

m

D

with

going I

going
datewith

the

Restaurant
Galaxy

going

date
with

the

restaurant
galaxy

going
date

restaurant

galaxy

C H A P T E R 7

Analysis Category

Creating Analysis Subclasses 7-9
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

following the short word filter. Otherwise the shortened forms produced by the stemmer
might be filtered out as too short. A stop word list may have to be filtered to match the
filtered term against it. If a stop word list includes words with upper case letters, for
example, it would have to be matched to terms before they have their letters converted
to lower case. If, however, the stop word list itself was filtered to be in lower case, it
should not be matched until after the downcase filter.

7Creating Analysis Subclasses

Creating a SimpleAnalysis Subclass 7

IAT provides one instantiable analysis class, SimpleAnalysis. This uses an alphabetic
tokenizer, converts all terms to lower case, and filters out any token less than three
characters.

You can create an stronger analysis than Simple Analysis by creating a subclass of
SimpleAnalysis and adding additional filters.

Required Functions 7

GetProtoTerm

MakeTokenStream

Example 7

This example adds a stop list filter to simple analysis by creating a subclass,
StopWordAnalysis.

C H A P T E R 7

Analysis Category

7-10 Creating Analysis Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 7-5 Analysis subclass

Listing 7-1 SimpleAnalysis subclass header

class StopWordAnalysis : public SimpleAnalysis {

public:

StopWordAnalysis() : SimpleAnalysis() {}

StopWordAnalysis(StopWordAnalysis& sa) :

SimpleAnalysis(sa) {}

IATokenStream* MakeTokenStream(IADocText* text);

IATerm* GetProtoTerm();

IAOrderedStorableSet* stopset;

};

Listing 7-2 SimpleAnalysis subclass body

IATokenStream* StopWordAnalysis::MakeTokenStream

(IADocText* text) {

IATokenStream* dncase = SimpleAnalysis::MakeTokenStream(text);

IATokenStream* stopwd = new StopWordFilter(dncase);

return stopwd;

}

Creating a Subclass of IAAnalysis 7

If you wish to use a different tokenizer or omit one of the filters in SimpleAnalysis, you
may wish to create a subclass of IAAnalysis. See “IAAnalysis” on page 7-24 for detailed
information on its contents.

Simple Analysis

StopWordAnalysis

IATokenFilter

StopWordFilter

IAT

Application

C H A P T E R 7

Analysis Category

Creating Analysis Subclasses 7-11
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

The code in Listing 7-3 and Listing 7-4 demonstrates how to subclass IAAnalysis — in
this case, to build SimpleAnalysis.

Required Functions 7

GetProtoTerm

MakeTokenStream

Example 7

Listing 7-3 IAAnalysis subclass header

#include "IAAnalysis.h"

const uint32SimpleAnalysisType = 'Sim1';

class SimpleAnalysis : public IAAnalysis {

public:

SimpleAnalysis() : IAAnalysis(SimpleAnalysisType) {}

SimpleAnalysis(SimpleAnalysis& sa) : IAAnalysis(sa) {}

IATokenStream* MakeTokenStream(IADocText* text);

IATerm* GetProtoTerm();

Listing 7-4 IAAnalysis subclass body

#include "SimpleAnalysis.h"

#include "DocTextCharStream.h"

#include "AlphaTokenizer.h"

#include "DowncaseFilter.h"

#include "ShortWordFilter.h"

#include "StringTerm.h"

IATokenStream* SimpleAnalysis::MakeTokenStream(IADocText* text) {

return new DowncaseFilter

(new ShortWordFilter

(new AlphaTokenizer

(new DocTextCharStream(text))));

C H A P T E R 7

Analysis Category

7-12 Creating Analysis Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

}

IATerm* SimpleAnalysis::GetProtoTerm() {

return new StringTerm("");

}

Creating a Subclass of IATokenFilter 7

The core of a new filter is the implementation of GetNextToken, which takes the next
token offered by the source IATokenStream, and weeds it out or alters it before passing it
on.

See “IATokenFilter” on page 7-33 for detailed information on the abstract base class.

The StopWordFilter created in this example establishes the ordered storable set of stop
words when it is constructed and places its input IATokenStream into source.

Required Functions 7

GetNextToken

Listing 7-5 StopWordFilter header

#include "SimpleAnalysis.h"

#include "HFSStorage.h"

#include "IAStorable.h"

class StopWordFilter : public IATokenFilter {

public:

StopWordFilter(IATokenStream* s);

virtual IAToken* GetNextToken();

protected:

IAOrderedStorableSet* stopset;

C H A P T E R 7

Analysis Category

Creating Analysis Subclasses 7-13
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 7-6 StopWordFilter implementation of GetNextToken

IAToken* StopWordFilter::GetNextToken() {

for (IAToken* token = source->GetNextToken(); token;

token = source->GetNextToken()) {

IATerm* stopTerm = (IATerm*)stopset->Get(token->term);

if (!stopTerm) {

return token;

 } else {

delete token;

 }

}

return Nil;

}

Creating a Subclass of IATerm 7
You may create a subclass of IATerm if you would like to create a custom constructor, or
if you need to provide additional type conversions such as char* to byte*. You may not,
however, change the implementation of its order, LessThan or Equal, or of its format,
Store or Restore, as the current index logic is dependent upon the existing order and
format.

See “IATerm” on page 7-27 for detailed information on the abstract class.

Required Functions 7

None

Creating a Text Utility 7

DocTextCharStream is an IAT-provided utility class that reads buffers of text from the
HFSDoc.

You may need to provide another implementation for your documents.

Required Functions 7

GetNextBuffer

C H A P T E R 7

Analysis Category

7-14 Creating Analysis Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Example 7

Listing 7-7 DocTextCharStream header

#include "IACharStream.h"

#include "IACorpus.h"

class DocTextCharStream : public IACharStream {

public:

DocTextCharStream() : IACharStream(), docText(NULL) {}

DocTextCharStream(IADocText* text) :

IACharStream(), docText(text) {}

 ~DocTextCharStream();

uint32GetNextBuffer(char* buffer, uint32 bufferLen);

private:

IADocText*docText;

};

Listing 7-8 DocTextCharStream body

#include "DocTextCharStream.h"

DocTextCharStream::~DocTextCharStream() {

delete docText;

}

uint32 DocTextCharStream::GetNextBuffer(char* buffer, uint32 bufferLen) {

return docText->GetNextBuffer((byte*)buffer, bufferLen);

}

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-15
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

7Analysis Class Category Reference

Header Files in the Analysis Class Category 7

AlphaTokenizer.h 7

AlphaTokenizer

DocTextCharStream.h 7

DocTextCharStream

DowncaseFilter.h 7

DowncaseFilter

IAAnalysis.h 7

IAAnalysis
IATerm
IAToken
IATokenStream
IATokenFilter

IACharStream.h 7

IACharStream

C H A P T E R 7

Analysis Category

7-16 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

ShortWordFilter.h 7

ShortWordFilter

SimpleAnalyis.h 7

SimpleAnalysis

StringTerm.h 7

StringTerm

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-17
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class Specifications 7

AlphaTokenizer 7
Header: AlphaTokenizer.h

Hierarchy 7

Public subclass of IATokenStream. See “IATokenStream” on page 7-35.

Description 7

AlphaTokenizer breaks a stream of characters into tokens. These tokens are contiguous
alphabetic characters (as determined by the ANSI function isalpha). Non-alphabetic
characters cause the end of a token and are removed from the stream.

Tokens longer than 63 characters are broken into smaller tokens. This number may be
changed by altering the constant AlphaTokenizerMaxTokenLen.

Class

C H A P T E R 7

Analysis Category

7-18 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 7

Figure 7-6 AlphaTokenizer relationships

AlphaTokenizer gets characters from DocTextCharStream 7

An AlphaTokenizer gets its input from a single DocTextCharStream, given to it at the
time of construction.

AlphaTokenizer extracts IAToken 7

An AlphaTokenizer finds many IATokens in the text stream.

Clients 7

See “Simple Analysis gets tokens from AlphaTokenizer” on page 7-44.

AlphaTokenizer DocTextCharStream

StringTerm

SimpleAnalysis

extracts

gets token stream from

gets characters from

DowncaseFilter
filters

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-19
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 7

constructor(IACharStream* stream) 7

Input

IACharStream* stream
The character stream that will provide characters to the tokenizer.

Usage

IATokenStream* SubclassAnalysis::

MakeTokenStream(IADocText* text) {

return new DowncaseFilter(new ShortWordFilter(new

AlphaTokenizer(new DocTextCharStream(text))));

}

destructor 7

Notes

Deletes charStream.

GetNextToken 7

Output

IAToken*
The next alphabetic token found in the stream of characters. Returns
NULL at end of stream.

Usage

for (IAToken* token = ts->GetNextToken(); token;

token = ts->GetNextToken()) {

 posting.term = token->term;

}

C H A P T E R 7

Analysis Category

7-20 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetTextSpan 7

See “IATokenStream.GetTextSpan” on page 7-37.

Protected Member Functions 7

GetCharStream 7

Access method for AlphaTokenizer member data.

Output

IACharStream*charStream
A pointer to the input character stream. This stream is deleted upon
destruction.

GetStreamBuffer 7

Access method for AlphaTokenizer member data.

Output

char* buffer
Holds the token in progress.

SetCharStream 7

Access method for AlphaTokenizer member data.

Input

IACharStream*charStream
A pointer to the input character stream. This stream is deleted upon
destruction.

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-21
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetStreamBuffer 7

Access method for AlphaTokenizer member data.

Input

char* buffer
Holds the token in progress.

DocTextCharStream 7
Header: DocTextCharStream.h

Hierarchy 7

Subclass of IACharStream.

Description 7

The DocTextCharStream is a utility that selects text from IADocs. SimpleAnalysis
provides DocTextCharStream as an input to the creation of the AlphaTokenizer.

Relationships 7

DocTextCharStream gets chars from IADocText 7

One DocTextCharStream gets its characters from IADocText.

AlphaTokenizer gets char stream from DocTextCharStream 7

In the implementation of Simple Analysis, AlphaTokenizer is created with a
DocTextCharStream. See AlphaTokenizer for more information.

Class

C H A P T E R 7

Analysis Category

7-22 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 7

constructor 7

constructor(IADocText* text) 7

Input

IADocText* text
The text of the document to be analyzed.

Usage

IATokenStream* SubclassAnalysis::

MakeTokenStream(IADocText* text) {

return new DowncaseFilter(new ShortWordFilter(new

AlphaTokenizer(new DocTextCharStream(text))));

}

destructor 7

Deletes the input text.

GetNextBuffer 7

Input

char* buffer
The pointer to the buffer.

uint32 bufferLen
The size of the buffer to read.

Output

uint32 charsRead
The number of characters read. 0 if no more buffers.

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-23
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Returns a character pointer to the buffered data.

Usage

uint32 charsRead = GetNextBuffer(buffer, IADiskBlockSize);

DowncaseFilter 7
Header: DowncaseFilter.h

Hierarchy 7

Public subclass of IATokenFilter. See “IATokenFilter” on page 7-33.

Description 7

Downcase filter is an available filter for analysis. It changes any tokens in the token
stream to be all lower case. DowncaseFilter uses the ANSI function tolower.

All terms provided to the Downcase Filter must be StringTerms.

Clients 7

See “Simple Analysis filters tokens through DowncaseFilter” on page 7-44.

Public Member Functions 7

constructor(IATokenStream* stream) 7

Input

IATokenStream* stream
The stream of tokens to be filtered.

Class

C H A P T E R 7

Analysis Category

7-24 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

IATokenStream* SubclassAnalysis::

MakeTokenStream(IADocText* text) {

return new DowncaseFilter(new ShortWordFilter(new

AlphaTokenizer(new DocTextCharStream(text))));

}

GetNextToken 7

See “IATokenStream.GetNextToken” on page 7-43.

IAAnalysis 7

Header: IAAnalysis.h

Hierarchy 7

Abstract Base Class.

Description 7

IAAnalysis is the base class for the provision of terms from given text. It is used by the
index class to locate terms in text provided by the corpus.

Relationships 7

IAAnalysis makes IATokenStream 7

An analysis makes one token stream.

Class

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-25
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 7

constructor(uint32 type) 7

Input

uint32 type
A constant that indicates which type of analysis was built. This allows
easier reconstruction of existing indexes.

Usage

 (SimpleAnalysis is a subclass of IAAnalysis)

InvertedIndex index(storage,

new HFSTextFolderCorpus(folderName),

new SimpleAnalysis(SimpleAnalysisType));

Initialize 7

Virtual.

Input

IAStorage* storage
Open or initialized storage.

IABlockID analysisRoot
A root block allocated to store analysis items.

Notes

Initializes persistent state, writing analysis parameters to storage.

Usage:

analysisRoot = storage->Allocate();

analysis->Initialize(storage, analysisRoot)

C H A P T E R 7

Analysis Category

7-26 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetProtoTerm 7

Pure virtual.

Output

IATerm*
The type of term produced by this analysis

Notes

Returns a prototype term, for bootstrapping sets of terms.

Usage

termInfoSet = IAMakeOrderedStorableSet

(MakeTermInfo(analysis->GetProtoTerm(), 0));

MakeTokenStream 7

Pure virtual.

Input

IADocText* docText
Document text as received from the corpus.

Output

IATokenStream*
A stream handler for the tokens found in the text.

Notes

Builds and returns a tokenizer. The resulting token stream may be filtered through other
IATokenFilters.

Usage

IATokenStream* ts = index->analysis->MakeTokenStream

(index->corpus->GetDocText(doc));

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-27
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 7-9 Sample implementation of filtered MakeTokenStream

IATokenStream* SimpleAnalysis::MakeTokenStream(IADocText* text) {

return new DowncaseFilter

(new ShortWordFilter

(new AlphaTokenizer

(new DocTextCharStream(text))));

Open 7

Virtual.

Input

IAStorage* storage
Allocated and opened storage.

IABlockID analysisRoot
Allocated block for the analysis.

Notes

Reads persistent state, checking that it’s consistent with current parameters.

Usage

analysisRoot = input->ReadUInt32();// reading from index root

analysis->Open(storage, analysisRoot);

IATerm 7

Header: IAAnalysis.h

Hierarchy 7

Public subclass of IAOrderedStorable. See “IAOrderedStorable” on page 10-14.

Description 7

An IATerm is the unit of indexing used in IAT.

Class

C H A P T E R 7

Analysis Category

7-28 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Clients 7

See “IAToken contains IATerm” on page 7-31.

See “TermInfo contains IATerm” on page 5-60.

Public Member Functions 7

constructor (const byte* buffer, uint32 length); 7

Input

const byte* buffer
Pointer to the term.

uint32 length
The length of the term.

Usage

new IAToken(new StringTerm(buffer, i), start,

charStream->CurrentPos() - 1);

destructor 7

Frees data.

DeepCopy 7

See “IAStorable.DeepCopy” on page 10-28.

Equal 7

See “IAOrderedStorable.Equal” on page 10-15. Subclasses should not override this
function.

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-29
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

EqualNonVirtual 7

const

Input

const IAOrderedStorable* neighbor

Output

bool
True if equal, false if not.

Notes

Non-virtual implementation of Equal() for use by performance-critical code.
Implemented version tests equality by word rather than byte.

GetData 7

Access method for IATerm member data.

Output

byte* data
The contents of the term. Allocated with IAMallocArraySized. This is
stored in a uint32-aligned array created by AllocData.

GetDataLength 7

Access method for IATerm member data.

Output

uint32 dataLen
The length of the term.

LessThan 7

See “IAOrderedStorable.LessThan” on page 10-16. Subclasses should not override this
function.

C H A P T E R 7

Analysis Category

7-30 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

LessThanNonVirtual 7

const

Input

const IAOrderedStorable* neighbor

Output

bool
True if less than, false if not.

Notes

Non-virtual implementation of LessThan() for use by performance-critical code.
Implemented version tests by word rather than by byte.

Restore 7

See “IAStorable.Restore” on page 10-28.

Store 7

See “IAStorable.Store” on page 10-30.

StoreSize 7

See “IAStorable.StoreSize” on page 10-29.

Private Member Functions 7

AllocData 7

const

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-31
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

uint32 dataLenTerm
The number of bytes in the term.

Output

byte* uint32Data
A pointer to a uint32 array allocated to hold the term.

Notes

Allocates an array of uint32 corresponding to the length of the buffer. Does not load the
array.

IAToken 7

Header: IAAnalysis.h

Hierarchy 7

Base Class.

Description 7

An IAToken is a relationship between a term and a character stream. It represents a series
of characters which may be a term.

In the given implementation, IATokens are created with the AlphaTokenizer.

Relationships 7

IAToken contains IATerm 7

An IAToken contains one and only one term. A term may be in more than one token, or
no tokens once constructed.

Class

C H A P T E R 7

Analysis Category

7-32 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IAToken is a portion of DocTextCharStream 7

An IAToken points to a start and end position within one character stream. A character
stream may have many IATokens.

Clients 7

See “IATokenStream contains IAToken” on page 7-36.

Public Member Functions 7

constructor (IATerm* term, uint32 start, uint32 end) 7

Input

IATerm* term
Term

uint32 start
Start position in the character stream.

uint32 end
End position in the character stream.

Usage

new IAToken(new StringTerm(buffer, i), start,

charStream->CurrentPos() - 1);

destructor 7

Virtual

Deletes the term.

GetEndPosition 7

Access method for IAToken member data.

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-33
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

uint32 endPos
One greater than the position of the last character corresponding to this
token.

GetStartPosition 7

Access method for IAToken member data.

Output

uint32 startPos
The byte position of the first character in the text corresponding to this
token.

GetTerm 7

Access method for IAToken member data.

Output

IATerm* term
The term within the token.

 IATokenFilter 7
Header: IAAnalysis.h

Hierarchy 7

 Subclass of IATokenStream. See “IATokenStream” on page 7-35.

Description 7

An IATokenFilter is a specialized IATokenStream which depends upon an input stream
to modify. The filter will examine this stream and return only those tokens which pass its
filter, or, in some cases, return a modified token.

Class

C H A P T E R 7

Analysis Category

7-34 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 7

IATokenFilter filters IATokenStream 7

One token filter filters one and only one token stream at a time. One token stream may
be filtered by several filters, but is usually sent through each sequentially.

Public Member Functions 7

constructor(IATokenStream* sourceStream) 7

Input

IATokenStream* sourceStream
A token stream from which to extract unfiltered tokens.

Usage

 (DowncaseFilter is a subclass of IATokenFilter)

IATokenStream* SubclassAnalysis::

MakeTokenStream(IADocText* text) {

return new DowncaseFilter(new ShortWordFilter(new

AlphaTokenizer(new DocTextCharStream(text))));

}

destructor 7

Deletes source.

GetNextToken 7

See “IATokenStream.˚GetNextToken” on page 7-36.

Filters may bypass tokens until one is allowed to filter through.

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-35
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 7-10 Sample Implementation of GetNextToken for an IATokenFilter

IAToken* DowncaseFilter::GetNextToken() {

IAToken* token = source->GetNextToken();

if (!token) return NULL;

StringTerm* term = (StringTerm*)token->term;

for (uint32 i = 0; i < term->TextLen(); i++)

 term->Text()[i] = tolower(term->Text()[i]);

return token;

}

GetTextSpan 7

See “GetTextSpan” on page 7-37. GetTextSpan() on a filter delegates to its source by
default.

Protected Member Data 7

IATokenStream* source
The source of tokens to be filtered.

 IATokenStream 7
Header: IAAnlaysis.h

Hierarchy 7

Abstract Base Class.

Description 7

IATokenStream is typically used as the interface between a character stream and the
index. It provides tokens from the text provided by the corpus.

There are generally two types of token streams, tokenizers or filters. Tokenizers are the
original providers of tokens constructed from the text. Filters are successive token
streams that modify or filter out the contained tokens.

Class

C H A P T E R 7

Analysis Category

7-36 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 7

IATokenStream contains IAToken 7

One token stream may contain many tokens. One token resides in one token stream.

Clients 7

See “IAAnalysis makes IATokenStream” on page 7-24.

Public Member Functions 7

constructor 7

Only used for initialization. Operational TokenStreams are constructed through
IAAnalysis.MakeTokenStream(). See page page 7-26.

GetNextToken 7

Pure virtual.

Output

IAToken* token
Next token in the stream, or Nil if at end of the stream.

Usage

for (IAToken* token = ts->GetNextToken(); token;

 token = ts->GetNextToken()) {

 posting.term = token->term;

}

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-37
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetTextSpan 7

Input

byte* buffer
Destination address for the span.

uint32 startPos
Start position in the character stream.

uint32 endPos
End position in the character stream.

Notes

Copies into the destination a span of bytes from the source text. The span must start less
than a buffer before the end of the last token read, and it may not extend past the end of
the last token read. If it starts more than a buffer before, AnalysisSpanUnavailable is
signalled.

Used to create a byte* copy of the term contents.

Usage

for (IAToken* token = ts->GetNextToken();

 token; token = ts->GetNextToken()) {

ts->GetTextSpan((byte*)buffer, token->startPos, token->endPos);

}

IACharStream 7
Header: IACharStream.h

Hierarchy 7

Base class.

Description 7

An IACharStream supplies a stream of characters to a tokenizer.

To access a stream of characters from the text of a document, use the subclass
DocTextCharStream.

Class

C H A P T E R 7

Analysis Category

7-38 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 7

constructor 7

destructor 7

Deletes the text buffers.

AdvanceTo 7

Virtual.

Input

uint32 desiredPosition
The desired position in the character stream.

Notes

Places the position in the character stream at the desired position. Will fail with a VTWN
exception if the desired position is before the current position or after the end of the set.

Subclasses may wish to implement a specialized faster version of this function.

 Usage

// read ahead 5

uint32 desiredPosition = currentPostion + 5;

cs->AdvanceTo(desiredPosition)

CurrentPos 7

Inline.

Output

uint32 currentPos
The current position in the character stream.

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-39
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

// note start of token

uint32 start = charStream->CurrentPos() - 1;

GetBuffer 7

Access method for IACharStream member data.

Output

char* buffer
A pointer to the current buffer of characters.

GetBufferPos 7

Access method for IACharStream member data.

Output

uint32 bufferPos
Position of the first character in the buffer.

GetEndChar 7

Access method for IACharStream member data.

Output

char* endChar
A pointer to the end of the current buffer.

GetNextChar 7

Input

bool* eos
False upon input. Returns True if the read is past the end of the set.

C H A P T E R 7

Analysis Category

7-40 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

char

The next character past the current position in the buffer; NULL if past end of buffer.

Notes

Eos is assumed to be false, and is only set when eos is reached (read past end of buffer).
When eos is set, the return value should be ignored.

char c;

// skip non-alpha characters

do {

 c = charStream->GetNextChar(&eof);

 if (eof) return NULL;

} while (!isalpha(c));

GetNextCharInBuffer 7

Access method for IACharStream member data.

Output

char* nextChar
A pointer to the next character to read in buffer.

GetTextSpan 7

Input

char* buffer

uint32 startPos

uint32 endPos

Notes

This can be used by a client to report the range of bytes in which a matching term
occurred (“key word in context”).

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-41
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetBuffer 7

Access method for IACharStream member data.

Input

char* buffer
A pointer to the current buffer of characters.

SetBufferPos 7

Access method for IACharStream member data.

Input

uint32 bufferPos
Position of the first character in the buffer.

SetEndChar 7

Access method for IACharStream member data.

Input

char* endChar
A pointer to the end of the current buffer.

SetNextCharInBuffer 7

Access method for IACharStream member data.

Input

char* nextChar
A pointer to the next character to read in buffer.

C H A P T E R 7

Analysis Category

7-42 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Protected Member Functions 7

GetNextBuffer 7

Input

char* buffer
The pointer to the buffer.

uint32 bufferLen
The size of the buffer to read.

Output

uint32 charsRead
The number of characters read. 0 if no more buffers.

Notes

Returns a character pointer to the buffered data. Subclasses must implement only this
one method.

Usage

uint32 charsRead = GetNextBuffer(buffer, IADiskBlockSize);

ShortWordFilter 7
Header: ShortWordFilter.h

Hierarchy 7

Public subclass of IATokenFilter. See “IATokenFilter” on page 7-33.

Description 7

An IATokenFilter that will not pass tokens over a minimum length. The default length is
three characters.

Class

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-43
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 7

constructor(IATokenStream* sourceStream, uint32 l = MinWordLength) 7

Input

IATokenStream* sourceStream
The input token stream.

uint32 l = MinWordLength
The smallest length of token to allow through.

Notes

MinWordLength is a constant defined in the header. Current value is 3.

Usage

IATokenStream* SubclassAnalysis::

MakeTokenStream(IADocText* text) {

return new DowncaseFilter(new ShortWordFilter(new

AlphaTokenizer(new DocTextCharStream(text))));

}

GetNextToken 7

See “IATokenStream.GetNextToken” on page 7-36.

SimpleAnalysis 7
Header: SimpleAnalysis.h

Hierarchy 7

Public subclass of IAAnalysis. See “IAAnalysis” on page 7-24.

Description 7

A version of IAAnalysis that provides lower-case alphabetic tokens over two characters
long.

Class

C H A P T E R 7

Analysis Category

7-44 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 7

Simple Analysis gets tokens from AlphaTokenizer 7

Simple Analysis gets tokens from one AlphaTokenizer.

Simple Analysis filters tokens through DowncaseFilter 7

Simple Analysis filters tokens through one downcase filter.

Simple Analysis filters tokens through ShortWordFilter 7

Simple Analysis filters tokens through one short word filter.

Constants 7

const uint32 SimpleAnalysisType = 'Sim1';

Public Member Functions 7

constructor 7

Usage

InvertedIndex index(storage,

new HFSTextFolderCorpus(folderName),

new SimpleAnalysis());

Notes

The type is constant and established with the default construction.

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-45
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

copy constructor(SimpleAnalysis& sa) 7

GetProtoTerm 7

See “IAAnalysis.GetProtoTerm” on page 7-26.

MakeTokenStream 7

See “IAAnalysis.MakeTokenStream” on page 7-26. SimpleAnalysis uses AlphaTokenizer,
DowncaseFilter and ShortWordFilter. The result is terms of 3 or greater alphabetic
characters in lower case.

StringTerm 7
Header: StringTerm.h

Hierarchy 7

Public subclass of IATerm.

Description 7

String Term is the term produced by the AlphaTokenizer. It uses characters rather than
bytes.

Public Member Functions 7

constructor(const char* text) 7

Input

char* text
The IATerm text converted to characters.

Class

C H A P T E R 7

Analysis Category

7-46 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

constructor(const char* text, uint32 length) 7

Input

char* text
The IATerm text converted to characters.

uint32 length
the number of characters in the string

DeepCopy 7

See “IATerm.DeepCopy” on page 7-28.

Text 7

Output

char* text
The IATerm text converted to characters.

TextLen 7

Output

uint32 textLen
The number of characters.

C H A P T E R 7

Analysis Category

Analysis Class Category Reference 7-47
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Constants 7

AlphaTokenizerMaxTokenLen=63
The maximum length of a token

uint32 MinWordLength = 3
The length of a token the Short Word Filter will allow through. Tokens
with fewer characters than this are filtered out of the token stream.

uint32 SimpleAnalysisType = 'Sim1';
The identifier of the simple analysis type.

C H A P T E R 7

Analysis Category

7-48 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Exceptions 7

VASU 7

AnalysisSpanUnavailable.

Thrown by IAAnalysis.

VTSU 7

TextSpanUnavailable.

Thrown by IACharStream.

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 8

Corpus Category 8

Introduction 3
The HFS Implementation 4

HFS Corpus 4
HFSTextFolderCorpus 5

Common Procedures 5
Using a Corpus to Provide Documents 5
Creating a New Corpus 6
Establishing an Existing Corpus 7
Using an HFSCorpus to Locate a Document in HFS 7

Creating Corpus Subclasses 7
Creating a Subclass of IACorpus 8
Creating a Subclass of IADoc 9
Creating a Subclass of IADocIterator 10
Creating a Subclass of IADocText 11
Creating a Subclass of HFSIterator 13

Corpus Class Category Reference 16
Header Files in the Corpus Category 16
Class Specifications 17
DirectoryInfo 17
HFSCorpus 17
HFSDoc 21
HFSDocText 25
HFSVolumeInfo 29

C H A P T E R 8

Corpus Category

8-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

HFSIterator 32
HFSTextFolderCorpus 35
HFSTextFolderDoc 39
IACorpus 41
IADoc 47
IADocIterator 49
IADocText 50
Constants 51
Exceptions 51

Table 7-0
Listing 8-0
Figure 8-0

C H A P T E R 8

Corpus Category

Introduction 8-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

8Introduction

In the field of information retrieval a “corpus” is a collection of documents being
searched. In IAT the corpus class provides the tools for identifying a set of documents as
a collection and providing text from these documents so they can be indexed.

The corpus is the interface between documents and the index. The corpus locates the
document files and provides buffer text from these documents to the index and analysis
objects. The corpus maintains the location of the collection of documents and, optionally,
provides an iterator through them.

Figure 8-1 shows the relationships between the abstract classes.

Figure 8-1 Corpus relationships

Each index has a single corpus; that is, the documents within an index must be of the
same type.

The actual use of a corpus is closely coupled to an index; the index classes are the major
clients of the corpus classes. There is no given way to store a corpus except through an
index. The index Update function uses the corpus iterator to review all documents

IADocIterator

IACorpus IADoc

IADocText

obtains in order

constructs

obtains from document file

C H A P T E R 8

Corpus Category

8-4 The HFS Implementation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

within the corpus and update the index as required. The index locates terms by feeding
the analysis text read from the documents through the corpus.

IAT provides an implementation that supports HFS files and interfaces to the collection
of text files within an HFS Folder. If you require the ability to index documents of
another file type, you must construct a corpus subclass for that type.

8The HFS Implementation

There are two implementations of the corpus abstract classes. HFSCorpus provides
access to the text in HFS files. HFSTextFolderCorpus provides, in addition, the ability to
iterate through a folder and its subdirectories and select text documents.

Figure 8-2 shows these implementations.

Figure 8-2 HFS instantiation of corpus classes

HFS Corpus 8
The HFS Corpus characterizes the set of documents. It contains a mapping to which
volumes the documents reside on. The HFS-provided vRefNum cannot be used as a
persistent identifier of a document as it may change when the system is rebooted (it

HFSTextFolderDoc HFSTextFolderCorpusreads

reads

extracts

traverses folders

HFSVolumeInfo

short vRefNum;

HFSCorpus

HFSVolumeInfo** volumeInfos;

HFSDoc

unsigned short vRefID
short dirID;
StringPtr fileName;

HFSDocText

HFSDocText
	 (short vRefNum,
	 long dirID,
	 StringPtr name);

long rootDirId;long modDate;

HFSIterator(short vRefNum, long rootDirId=2)

CInfoPBRec* pb

HFSIterator

C H A P T E R 8

Corpus Category

Common Procedures 8-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

depends on the order in which devices are mounted). IAT has assigned its own
persistent vRefID to each volume, and maintains a mapping of the vRefID to the
vRefNum within HFSCorpus.

HFSDoc contains the information to locate a document: its vRefID, dirID, and fileName.

The HFS Corpus can be used to extract text from given HFS text documents. It has no
iterator; that is, it may not be used, without further subclassing, with the Update()
function of an index. Updates must be individually done.

HFSTextFolderCorpus 8
The HFSTextFolderCorpus is a subclass of the HFSCorpus. It maintains an iterator that
chooses, from a given folder, any document with file type ‘TEXT’ within that folder or
folders it contains.

HFSTextFolderDoc contains a modification date. Only those text documents modified
since the last update are submitted for re-analysis.

The HFSIterator is a utility used within the private implementation of the HFSCorpus
iterator. This utility will navigate through all the folders within a given root directory ID
and return the next available document of any type.

The HFSTextFolderCorpus will iterate through all folders and contained folders and
select text documents from them.

8Common Procedures

Using a Corpus to Provide Documents 8

Using the corpus document iterator can provide all documents currently in the corpus,
whether or not indexed.

The example illustrates listing all the documents in an HFS Text Folder.

C H A P T E R 8

Corpus Category

8-6 Common Procedures

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 8-3 Interaction diagram for iterating through a corpus

Listing 8-1 List text files

// build the corpus

HFSTextFolderCorpus anHFSTextFolderCorpus(folderName);

printf ("%22.30s\n",folderName);

// get an iterator through the corpus

IADocIterator* anIADocIterator = anHFSTextFolderCorpus.GetDocIterator();

HFSTextFolderDoc* anHFSTextFolderDoc;

while (anHFSTextFolderDoc =

(HFSTextFolderDoc*)anIADocIterator->GetNextDoc()) {

// NULL when no more text docs in folder

printf("\t");

PrintDocName(anHFSTextFolderDoc);

printf("\n");

}

Creating a New Corpus 8
A corpus is stored though its index. Generally a corpus is created at the same time an
index is created. See “Creating an Index” beginning on page 5-8.

anIACorpus

new

anIADocIterator

GetDocIterator()

GetNextDoc()

new

anIADoc

C H A P T E R 8

Corpus Category

Creating Corpus Subclasses 8-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Establishing an Existing Corpus 8
The corpus is stored through its index. To establish an existing corpus, you must first
establish its index (See “Establishing an Existing Index” on page 5-11) and then address
the corpus data member. The corpus is stored in the index as an IACorpus.

Listing 8-2 Establishing an existing corpus

// establish the existing index containing the corpus

// (see “Establish an existing index” on page 5-13 for example)

anInVecIndex.Open();

Using an HFSCorpus to Locate a Document in HFS 8

The file information for an HFSDoc can be found by using public access methods.

Volume Reference Number
anHFSCorpus->GetVRefNum(anHFSDoc->GetVolumeRefID())

DirectoryID
anHFSDoc->GetDirID()

Filename
anHFSDoc->GetFileName()

HFSTextFolderCorpus provides this information:

Volume Reference Number of root text folder
anHFSTextFolderCorpus->GetVolumeRefNum()

Directory ID of the root folder
anHFSTextFolderCorpus->GetRootDirID()

See “The HFS Implementation” on page 8-4 for more information on vRefID and
vRefNum.

8Creating Corpus Subclasses

If you need to create a corpus subclass, you generally need to create several subclasses:

One of IACorpus, to characterize the set of documents

One of IADoc, to provide information to uniquely identify and locate a single document

One of IADocText, to obtain a text string from the document.

You may also need to provide a subclass of IADocIterator if you wish to provide an
index Update() function.

C H A P T E R 8

Corpus Category

8-8 Creating Corpus Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

The following examples use the HFS corpus implementation as an example. Specifically,
we show how the HFSCorpus class is derived from IACorpus, and how its associated
classes (such as HFSDoc) are derived from their base classes (in this case, IADoc).

Creating a Subclass of IACorpus 8
You may wish to create a subclass of IACorpus to access documents for an
implementation other than the provided HFS Corpus.

See “IACorpus” beginning on page 8-41 for detailed information on this class.

Required Functions 8

■ GetProtoDoc (establishes which type of document is accessed through this corpus)

■ GetDocText (provides the text from the document).

Listing 8-3 Sample header file of an IACorpus subclass

class HFSCorpus : public IACorpus {

public:

HFSCorpus(uint32 type = HFSCorpusType)

: volumeInfos(NULL), volumeCount(0), IACorpus(type) {}

~HFSCorpus();

// IACorpus methods

IADoc* GetProtoDoc();

IADocText* GetDocText(const IADoc* doc);

// HFSCorpus-specific methods

unsigned short GetVRefID(short vRefNum);

short GetVRefNum(unsigned short vRefID);

protected:

IABlockSize InitialSize();

void Initializing(IAOutputBlock* output);

void Opening(IAInputBlock* input);

IABlockSize UpdateSize();

void Updating(IAOutputBlock* output);

void DeleteVolumeInfos();

void SetVolumeInfos (HFSVolumeInfo** vinfos)

{volumeInfos = vinfos;}

C H A P T E R 8

Corpus Category

Creating Corpus Subclasses 8-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

void SetVolumeCount(short vCount) {volumeCount = vCount;}

HFSVolumeInfo** GetVolumeInfos () const {return volumeInfos;}

short GetVolumeCount() const {return volumeCount;}

private:

HFSCorpus(HFSCorpus&);// don't define a copy constructor

HFSVolumeInfo** volumeInfos;// array mapping from vRefID to HFSVolumeInfo

short volumeCount;// length of the array

};

Listing 8-4 Sample implementation of GetProtoDoc

IADoc* HFSCorpus::GetProtoDoc() {

return new HFSDoc;

}

Listing 8-5 Sample implementation of GetDocText

IADocText* HFSCorpus::GetDocText(const IADoc* d) {

HFSDoc* doc = (HFSDoc*)d;

return new HFSDocText(GetVRefNum(doc->GetVolumeRefID()),

doc->GetDirID(), doc->GetFileName());

}

Creating a Subclass of IADoc 8
IADoc is the abstract class for the interface to the physical document. Any
implementation must contain the data required to locate the actual document. Creating
an implementation of IADoc requires a matching implementation of IADocText.

See “IADoc” beginning on page 8-47 for detailed information on this class.

An IADoc is an IAOrderedStorable. See “Creating a Subclass of IAOrderedStorable” on
page 10-6 for more information.

Listing 8-6 Sample header of an IADoc subclass

class HFSDoc : public IADoc {
public:

HFSDoc(HFSCorpus* corpus, short vRefNum,
long dirID,
const StringPtr name);

HFSDoc() : fileName(NULL) {}

C H A P T E R 8

Corpus Category

8-10 Creating Corpus Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

virtual ~HFSDoc();

IAStorable* DeepCopy();
IABlockSize StoreSize();
void Store(IAOutputBlock* output);
IAStorable* Restore(IAInputBlock* input);

bool LessThan(IAOrderedStorable* neighbor);
bool Equal(IAOrderedStorable* neighbor);

// HFSDoc specific
byte* GetName(uint32 *length);

void SetVolumeRefID(unsigned short vrid)
{vRefID = vrid;}

void SetDirID(long dID)
{dirID = dID;}

void SetFileName(StringPtr name)
{fileName = name;}

unsigned short GetVolumeRefID() const {return vRefID;}
long GetDirID() const {return dirID;}
StringPtr GetFileName() const {return fileName;}

protected:
void DeepCopying(IAStorable* source);
void Restoring(IAInputBlock* input,

IAStorable* proto);
private:

HFSDoc(HFSDoc& fd);

unsigned short vRefID;
long dirID;
StringPtr fileName;

Creating a Subclass of IADocIterator 8
The IADocIterator will locate the documents in the corpus in sequence.

See “IADocIterator” beginning on page 8-49 for detailed information on this class.

Required Functions 8

■ GetNextDoc()

C H A P T E R 8

Corpus Category

Creating Corpus Subclasses 8-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 8-7 Sample Header for an IADocIterator subclass

class HFSFolderCorpusIterator : public IADocIterator {

public:

HFSFolderCorpusIterator(HFSTextFolderCorpus* c)

: corpus(c), hfsIterator(new HFSIterator

(c->GetVolumeRefNum(),

c->GetRootDirId())) {}

~HFSFolderCorpusIterator() { delete hfsIterator; }

IADoc* GetNextDoc();

private:

HFSTextFolderCorpus* corpus;

HFSIterator* hfsIterator;

};

Listing 8-8 Sample Implementation of GetNextDoc

IADoc* HFSFolderCorpusIterator::GetNextDoc() {

while (hfsIterator->Increment()) {

 CInfoPBRec* info = hfsIterator->pb;

 if (info->hFileInfo.ioFlFndrInfo.fdType == 'TEXT') {

return new HFSTextFolderDoc(corpus,

info->hFileInfo.ioFlParID,

info->hFileInfo.ioNamePtr,

info->hFileInfo.ioFlMdDat);

 }

}

return NULL;

}

Creating a Subclass of IADocText 8

IADocText provides the text from the actual document. An implementation of this must
be able to locate the document, read its content, and translate the content to text.

See “IADocText” beginning on page 8-50 for detailed information on this class.

Required Functions 8

■ GetNextBuffer()

C H A P T E R 8

Corpus Category

8-12 Creating Corpus Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 8-9 Sample header of an IADocText subclass

class HFSDocText : public IADocText {

public:

HFSDocText() : refNum(0) {}

HFSDocText(short vRefNum, long dirID,

const StringPtr name);

~HFSDocText();

IADocText* DeepCopy() const;

protected:

void SetRefNum (short rNum) {refNum = rNum;}

void SetTheVolumeRefNum(short vrnum) {theVRefNum = vrnum;}

void SetTheDirID(long did) {theDirID = did;}

void SetTheFileName(StringPtr name) {theFileName = name;}

short GetRefNum () const {return refNum;}

short GetTheVolumeRefNum() const {return theVRefNum;}

long GetTheDirID() const {return theDirID;}

StringPtr GetTheFileName() const {return theFileName;}

private:

HFSDocText(HFSDocText&);// don't define a copy constructor

short refNum;

short theVRefNum;

long theDirID;

StringPtr theFileName;

};

Listing 8-10 Sample implementation of GetNextBuffer

uint32 HFSDocText::GetNextBuffer(byte* buffer, uint32 bufferLength) {

long bytes = bufferLength;

OSErr err = FSRead(refNum, &bytes, buffer);

if (err && err != eofErr) {

IAAssertion (false, "cannot read the next buffer", InvalidDocument);

});

return bytes;

}

C H A P T E R 8

Corpus Category

Creating Corpus Subclasses 8-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Creating a Subclass of HFSIterator 8

HFSIterator is a utility used for the HFS implementation. It can be subclassed to quickly
provide other HFS type corpora.

This iterator will, based on a volume reference number and root directory, locate all base
files in that directory. The member function Increment will provide the CBInfoPBRec
information for a file in its member data, pb. When there are no more files, the function
returns False.

See “HFSIterator” beginning on page 8-32 for detailed information on the HFSIterator,
and “HFSTextFolderCorpus” beginning on page 8-35 for detailed information on this
corpus.

This example shows the use of that iterator with a custom filter to only return files that
are text files with the proper suffix (we have chosen an iterator for “.h” header files). A
subclass of IADocIterator is created to provide this custom iterator.

Listing 8-11 Creating a custom corpus iterator—header file

#pragma once

#include “HFSTextFolderCorpus.h”

class HdrCorpus : public HFSTextFolderCorpus {

public:

HdrCorpus(uint32 type = HFSFolderCorpusType) :

HFSTextFolderCorpus(type) {}

HdrCorpus(short vRefNum, long rootDirId, uint32

type = HFSFolderCorpusType) :

HFSTextFolderCorpus(vRefNum, rootDirId, type) {}

HdrCorpus(StringPtr rootDirPath, uint32 type =

HFSFolderCorpusType) :

HFSTextFolderCorpus(rootDirPath, type) {}

// implementing the doc iterator function

IADocIterator* GetDocIterator();

};

C H A P T E R 8

Corpus Category

8-14 Creating Corpus Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 8-12 IADocIterator subclass header

#pragma once

#include “HFSIterator.h”

#include “HdrCorpus.h”

#include <string.h>

#include <Files.h>

#include <TextUtils.h>// for RelString

#include <Errors.h>

class HdrDocIterator : public IADocIterator {

public:

HdrDocIterator(HdrCorpus* c) :

corpus(c), hfsIterator

(new HFSIterator(c->GetVolumeRefNum(),

c->GetRootID())) {}

~HdrDocIterator() { delete hfsIterator; }

IADoc* GetNextDoc();

private:

HFSTextFolderCorpus* anHFSTextFolderCorpus;

HFSIterator* anHFSIterator;

};

Listing 8-13 Corpus subclass body

IADocIterator* HdrCorpus::GetDocIterator() {

return new HdrDocIterator(this);

}

C H A P T E R 8

Corpus Category

Creating Corpus Subclasses 8-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 8-14 IADocIterator subclass body

IADoc* HdrDocIterator::GetNextDoc() {

while (anHFSIterator->Increment()) {

 CInfoPBRec* info = anHFSIterator->pb;

 if (info->hFileInfo.ioFlFndrInfo.fdType == ‘TEXT’) {

 Str255 name;

uint32 nameLen =

anHFSIterator->pb->hFileInfo.ioNamePtr[0];

memcpy(name+1, anHFSIterator->pb->hFileInfo.ioNamePtr+1,

nameLen);

name[0] = nameLen;

if (name[nameLen] == ‘h’

 && name[nameLen-1] == ‘.’) {

return new HFSTextFolderDoc(corpus,

info->hFileInfo.ioFlParID,

info->hFileInfo.ioNamePtr,

info->hFileInfo.ioFlMdDat);

 }

 }

}

return NULL;

}

C H A P T E R 8

Corpus Category

8-16 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

8Corpus Class Category Reference

Header Files in the Corpus Category 8

HFSCorpus 8

DirectoryInfo

HFSCorpus
HFSDoc
HFSDocText
HFSVolumeInfo

HFSIterator 8

HFSIterator

HFSTextFolderCorpus 8

HFSTextFolderCorpus
HFSTextFolderDoc

IACorpus 8

IACorpus
IADoc
IADocIterator
IADocText

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class Specifications 8

DirectoryInfo 8
Struct

Header: HFSCorpus.h

Data 8

 long id
the id

short length
the number of files

HFSCorpus 8
Header: HFSCorpus.h

Hierarchy 8

Public subtype of IACorpus. See “IACorpus” on page 8-41.

Description 8

A corpus implementation for Macintosh HFS files. HFSCorpus maintains a list of
volumes used in the corpus. The volumes are assigned a unique volume ID that persists
within IAT. The ID is mapped to the volume reference number. The associated class,
HFSDoc, maintains the directory ID and file name.

Relationships 8

HFSCorpus reads HFSDoc 8

1 HFSCorpus reads many HFSDoc.

Struct

Class

C H A P T E R 8

Corpus Category

8-18 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

HFSCorpus extracts HFSDocText 8

HFSCorpus extracts many HFSDocText from each HFSDoc

HFSCorpus contains HFSVolumeInfo 8

An HFSCorpus contains an array of HFSVolumeInfo

Public Member Functions 8

constructor 8

Input

uint32 type = HFSCorpusType

destructor 8

Deletes volume array.

GetDocText 8

See “IACorpus.GetDocText” on page 8-44.

Usage

HFSDocText* bestTxt =

(HFSDocText*)sindex.corpus->GetDocText(bestHFSDoc);

GetProtoDoc 8

See “IACorpus.GetProtoDoc” on page 8-44. HFSCorpus uses HFSDoc as its prototype.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetVRefID 8

Input

short vRefNum
The HFS Volume reference number.

Output

unsigned short
The logical volume ID used in IAT.

Usage

unsigned short vRefId = corpus->GetVRefID(vRefNum);

GetVRefNum 8

Input

unsigned short vRefID
The logical reference ID assigned by IAT.

Output

 short
The HFS volume reference number.

Usage

short vRefNum = corpus->GetVRefNum(doc->GetVolumeRefID());

Protected Member Functions 8

GetVolumeCount 8

Access method for HFSCorpus member data.

C H A P T E R 8

Corpus Category

8-20 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

short volumeCount
Length of the volume ID array.

GetVolumeInfos 8

Access method for HFSCorpus member data.

Output

HFSVolumeInfo**volumeInfos
Array mapping from every vRefID to a HFSVolumeInfo.

Initializing 8

See “IACorpus.Initializing” on page 8-46. Establishes volume info array in storage.

InitialSize 8

See “IACorpus.InitialSize” on page 8-46. Computes size of volume info array.

Opening 8

See “IACorpus.Opening” on page 8-46. Reads volume array from storage.

SetVolumeCount 8

Access method for HFSCorpus member data.

Input

short volumeCount
Length of the volume ID array.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetVolumeInfos 8

Access method for HFSCorpus member data.

Input

HFSVolumeInfo**volumeInfos
Array mapping from every vRefID to a HFSVolumeInfo.

UpdateSize 8

See “IACorpus.UpdateSize” on page 8-47. Computes new size of volume array.

Updating 8

See “IACorpus.Updating” on page 8-47. Writes volume array to storage.

HFSDoc 8

Header: HFSCorpus.h

Hierarchy 8

Public subclass of IADoc. See “IADoc” on page 8-47.

Client 8

See “HFSCorpus reads HFSDoc” on page 8-17.

Class

C H A P T E R 8

Corpus Category

8-22 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 8

constructor 8

constructor(HFSCorpus* corpus, short vRefNum, long dirID, const StringPtr name) 8

Input

HFSCorpus* corpus
The associated corpus.

short vRefNum
The HFS volume reference number of the volume where the file resides.

long dirID
The HFS directory ID of the file.

const StringPtr name
The HFS filename.

Usage

HFSDoc doc1(&corpus,vRefNum, dirID, name);

destructor 8

Virtual.

DeepCopy 8

See “IAStorable.DeepCopy” on page 10-28.

Equal 8

See “IAOrderedStorable.Equal” on page 10-15. HFSDocs are keyed and ordered by
logical volume ID and directory ID, not by filename.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetDirID 8

Access method for HFSDoc member data.

Output

long dirID
The HFS directory ID of the file.

GetFileName 8

Access method for HFSDoc member data.

Output

StringPtr fileName
The HFS file name (not the full path). Allocated with
IAMallocArraySized. Use IAFreeArraySized to free.

GetName 8

See “IADoc.GetName” on page 8-48. Returns the file name, null terminated.

GetVolumeRefID 8

Access method for HFSDoc member data.

Output

unsigned shortvRefID
The logical volume reference ID assigned by IAT. Use the HFSCorpus
GetVRefNum() function to get the HFS volume reference number.

LessThan 8

See “IAOrderedStorable.LessThan” on page 10-16. HFSDocs are ordered by volumeID
and directoryID, not filename.

C H A P T E R 8

Corpus Category

8-24 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Restore 8

See “IAStorable.Restore” on page 10-28.

SetDirID 8

Access method for HFSDoc member data.

Input

long dirID
The HFS directory ID of the file.

SetFileName 8

Access method for HFSDoc member data.

Input

StringPtr fileName
The HFS file name (not the full path).

SetVolumeRefID 8

Access method for HFSDoc member data.

Input

unsigned shortvRefID
The logical volume reference ID assigned by IAT.

Store 8

See “IAStorable.Store” on page 10-30.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

StoreSize 8

See “IAStorable.StoreSize” on page 10-29.

Protected Member Functions 8

DeepCopying 8

See “IAStorable.DeepCopying” on page 10-30.

Restoring 8

See “IAStorable.Restoring” on page 10-31.

HFSDocText 8

Header: HFSCorpus.h

Hierarchy 8

Public subclass of IADocText. See “IADocText” on page 8-50.

Client 8

See “HFSCorpus extracts HFSDocText” on page 8-18.

Class

C H A P T E R 8

Corpus Category

8-26 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 8

constructor 8

constructor (short vRefNum, long dirID, const StringPtr name) 8

Input

short vRefNum
The HFS volume reference number of the volume on which the document
file resides.

long dirID
The HFS directory ID of the file.

const StringPtr name
The HFS name of the file.

Notes

Opens the document file.

Usage

 return new

HFSDocText(corpus->GetVRefNum(doc->GetVolumeRefID()),

 doc->GetDirID(), doc->GetFileName())

destructor 8

GetNextBuffer 8

See “IADocText.GetNextBuffer” on page 8-50. Reads the document file.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-27
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Protected Member Functions 8

GetRefNum 8

Access method for HFSDocText member data.

Output

short refNum
The path reference number returned when the access to the data fork was
opened.

GetTheDirID 8

Access method for HFSDocText member data.

Output

long theDirID
The HFS directory ID.

GetTheFileName 8

Access method for HFSDocText member data.

Output

StringPtr theFileName
The HFS file name.

GetTheVolumeRefNum 8

Access method for HFSDocText member data.

Output

short theVRefNum
The HFS volume reference number.

C H A P T E R 8

Corpus Category

8-28 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetRefNum 8

Access method for HFSDocText member data.

Input

short refNum
The path reference number returned when the access to the data fork was
opened.

SetTheDirID 8

Access method for HFSDocText member data.

Input

long theDirID
The HFS directory ID.

SetTheFileName 8

Access method for HFSDocText member data.

Input

StringPtr theFileName
The HFS file name.

SetTheVolumeRefNum 8

Access method for HFSDocText member data.

Input

short theVRefNum
The HFS volume reference number.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-29
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

HFSVolumeInfo 8
Header: HFSCorpus.h

Hierarchy 8

Public subclass of IAStorable. See “IAStorable” on page 10-27.

Description 8

HFSVolumeInfo is used to a map of the volume reference numbers to the creationDate
and Name of a volume. The creation date and name of the volume are persistent; the
volume reference number may vary over time if the system has been rebooted.

The HFSCorpus maintains a map of the HFSVolumeInformation to the internally used
vRefID.

When restored, HFSVolumeInfo locates the current volume reference number for the
volume name and creation date.

Client 8

See “HFSCorpus contains HFSVolumeInfo” on page 8-18.

Public Member Functions 8

constructor 8

constructor(short vRefNum) 8

Input

short vRefNum
The HFS volume reference number.

Usage

newVolumeInfos[volumeCount] = new HFSVolumeInfo(vRefNum)

Class

C H A P T E R 8

Corpus Category

8-30 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

DeepCopy 8

See“IAStorable.DeepCopy” on page 10-28.

GetCreationDate 8

Access method for HFSVolumeInfo member data.

Output

long creationDate
Volume creation date (persistent).

GetVolumeName 8

Access method for HFSVolumeInfo member data.

Output

StringPtr name
Volume name (persistent).

GetVolumeRefNum 8

Access method for HFSVolumeInfo member data.

Output

short vRefNum
Volume reference number (persistent).

Restore 8

See“IAStorable.Restore” on page 10-28.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-31
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetCreationDate 8

Access method for HFSVolumeInfo member data.

Input

long creationDate
Volume creation date (persistent).

SetVolumeName 8

Access method for HFSVolumeInfo member data.

Input

StringPtr name
Volume name (persistent).

SetVolumeRefNum 8

Access method for HFSVolumeInfo member data.

Input

short vRefNum
Volume reference number (persistent).

Store 8

See“IAStorable.Store” on page 10-30.

StoreSize 8

See“IAStorable.StoreSize” on page 10-29.

Used to restore HFS Volume Info from storage.

C H A P T E R 8

Corpus Category

8-32 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

HFSIterator 8
Header: HFSIterator.h

Hierarchy 8

Base Class

Description 8

HFSIterator is built to return any file from a given volume and directory. It will recurse
all folders to get to the actual files.

This can be used to determine which files, given a volume and directory, will be included
in the corpus. HFSTextFolderCorpus, for example, uses this iterator to retrieve files then
only includes text files.

Client 8

See “HFSTextFolderCorpus transverses folders using HFSIterator” on page 8-35.

Public Member Functions 8

constructor (short vRefNum, long rootDirId = 2) 8

Input

short vRefNum
The HFS volume reference number.

long rootDirId = 2
The directory ID of the highest level folder. Default is the volume root.

Usage

HFSIterator* hfsIterator =

new HFSIterator(c->GetVolumeRefNum(),

c->GetRootDirId());

Class

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-33
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

destructor 8

GetPBRec 8

Access method for HFSIterator member data.

Output

CInfoPBRec* pb
Parameter block containing HFS file information. See Inside Macintosh,
Files.

GetDir 8

Access method for HFSIterator member data.

Output

uint32 dir
Index into array of directory infos, representing the root-level directory
being processed.

GetDirCount 8

Access method for HFSIterator member data.

Output

long dirCount
The number of root-level directories in the directory info array.

GetDirIndex 8

Access method for HFSIterator member data.

Output

short dirIndex
Index into directory being processed.

C H A P T E R 8

Corpus Category

8-34 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetDirInfos 8

Access method for HFSIterator member data.

Output

DirectoryInfo* dirInfos
Sorted array of directory IDs for current volume.

Increment 8

Output

bool
True if a file has been found. File information will be in HFSIterator->pb.
False if there are no more files within the folders.

Notes

Locates the next available file within the structure and places it in member data pb.

Usage

while (hfsIterator->Increment())

Listing 8-15 Using HFSIterator

while (hfsIterator->Increment()) {

 CInfoPBRec* info = hfsIterator->pb;

 if (info->hFileInfo.ioFlFndrInfo.fdType == 'TEXT') {

// filter out non-text documents

return new HFSTextFolderDoc(corpus,

info->hFileInfo.ioFlParID,

info->hFileInfo.ioNamePtr,

info->hFileInfo.ioFlMdDat);

 }

}

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-35
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetDirIndex 8

Access method for HFSIterator member data.

Input

short dirIndex
Index into directory being processed.

Protected Member Functions 8

CollectDirInfo 8

Builds a table of all the directory IDs in the named directory and all its subdirectories.

HFSTextFolderCorpus 8
Header: HFSTextFolderCorpus.h

Hierarchy 8

Public subclass of HFSCorpus. See “DirectoryInfo” on page 8-17.

Description 8

A corpus implementation for all the text files under a root HFS folder.

Relationships 8

HFSTextFolderCorpus reads HFSTextFolderDoc 8

1 HFSCorpus reads many HFSTextFolderDoc.

HFSTextFolderCorpus transverses folders using HFSIterator 8

One corpus may use many iterators.

Class

C H A P T E R 8

Corpus Category

8-36 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Constants 8

const uint32 HFSFolderCorpusType = 'HTF1'

Public Member Functions 8

constructor (uint32* type) 8

Input

uint32*type = HFSFolderCorpusType
The type of corpus.

Notes

Initializes only.

constructor (short vRef, long rootDirID, uint32 type = HFSFolderCorpusType); 8

Input

short vRef
The HFS volume reference number of the folder.

long rootDirID
The HFS directoryID of the folder.

uint32* type = HFSFolderCorpusType
The type of corpus.

Notes

Builds the corpus by iterating thorough the files in the folder represented by the
reference number and directory ID.

Usage

HFSTextFolderCorpus* corpus =

new HFSTextFolderCorpus(vrefNum, rootDirID);

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-37
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

constructor(StringPtr rootDirPath, uint32 type = HFSFolderCorpusType); 8

Input

StringPtr rootDirPath
The full path name to the folder. Do not end in a colon.

uint32*type = HFSFolderCorpusType
The corpus type.

Usage

StringPtr folderName="\pHD:docs";

HFSTextFolderCorpus* corpus =

new HFSTextFolderCorpus(folderName)

GetDocIterator 8

See “IACorpus.GetDocIterator” on page 8-43. The HFS Text Folder doc iterator uses
HFSIterator and only returns files of type “TEXT.”

GetProtoDoc 8

See “IACorpus.GetProtoDoc” on page 8-44. Uses HFSTextFolderDoc.

GetRootDirID 8

Access method for HFSTextFolderCorpus member data.

Output

long rootDirID
The HFS directory ID of the folder.

GetVolumeRefNum 8

Access method for HFSTextFolderCorpus member data.

C H A P T E R 8

Corpus Category

8-38 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

short vRefNum
The HFS volume reference number of the volume where the folder resides.

Protected Member Functions 8

Initializing 8

See “IACorpus.Initializing” on page 8-46.

InitialSize 8

See “IACorpus.InitialSize” on page 8-46.

Opening 8

See “IACorpus.Opening” on page 8-46.

SetRootDirID 8

Access method for HFSTextFolderCorpus member data.

Input

long rootDirID
The HFS directory ID of the folder.

SetVolumeRefNum 8

Access method for HFSTextFolderCorpus member data.

Input

short vRefNum
The HFS volume reference number of the volume where the folder resides.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-39
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

UpdateSize 8

See “IACorpus.UpdateSize” on page 8-47.

Updating 8

See “IACorpus.Updating” on page 8-47.

HFSTextFolderDoc 8

Header: HFSTextFolderCorpus.h

Hierarchy 8

Public subclass of HFSDoc. See “HFSDoc” on page 8-21.

Client 8

See “HFSTextFolderCorpus reads HFSTextFolderDoc” on page 8-35.

Public Member Functions 8

constructor 8

constructor 8

Input

HFSTextFolderCorpus* corpus
The corpus controlling this document.

long dirID
The document file’s HFS directory ID (ioFLParID)

Class

C H A P T E R 8

Corpus Category

8-40 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

const StringPtr name
The HFS file name of the document.

long date
The last modification date of the document.

DeepCopy 8

See “IAStorable.DeepCopy” on page 10-28.

Equal 8

See “IAOrderedStorable.LessThan” on page 10-16. This uses logical volume ID, directory
ID, filename and modification date as the key information.

GetModDate 8

Access method for HFSTextFolderDoc member data.

Output

long modDate
The modification date of the document.

LessThan 8

See “IAOrderedStorable.LessThan” on page 10-16. This corpus uses logical volume ID,
directory ID, filename and modification date as the key information.

Restore 8

See “IAStorable.Restore” on page 10-28.

SetModDate 8

Access method for HFSTextFolderDoc member data.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-41
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

long modDate
The modification date of the document.

Store 8

See“IAStorable.Store” on page 10-30.

StoreSize 8

See “IAStorable.StoreSize” on page 10-29.

Protected Member Functions 8

DeepCopying 8

See “IAStorable.DeepCopying” on page 10-30.

Restoring 8

See “IAStorable.Restoring” on page 10-31.

IACorpus 8
Header: IACorpus.h

Hierarchy 8

Abstract Base Class

Description 8

IACorpus serves as the major interface between the actual documents and the index. It
characterizes a document collection. It locates the text in the documents.

Class

C H A P T E R 8

Corpus Category

8-42 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 8

Figure 8-4 IACorpus relationships

IACorpus constructs IADocIterator 8

One Corpus may construct any number of iterators.

IACorpus obtains from document file IADocText 8

One corpus may obtain several IADocText.

IACorpus contains IADoc 8

One corpus may contain many IADoc

IADocIterator

IACorpus IADoc

IADocText

obtains in order

constructs

obtains from document file

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-43
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 8

constructor(type) 8

Input

uint32 type
The constant for the corpus type being created.

Usage

 (HFSCorpus is a subclass)

InvertedIndex index(storage,

new HFSCorpus(HFSCorpusType),

new SimpleAnalysis());

GetCorpusType 8

Access method for IACorpus member data.

Output

uint32 corpusType
The type of the corpus. This is maintained to allow the reconstruction of
an already established corpus with the correct subclass.

GetDocIterator 8

Virtual.

Output

IADocIterator*
An object which obtains the documents of the corpus.

Notes

Determines set of documents to be indexed by the ones it chooses to locate.

C H A P T E R 8

Corpus Category

8-44 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

IADocIterator* corpusDocs = corpus->GetDocIterator();

GetDocText 8

Pure virtual.

Input

const IADoc* doc
A document contained in the corpus.

Notes

Accesses the text of a document.

Usage

IATokenStream* ts = index->analysis->

MakeTokenStream(index->corpus->GetDocText(doc));

GetProtoDoc 8

Pure virtual.

Output

IADoc*
An initialized object of the type used in the corpus.

Notes

Used to establish sets based on the Doc type used in the corpus.

Usage

docInfoSet = IAMakeOrderedStorableSet

(MakeDocInfo(corpus->GetProtoDoc(), 0));

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-45
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Initialize 8

Input

IAStorage* storage
A pointer to the storage established and initialized for the corpus.

IABlockID corpusRoot
The root id for the corpus.

Usage

corpusRoot = storage->Allocate();

corpus->Initialize(storage, corpusRoot);

Open 8

Input

IAStorage*
A pointer to the storage established and opened for the corpus.

IABlockID
The root id for the corpus.

Notes

Restores corpus information from storage.

Usage

corpusRoot = input->ReadUInt32();

corpus->Open(storage, corpusRoot);

Update 8

Input

IAStorage* storage
A pointer to the storage established for the corpus. Storage must be open
and writable.

IABlockID corpusRoot
The root id for the corpus.

C H A P T E R 8

Corpus Category

8-46 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Writes changed corpus information to storage.

Usage

corpus->Update(storage, corpusRoot);

Protected Member Functions 8

Initializing 8

Virtual.

Input

IAOutputBlock output

Notes

Used to implement Initialize().

InitialSize 8

Virtual.

Output

IABlockSize

Notes

Used to implement Initialize().

Opening 8

Virtual.

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-47
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

IAInputBlock input

Notes

Used to implement Open().

UpdateSize 8

Virtual.

Output

IABlockSize

Notes

Used to implement Update().

Updating 8

Virtual.

Input

IAOutputBlock output

Notes

Used to implement Update().

IADoc 8

Header: IACorpus.h

Hierarchy 8

Abstract Base Class, Subclass of IAOrderedStorable. See “IAOrderedStorable” on
page 10-14.

Class

C H A P T E R 8

Corpus Category

8-48 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Clients 8

See “IACorpus contains IADoc” on page 8-42.

See “IADocIterator obtains IADoc in order” on page 8-49.

See “IAHit finds matching IADoc located in IAIndex” on page 6-27.

See “IAProgressReport reports which IADoc is being processed” on page 6-30.

See “RankedQueryDoc connects a sample IADoc to its location in a TermIndex” on
page 6-47.

Public Member Functions 8

constructor 8

GetName 8

const

Virtual.

Input

uint32* length
Returned length of the name.

Output

byte* name
Pointer to the name array.

Notes

Returns the name of a document. This will return NULL, and set its input parameter to
0, unless implemented by its subclass.
Returned array is allocated by IAMallocArray() and should be freed by IAFreeArray().

Name is null terminated.

Usage

uint32 length = 0;

byte* name = doc.GetName(length);

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-49
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IADocIterator 8
Header: IACorpus.h

Hierarchy 8

Abstract Base Class

Relationships 8

IADocIterator obtains IADoc in order 8

One iterator obtains many documents.

Client 8

See “IACorpus constructs IADocIterator” on page 8-42.

Public Member Functions 8

GetNextDoc 8

Pure virtual.

Output

IADoc* corpusDoc
The next document in the set. NULL if at the end of the set.

Notes

Advances the iterator to the next document in a set and returns it.
The documents are returned in sequence, that is, the first document returned is the
lowest in the set, the next the second lowest, and so on until all have been returned.
IADoc* is NULL at the end of the set.
Returns a new copy of the document. Clients must delete.

Class

C H A P T E R 8

Corpus Category

8-50 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

IADoc* corpusDoc = CorpusDocs->GetNextDoc();

IADocText 8

Header: IACorpus.h

Hierarchy 8

Abstract Base Class

Public Member Functions 8

constructor 8

GetNextBuffer 8

Pure Virtual.

Input

byte* buffer
Pointer to the text buffer.

uint32 bufferLen
Buffer size.

Output

uint32
Number of bytes placed in the buffer.

Notes

Extracts successive segments of the text of the document.
Returns number of bytes written into buffer.
Returns zero at end of document.

Class

C H A P T E R 8

Corpus Category

Corpus Class Category Reference 8-51
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

uint32 bytesRead=docText->GetNextBuffer((byte*)buffer, bufferLen);

Constants 8

const uint32HFSCorpusType = 'HFS0'

const uint32HFSFolderCorpusType = 'HTF1'

Exceptions 8

VCHV 8

HFSVolumeNotFound

VCHE 8

HFSError

VCID 8

Invalid document.

C H A P T E R 8

Corpus Category

8-52 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 9

Storage Category 9

General Storage Logic 3
HFS Implementation 5
Creating New Storage 5

Sample Code to Create Storage 5
Opening Existing Storage 6

Sample Code for Establishing Existing Storage 6
Allocating and Deallocating Blocks of Storage 6
Reading and Writing Storage 8
Reporting on Storage 8
Compacting Storage 8
Using the Mutex Facility 9
Cloning Store Streams 10
Creating Storage Subclasses 10

Creating a Storage Construction Utility 10
Creating a Subclass of IAStoreStream 11
Creating a Subclass of IAMutex 15

Storage Class Category Reference 17
Header Files in the Storage Class Category 17
Class Specifications 18
HFSStoreStream 18
IAInputBlock 22
IAOutputBlock 25
IALock 28

C H A P T E R 9

Storage Category

9-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IAMutex 28
IAStorage 30
IAStoreStream 39
Storage Class Utilities 45
Typedefs 48
Storage Exceptions and Error Handling 50

Listing 9-0
Table 8-0
Figure 9-0

C H A P T E R 9

Storage Category

General Storage Logic 9-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IAT provides classes to allow the storage of blocks of data into persistent storage. This
storage is used by IAT to hold the information access indexes and structures. Indexes
require persistent storage; this set of logical storage classes provides an interface to the
storage media desired to hold the index information. Developers may also use these
storage classes to store other data they wish to make perisistent.

9General Storage Logic

Figure 9-1 illustrates the relationships of the storage classes.

IAStorage is managed in blocks. These blocks have ID Numbers which are stored within
the storage class.

Items are written through the IAOutputBlock, which in turn uses the I/O functions of
IAStoreStream to write. Similarly, the IAInputBlock reads items through
theIAStoreStream.

C H A P T E R 9

Storage Category

9-4 General Storage Logic

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Figure 9-1 Logical storage classes

General use of IAT requires no internal knowledge of the storage. You create and open
storage, then create information access classes to be stored in this storage. Updates to the
IAT objects occur in memory. The storage is committed to disk after completion of the
processing. This prevents damaged files due to incomplete processing.

IAT also provides member functions to allow you to see the amount of storage used for a
file and to compact the file.

IAStorage
IAStoreStream

IAInputBlock

addresses (friend)

contains

writes via (friend)

reads via (friend)

IAInputBlock
	 (IAStorage* storage,
	 IABlockID blockID);
ReadByte();

IABlockID Allocate()
 Deallocate(IABlockID)

IAOutputBlock

IAOutputBlock(IAStorage s,
 IABlockID bID,
 IABlockSize size);
WriteByte();

C H A P T E R 9

Storage Category

HFS Implementation 9-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

9HFS Implementation

The IAT storage architecture is designed to be platform-independent. Platform-specific
subclass implementations may be used to optimize performance. IAT provides a
MacOS-specific implementation of storage that uses the Macintosh HFS file system. This
implementation will be used for examples. Applications which use other storage types
may create subclasses of the IAT abstract classes to interface to that storage.

9Creating New Storage

Create storage with a utility rather than the direct use of a constructor. See
“IAMakeStorage” on page 9-45 for more information.

MakeHFSStorage is an implementation of that utility which constructs storage for an
HFS file. You must know the HFS volume, directory and file name before you can
construct HFS storage.

Following creation, initialize the storage for use. This initialization creates the structures
used to address blocks and opens the storage for writing.

Sample Code to Create Storage 9

Listing 9-1 Constructing storage

#pragma once

#include <Types.h>

#include "HFSStorage.h"

// Client must provide these values:

short vRefNum = 0;

long dirID = 0;

StringPtr storageFileName = "\pstorage.file";

// create storage

IAStorage* anIAStorage = MakeHFSStorage (vRefNum,

dirID, storageFileName);

anIAStorage->Initialize();

C H A P T E R 9

Storage Category

9-6 Opening Existing Storage

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

9Opening Existing Storage

Opening an existing storage requires a storage object and restores data from persistent
storage to the object.

Storage may be opened as read-only or read and write access. Open(True) will allow
writes.

Sample Code for Establishing Existing Storage 9

Listing 9-2 Establish existing storage

#pragma once

#include <Types.h>

#include "HFSStorage.h"

// Client must provide these values:

short vRefNum = 0;

long dirID = 0;

StringPtr storageFileName = "\pstorage.file;

bool writable = true;

// create storage

IAStorage* anIAStorage = MakeHFSStorage (vRefNum,

dirID, storageFileName);

anIAStorage->Open(writable);

9Allocating and Deallocating Blocks of Storage

The base unit of storage is a block. A block is a contiguous set of data that is written or
read from storage as a whole. Individual bytes, words, or strings are accessed in the
block once it is in memory.

A block has a block ID that uniquely identifies it. This ID is of type IABlockID.

The storage object maintains a table of allocated blocks that maps each block to a specific
location in physical storage. Objects using storage must know which block contains their
desired data. They can do this by maintaining their own table of contents of storage, or
they can request a named block in the internal storage table of contents and keep track of

C H A P T E R 9

Storage Category

Allocating and Deallocating Blocks of Storage 9-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

that block name rather than its ID. In this case, the storage maintains an internal table,
known as the TOC (for "Table Of Contents"), which maps the block names to block IDs.

The following example allocates new HFSStorage by a named block. When a block of
storage is first created, it is always an output block, which will allow data to be written
to the block.

Listing 9-3 Allocating a named block of storage

// create storage

IAStorage* anHFSStorage = MakeHFSStorage(vRefNum, dirID, fileName);

anHFSStorage ->Initialize();

const char* aBlockName = ”MY NAMED BLOCK”;

// ask for a new block to be labeled with the given name

IABlockID anIABlockID = anHFSStorage->AllocateNamedBlock(aBlockName);

IAOutputBlock anIAOutputBlock(anHFSStorage, anIABlockID,

anIABlockSize);

The sample listing below establishes a named block of storage.

Listing 9-4 Opening a named block of storage

// create storage object

bool writable = true;

IAStorage* anHFSStorage = MakeHFSStorage(vRefNum, dirID, fileName);

anHFSStorage ->Open(writable);

// get the pre-defined block ID

const char* aBlockName = ”MY NAMED BLOCK”;

IABlockID anIABlockID = anHFSStorage->TOC_Get(aBlockName);

IAInputBlock anIAInputBlock(anHFSStorage, anIABlockID);

Storage can be allocated directly without using a named block by the Allocate() function.
This returns a block ID which the application must keep track of.

Storage is deleted by deallocating a block using the Deallocate(anIABlockID) function for
unnamed blocks, or the RemoveNamedBlock(blockName) function for named blocks.

▲ W A R N I N G

If you use Deallocate to delete a named block (instead of
RemoveNamedBlock), you will leave the TOC entry for that name
untouched. Unless you do a matching TOC_Remove, you will render
that name unusable for the remaining life of the index.

C H A P T E R 9

Storage Category

9-8 Reading and Writing Storage

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

9Reading and Writing Storage

Blocks of storage are accessessed through objects of the class IAOutputBlock or
IAInputBlock. IAOutputBlock is a class to write the storage. It accesses the appropriate
IAStoreStream implementation for the class. IAInputBlock reads the storage through the
store stream.

Note
No changes are made to persistent storage until the storage has been
committed by the Commit() function of the IAStorage class.

IAInputBlock read functions:

■ byte ReadByte()

■ uint32 ReadUInt32()

■ void ReadBuffer(void* aBuffer, uint32 length)

IAOutputBlock write functions:

■ void WriteByte(byte b)

■ void WriteUInt32(uint32 i)

■ void WriteBuffer(void* aBuffer, uint32 length)

9Reporting on Storage

There are member functions which return the amount of total space used by the storage
(TotalSpace()) and the amount of that total space which is free space (FreeSpace()).

Listing 9-5 Report amount of space in storage

printf ("%lu Total Space\n", anIAStorage->TotalSpace());

printf ("%lu Free Space\n\n", anIAStorage->FreeSpace());

9Compacting Storage

Storage that has been maintained extensively may develop fractured spots of free space
within the allocated blocks. Compacting the storage will eliminate this free space and
reduce the total size of storage. You must establish the storage and open it as writable
before compacting. Compact() does the commit to storage; you do not need to commit

C H A P T E R 9

Storage Category

Using the Mutex Facility 9-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

storage after it has been compacted. Figure 9-2 shows how an application might report
the results of compacting storage.

Figure 9-2 A sample result of compacting storage

9Using the Mutex Facility

A MUtual EXclusion semaphore, or mutex, allows you to control access to the storage
when you are using multi-threaded applications. Although this presents no problem
when reading storage, there are many times when writing to storage within the IAT
functions that require access to storage be single-threaded to prevent lock-outs and
accidental override of storage. IAT has the logic in place to create and use these
semaphores to prevent this multiple access for its functions.

There is no implementation for the Mutex classes, however. If the application may be run
in multiple threads, the developer must create an implementation for IAMutex and
IALock. In addition, the application must ensure the mutex is invoked for any additional
areas of the application where multi-thread access must be controlled.

A mutex is established using the extern IANewMutex().

anIAMutex = IANewMutex();

It is locked by creating an instance of IALock for the mutex:

IALock anIALock(anIAMutex);

source.index

Before Compacting

94208 Total Space

2368 Free Space

After Compacting

92160 Total Space

320 Free Space

C H A P T E R 9

Storage Category

9-10 Cloning Store Streams

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Destructing the mutex or the lock releases the lock.

9Cloning Store Streams

In order to provide additional support for multithreaded applications, IAT offers a way
for each thread to get its own copy of the same store stream. This is called "cloning."
With cloned streams, threads do not have to wait for each other to do disk access. Several
of the storage classes, such as IAOutputBlock, have optional parameters for using a
cloned stream.

All subclasses of IAStoreStream must implement a Clone() method to support cloning.

Cloning is not used by single-threaded applications.

9Creating Storage Subclasses

You may need to create a storage subclass if your persistent storage needs to be based on
somethoing other than the Macintosh HFS file system.

The IAStorage, IAInputBlock, and IAOutputBlock classes will not require a specialized
subclass. You will need to subclass IAStoreStream, and you will need to create a new
utility to construct your storage.

Creating a Storage Construction Utility 9

Storage is created by creating a store stream, then an object of IAStorage. There is a
default construction utility, IAMakeStorage(IAStoreStream* anIAStoreStream) that must
be invoked to construct storage. By supplying your file type’s store stream, you
effectively create your file types storage subclass. The following listing shows a storage
construction utility built to create HFS storage.

Listing 9-6 A utility to construct storage

#include "Storage.h"

#include <Types.h>

IAStorage* MakeHFSStorage(short vRefNum, long dirID,

const StringPtr fileName,

OSType creator = 'VTWN',

OSType fileType = 'STOR')

C H A P T E R 9

Storage Category

Creating Storage Subclasses 9-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

{

return IAMakeStorage(new HFSStoreStream(vRefNum,

dirID, fileName, creator, fileType));

}

Creating a Subclass of IAStoreStream 9

IAStoreStream requires a subclass as it does the actual storage input and output. A
specific subclass of this abstract base class is required to support the actual storage I/O
for a specific platform.

See“IAStoreStream” on page 9-39 for detailed information. Listing 9-7 through Listing
9-16 show the HFS implementation of IAStoreStream and its functions as an example.

Required Functions 9

■ Clone

■ IsOpen

■ IsWritable

■ Initialize

■ Open

■ GetEOF

■ SetEOF

■ Write

■ Read

Listing 9-7 Sample header file of an IAStoreStream subclass

#include "IAStoreStream.h"

#include <Files.h>

class HFSStoreStream : public IAStoreStream {

public:

HFSStoreStream(short vRefNum, long dirID, const StringPtr fileName,

 OSType creator = 'VTWN', OSType fileType = 'STOR');

~HFSStoreStream();

void Initialize();

void Open(bool writable);

bool IsOpen();

C H A P T E R 9

Storage Category

9-12 Creating Storage Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

bool IsWritable();

void Flush();

uint32 GetEOF();

void SetEOF(uint32 address);

virtual IAStoreStream* Clone();

// Access methods for private member data

OSType GetCreator() const {return creator;}

OSType GetFileType() const {return fileType;}

const short GetVRefNum() const {return vRefNum;}

const long GetDirID() const {return dirID;}

StringPtr GetFileName() const {return fileName;}

short GetFRefNum() const {return fRefNum;}

void SetFRefNum(short fref) {fRefNum = fref;} // better be open!

protected:

// constructor for use by Clone()

HFSStoreStream(short vRef, long dirId, const StringPtr fileName,

 OSType creator, OSType fileType, bool isOpen,

bool isWritable,

 short fRefNum);

void Write(uint32 address, byte* data, uint32 length);

uint32 Read(uint32 address, byte* data, uint32 length);

private:

bool isOpen;

bool isWritable;

const OSType creator;

const OSType fileType;

const short vRefNum;

const long dirID;

StringPtr fileName;

// handle on the open file

short fRefNum;

};

C H A P T E R 9

Storage Category

Creating Storage Subclasses 9-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 9-8 Sample implementation of Clone()

IAStoreStream* HFSStoreStream::Clone() {

return new HFSStoreStream(vRefNum, dirID, fileName,

creator, fileType, isOpen, isWritable,

fRefNum);

}

Listing 9-9 Sample implementation of IsWritable()

bool HFSStoreStream::IsWritable() {

return isWritable;

}

Listing 9-10 Sample implementation of IsOpen()

bool HFSStoreStream::IsOpen() {

return isOpen;

}

Listing 9-11 Sample implementation of Initialize()

void HFSStoreStream::Initialize() {

IALock lock(mutex); // mutex created upon construction of IAStoreStream

OSErr err = HCreate(vRefNum, dirID, fileName, creator, fileType);

if (err == dupFNErr) {// already exists

 short fRef;

 err = HOpenDF(vRefNum, dirID, fileName, fsRdWrPerm, &fRef);

IAAssertion(!err, "unable to open existing HFS file", StoreError);

 err = ::SetEOF(fRef, 0);// reset data fork

 IAAssertion(!err, "unable to reset data fork", StoreError);

 err = FSClose(fRef);

 IAAssertion(!err, "unable to close HFS file", StoreError);

} else IAAssertion(!err, "unable to create HFS file", StoreError);

}

C H A P T E R 9

Storage Category

9-14 Creating Storage Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 9-12 Sample implementation of Open()

void HFSStoreStream::Open(bool forWrite) {

IALock lock(GetMutex());

IAAssertion(!isOpen, "store stream already open", StoreError);

short fRef;

OSErr err = HOpenDF(vRefNum, dirID, fileName,

forWrite ? fsRdWrPerm : fsRdPerm, &fRef);

IAAssertion(!err, "can’t open data fork for store stream", StoreError);

fRefNum = fRef;

isOpen = true;

isWritable = forWrite;

}

Listing 9-13 Sample implementation of GetEof()

uint32 HFSStoreStream::GetEOF() {

IALock lock(GetMutex());

IAAssertion(isOpen, "store stream NOT Open", StoreError);

long eof;

OSErr err = ::GetEOF(fRefNum, &eof);

IAAssertion(!err, "not able to get EOF", StoreError);

return eof;

}

Listing 9-14 Sample implementation of SetEof()

void HFSStoreStream::SetEOF(uint32 address) {

IALock lock(GetMutex());

IAAssertion((isOpen && isWritable),

"store stream not open or writeable", StoreError);

OSErr err = ::SetEOF(fRefNum, address);

IAAssertion(!err, "unable to set EOF", StoreError);

}

Listing 9-15 Sample implementation of Write()

void HFSStoreStream::Write(uint32 address, byte* data, uint32 length) {

IAAssertion((isOpen && isWritable),

"store stream closed or read-only", StoreError);

ParamBlockRec pb;

C H A P T E R 9

Storage Category

Creating Storage Subclasses 9-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

pb.ioParam.ioCompletion = NULL;

pb.ioParam.ioRefNum = fRefNum;

pb.ioParam.ioBuffer = (Ptr)data;

pb.ioParam.ioReqCount = length;

pb.ioParam.ioPosMode = fsFromStart;

pb.ioParam.ioPosOffset = address;

OSErr err = PBWriteSync(&pb);

IAAssertion(!err, "unable to write", StoreError);

IAAssertion(pb.ioParam.ioActCount == length,

"actual write not equal length", IAAssertionFailure);

}

Listing 9-16 Sample implementation of Read()

uint32 HFSStoreStream::Read(uint32 address, byte* data, uint32 length) {

IAAssertion(isOpen, "store stream not open", StoreError);

ParamBlockRec pb;

pb.ioParam.ioCompletion = NULL;

pb.ioParam.ioRefNum = fRefNum;

pb.ioParam.ioBuffer = (Ptr)data;

pb.ioParam.ioReqCount = length;

pb.ioParam.ioPosMode = fsFromStart;

pb.ioParam.ioPosOffset = address;

OSErr err = PBReadSync(&pb);

if(err && err != eofErr) {

IAAssertion(false, "unable to read", StoreError);

}

return pb.ioParam.ioActCount;

}

Creating a Subclass of IAMutex 9
If your application may be run in a multi-threaded environment, you will need to create
your own operative subclass of IAMutex. This will allow the IAT code to prevent
concurrent access when it would harm the integrity of storage. The resulting mutex may
also be used by the application code.

Required Functions 9

■ Lock

■ Unlock

C H A P T E R 9

Storage Category

9-16 Creating Storage Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Implementing IANewMutex 9

IANewMutex is a variable used to by IAT construct a new mutex. The default
implementation defines IANewMutex as follows:

IAMutexConstructor*IANewMutex = &IADefaultMutexConstructor;

where IADefaultMutexConstructor returns a pointer to a mutex with no-op
implementations of Lock() and Unlock(). (These variables are declared as shown in
Listing 9-17.) This default will work for single-threaded applications. Applications that
are creating a working subclass of IAMutex must reset this variable to their own mutex
class.

Listing 9-17 Current implementation of IAMutex

typedef IAMutex*IAMutexConstructor();

IAMutex* IADefaultMutexConstructor();// no-op

extern IAMutexConstructor* IANewMutex;

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

9Storage Class Category Reference

Header Files in the Storage Class Category 9

HFSStorage.h 9

MakeHFSStorage (utility)

HFSStoreStream.h 9

HFSStoreStream

IAMutex.h 9

IALock

IAMutex

IAStorage.h 9

IAInputBlock

IAOutputBlock

IAStorage

IAStoreStream.h 9

IAStoreStream

C H A P T E R 9

Storage Category

9-18 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class Specifications 9

HFSStoreStream 9
Header: HFSStoreStream.h

Hierarchy 9

Public subclass of IAStoreStream. See “IAStoreStream” on page 9-39.

Description 9

HFSStoreStream provides the I/O capabilities for HFSStorage. When MakeHFSStorage
(see “MakeHFSStorage” on page 9-45) creates storage it creates an HFSStoreStream.

Public Member Functions 9

constructor 9

Input

short vRefNum
The volume reference number of the storage to be accessed.

long dirID
Its directory ID.

const StringPtr filename
The HFS filename of the storage.

OSType creator = 'VTWN'
Who created the stream.

OSType fileType = 'STOR'
The type of store stream.

Class

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

destructor 9

Clone 9

See “IAStoreStream.Clone” on page 9-40.

Flush 9

See “IAStoreStream.GetMutex” on page 9-40.

GetCreator 9

Access method for HFSStoreStream member data.

Output

OSType creator
The creator of the store stream.

GetDirID 9

Access method for HFSStoreStream member data.

Output

const long dirID
The HFS directory ID of the storage to access.

GetEOF 9

See “IAStoreStream.GetEOF” on page 9-41. Returns HFS EOF position for file.

C H A P T E R 9

Storage Category

9-20 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetFileName 9

Access method for HFSStoreStream member data.

Output

StringPtr fileName
The HFS filename of the storage to access.

GetFileType 9

Access method for HFSStoreStream member data.

Output

OSType fileType
The file type of the storage.

GetFRefNum 9

Access method for HFSStoreStream member data.

Output

short fRefNum
The HFS file reference number, a handle on the open file.

GetVRefNum 9

Access method for HFSStoreStream member data.

Output

const shortvRefNum
The HFS volume reference number.

Initialize 9

See “IAStoreStream.Initialize” on page 9-42.

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IsOpen 9

See “IAStoreStream.IsOpen” on page 9-40.

IsWritable 9

See “IAStoreStream.IsWritable” on page 9-41.

Open 9

See “IAStoreStream.Open” on page 9-42.

SetEOF 9

See “IAStoreStream.Protected Member Functions” on page 9-41.

SetFRefNum 9

Access method for HFSStoreStream member data.

Input

short fRefNum
The HFS file reference number, a handle on the open file.

Protected Member Functions 9

constructor 9

Input

short vRef
HFS volume reference number.

long dirId
HFS directory ID.

C H A P T E R 9

Storage Category

9-22 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

const StringPtr filename
HFS filename.

OSType creator
The creator of the stream.

OSType fileType
The type of the stream.

bool isOpen
Whether the stream is open(true) or not (false).

bool isWritable
Whether the stream is open for output (true) or read only(false).

short fRefNum
The HFS file reference number.

Notes

Constructor for use by Clone().

Read 9

See “IAStoreStream.Read” on page 9-43.

Write 9

See “IAStoreStream.Protected Member Functions” on page 9-41.

IAInputBlock 9
Header: IAStorage.h

Hierarchy 9

Base Class.

Description 9

An input block is the logical container of storage. It serves as an interface between the
storage and the store stream.

Class

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 9

IAInputBlock reads IAStoreStream 9

One input block reads from one and only one store stream. This store stream may be a
clone of the one created with the storage.

IAInputBlock addresses IAStorage 9

An IAInputBlock addresses part of one storage.

Client 9

See “IAStorable restores from IAInputBlock” on page 10-27.

Public Member Functions 9

constructor 9

Input

IAStorage* storage
The storage which has this block.

IABlockID id
The identification number of the block.

IAStoreStream* stream = NULL
A request for a cloned store stream.

Notes

Locks stream's mutex and positions stream at address for read.
A cloned IAStoreStream can be supplied to improved threaded throughput.

Usage

IAInputBlock input(storage, id, stream);

C H A P T E R 9

Storage Category

9-24 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

destructor 9

Unlocks stream's mutex

GetPosition 9

Output

uint32 position
The current position in the input store stream.

Usage

uint32 start = input.GetPosition();

ReadBuffer 9

Input

void* buffer
Pointer to the buffer to be filled.

uint32 length
Number of bytes to place in the buffer.

Usage

input->ReadBuffer(newText, length);

ReadByte 9

Output

byte

Usage

byte length = input->ReadByte();

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

ReadUInt32 9

Output

uint32
The uint32 read.

Usage

long newCreationDate = input->ReadUInt32();

IAOutputBlock 9
Header: IAStorage.h

Hierarchy 9

Base Class.

Description 9

IAOutputBlock connects a logical block with a store stream and position within storage.
It is used to write storage to disk.

Relationships 9

IAOutputBlock writes to IAStoreStream 9

One block writes to one and only one store stream.

Clients 9

See “IAStorage creates IAOutputBlock by ID” on page 9-31.

See “IAStorable stores in IAOutputBlock” on page 10-27.

Class

C H A P T E R 9

Storage Category

9-26 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 9

constructor 9

Input

IAStorage* storage
The storage in which the block will lie.

IABlockID id
The identification number of the block.

IABlockSize storeSize
The size of the block.

IAStoreStream* stream = NULL
A cloned store stream; used only to improve throughput. If NULL, the
block will write to the storeStream contained in the storage.

Notes

Allocates block on the stack.
Locks stream's mutex and positions stream at address for write.
A cloned IAStoreStream can be supplied to improved threaded throughput.

Usage

IAOutputBlock output(storage, id, storeSize, stream)

destructor 9

Flushes changes and unlocks stream's mutex

GetPosition 9

Output

uint32 position
The current position in the stream.

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-27
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

IABlockAddress position = output.GetPosition();

WriteBuffer 9

Input

void* buffer
Pointer to the buffer to be written.

uint32 length
Number of bytes to write.

Usage

output.WriteBuffer(&buffer, sizeof(buffer));

WriteByte 9

Input

byte b
Byte to be written

Usage

output->WriteByte(fileName[0]);

WriteUInt32 9

Input

uint32 i
The uint32 to write.

Usage

output->WriteUint32(Count());

C H A P T E R 9

Storage Category

9-28 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IALock 9
Header: IAMutex.h
Locks a mutex for the duration of its stack-allocated life.

Description 9

IALock is a semaphore that, when constructed, prevents access to a store stream by
threads other than that of its creator.

See “IAMutex” on page 9-28 for more information.

Public Member Functions 9

constructor 9

Input

IAMutex* mutex

Notes

Locks the mutex. Run before code requiring a lock.

Usage

IALock lock(mutex);

destructor 9

Notes

Unlocks the mutex.

IAMutex 9
Header: IAMutex.h

Class

Class

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-29
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Hierarchy 9

Base Class

Description 9

Interface to mutexes (MUtual EXclusion semaphores) used by IA library.

There is no explicit constructor for IAMutex. The body establishes a no-op default mutex
by the automatic creation of IANewMutex.

Applications must subclass IAMutex and set IANewMutex to a real semaphore to make
IA code thread-safe for the application's threads.

Relationships 9

IAMutex is locked by IALock 9

One mutex may be locked by one lock.

Public Member Functions 9

constructor 9

Notes

No explicit constructor. Defining causes a function to run as part of a typedef.

Usage

IAMutex *mutex;

 mutex(IANewMutex()) // part of constructor initialization

destructor 9

Virtual.

No-op.

C H A P T E R 9

Storage Category

9-30 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IADefaultMutexConstructor 9

Output

IAMutex*

Notes

Default, no-op mutex constructor. IAMutexConstructor is a typedef for IAMutex*. (This
is not an actual IAMutex member function.)

Usage

IAMutexConstructor* IANewMutex = &IADefaultMutexConstructor;

Lock 9

Pure virtual.
Returns when we have control of the mutex.

Unlock 9

Pure virtual.
Releases control of the mutex. Not invoked directly; invoke through the destruction of
IALock.

IAStorage 9
Header: IAStorage.h

Hierarchy 9

Abstract Base Class.

Description 9

This abstract class provides for storage in persistent memory. Storage is done in logical
blocks without knowledge of client data structures.

Class

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-31
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 9

Figure 9-3 IAStorage relationships

IAStorage creates IAOutputBlock by ID 9

Blocks are allocated by ID. They are then constructed as input or output.

One storage may create many blocks.

IAStorage
IAStoreStream

IAInputBlock

addresses (friend)

contains

writes via (friend)

reads via (friend)

IAInputBlock
	 (IAStorage* storage,
	 IABlockID blockID);
ReadByte();

IABlockID Allocate()
 Deallocate(IABlockID)

IAOutputBlock

IAOutputBlock(IAStorage s,
 IABlockID bID,
 IABlockSize size);
WriteByte();

C H A P T E R 9

Storage Category

9-32 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IAStorage creates IAStoreStream 9

One storage has one contained stream, but may have many clones.

Client 9

See “IAInputBlock addresses IAStorage” on page 9-23.

Public Member Functions 9

constructor 9

Input

IAStoreStream* s

uint32 t

Notes

Notes storeStream and type, creates mutex. Called through a utility. See
“IAMakeStorage” on page 9-45.

destructor 9

Deletes storeStream and mutex

Allocate 9

Pure virtual.

Output

IABlockID id
The identification number of the new block.

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-33
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Allocates a new block ID. Block is actually created with IAOutputBlock is constructed.
See “IAOutputBlock” on page 9-25.

Usage

IABlockID id = storage->Allocate();

AllocateNamedBlock 9

Input

char* name
The name to be assigned to the block.

Output

IABlockID id
The identification number of the new block.

Usage

indexRoot = storage->AllocateNamedBlock(IADefaultIndexName);

Commit 9

Pure virtual.
Makes permanent any changes since open.

Usage

storage->Commit();

Compact 9

Pure virtual.
 Attempts to compact the storage.

C H A P T E R 9

Storage Category

9-34 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

storage->Compact();

Deallocate 9

Pure virtual.

Input

IABlockID id
The identification number of block to delete.

Notes

Frees a previously allocated block. Does not remove the TOC entry in the case of named
blocks.

▲ W A R N I N G

You should use RemoveNamedBlocks if you have a named block to
deallocate. If you use Deallocate on a named block without
simultaneously calling TOC_Remove on the name, you will render that
name unusable for the remaining life of the storage.

Usage

storage->Deallocate(id);

FreeSpace 9

Pure virtual.

Output

IABlockSize
The number of bytes of free space.

Usage

 IABlockSize free = storage->FreeSpace();

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-35
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetMutex 9

Access method for IAStorage member data.

Output

IAMutex* mutex
The mutex established to enable locking. See “IAMutex” on page 9-28.

GetNamedBlock 9

Input

const char* name
the string used as a label for the block

Output

IABlockID
the ID of the block. Will allocate a new block if name not found in the
TOC.

GetStorageType 9

Access method for IAStorage member data.

Output

const uint32storageType
The type of storage.

GetStoreStream 9

Access method for IAStorage member data.

Output

IAStoreStream*storeStream
The store stream created to access the storage.

C H A P T E R 9

Storage Category

9-36 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Initialize 9

Pure virtual.
Initializes a new storage, or empties an existing one. The storage is left open afterwards.

Usage

storage->Initialize();

IsOpen 9

Output

bool
True: the storage is open. False: the storage is not open.

IsWritable 9

Output

bool
True: the storage is open with permission to write.
False: the storage is not open or open as read-only.

Open 9

Pure virtual.

Input

bool writable = false
Defaults to read only (false). True is write-permitted.

Notes

 Opens the storage (and its storeStream), enabling subsequent operations.
 If "writable" is true, destructive operations are supported.

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-37
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

storage->Open(true);

RemoveNamedBlock 9

Input

const char* label
The name of the named block to remove.

Output

bool
True if the named block is removed; false if no block by that name exists.

Notes

Frees a previously allocated named block, and deletes the TOC entry for it.

Usage

storage->RemoveNamedBlock("my block name");

TOC_Get 9

Pure virtual.

Input

char* label
The name assigned to the block.

Output

IABlockID
The identification number of the block.

Usage

indexRoot = storage->TOC_Get(IADefaultIndexName);

C H A P T E R 9

Storage Category

9-38 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

TOC_Remove 9

Pure virtual.

Input

const char* label
The name of the block to be removed from the TOC.

Output

bool
True if the block name was successfully removed; false otherwise.

Notes

Removes the entry in the storage TOC that maps the given name to a blockID. Does not
deallocate the block itself from storage.

Normally, you will want to deallocate the block at the same time you remove the TOC
entry. In that case, you should use RemoveNamedBlock, which does both.

Usage

indexRoot = storage->TOC_Remove("My Block Name");

TOC_Set 9

Input

const char* label
The name to be assigned to the block.

IABlockID id
The identification number of the block.

Notes

See also “AllocateNamedBlock” on page 9-33. This will replace the entry if found; that is,
this function may be used to change the ID for a named block. If the entry is not found,
the name and blockID are added to the TOC.

Usage

storage->TOC_Set("my block name", block);

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-39
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

TotalSpace 9

Pure virtual.

Output

IABlockSize
The number of bytes occuited by storage.

Usage

 IABlockSize total = storage->TotalSpace();

Protected Member Functions 9

IAStoreStream 9
Header: IAStoreStream.h

Hierarchy 9

Abstract base class.

Description 9

For implementing IAStorage on different file systems.
Implementations need only implement pure virtual members.
Clients should not use IAStoreStream member functions directly, but rather use through
an IAStorage.

Clients 9

See “IAInputBlock reads IAStoreStream” on page 9-23.

See “IAOutputBlock writes to IAStoreStream” on page 9-25.

See “IAStorage creates IAStoreStream” on page 9-32.

Class

C H A P T E R 9

Storage Category

9-40 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 9

constructor 9

destructor 9

Virtual.

Clone 9

Pure virtual.
Returns a new storeStream read/writing the same store.

Usage

storage->storeStream->Clone()

GetMutex 9

Access method for IAStoreStream member data.

Output

IAMutex* mutex
The mutex for the store stream.

IsOpen 9

Pure virtual. An implementation of this function should lock the mutex while executing.

Output

bool
True if the store stream is open, false if not. Returns the value of isOpen.

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-41
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

IAAssertion(IsOpen(), "Storage not open!", StorageNotOpen)

IsWritable 9

Pure virtual.

Output

bool
Returns the value of isWritable; true if the storage is open and writable,
false if not open or open for read only.

Notes

An implementation of this function should lock the mutex while executing.

Protected Member Functions 9

Flush 9

Pure virtual.
Flushes buffered output to disk. An implementation of this function should lock the
mutex while executing.

Usage

storeStream->Flush()

GetEOF 9

Pure virtual.

Output

uint32
The current EOF; one greater than last position currently occupied.

C H A P T E R 9

Storage Category

9-42 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Returns one greater than the last position currently occupied. An implementation of this
function should lock the mutex while executing.

Usage

storeStream->GetEOF()

Initialize 9

Pure virtual.
Creates a new store on disk and sets up the initial block tables. An implementation of
this function should lock the mutex while executing. Does not open the store stream.

Usage

storeStream->Initialize();

storeStream->Open(true);

MaybeFlushBuffer 9

Write buffer if it's dirty & mark it clean.

Open 9

Pure virtual.

Input

bool writable
True if open for output, false if open for read only.

Notes

Opens an existing store, enabling changes when “writable” is true. An implementation
of this function should lock the mutex while executing.

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-43
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

storeStream->Open(true)

Read 9

Pure virtual.

Input

uint32 fromPos
The position in the storage to read.

byte* buffer
A pointer to the buffer; read data returned here.

uint32 bytesWanted
The number of bytes to read.

Output

uint32 bytesActual
The number of bytes actually read.

Notes

Mutex should be already locked.

Usage

 bytesActual = storeStream->Read(fromPos, buffer, bytesWanted);

SetEOF 9

Pure virtual.

Input

uint32 address
The new position to become the end of file.

Notes

Truncates or extends the storage to the requested length. An implementation of this
function should lock the mutex while executing.

C H A P T E R 9

Storage Category

9-44 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

if (newEOF < oldEOF) {

 storeStream->SetEOF(newEOF);

}

Write 9

Pure virtual.

Input

uint32 toPos
The position in the stream to begin to write to.

byte* buffer
The pointer to the buffer containing the data

uint32 bytes
The number of bytes to write.

Notes

Mutex should be already locked.

Usage

storeStream->Write(toPos, buffer, bytes);

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-45
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Storage Class Utilities 9

IAMakeStorage 9

Header: IAStorage.h

Input

IAStoreStream* storeStream
the store stream for the file type to be stored

Output

IAStorage*
a pointer to the new logical storage object for the storage

Notes

This is the prototype of a basic utility to construct storage. It should be used instead of a
constructor for IAStorage.

MakeHFSStorage 9

Header: HFSStorage.h

Input

short vRef
The HFS volume reference number of the volume where the file is or is to
be located.

long dirId
The directory ID of the directory where the file is located.

const StringPtr name
The name of the file.

OSType creator = ’VTWN’
The creator of the storage.

OSType fileType = ’STOR’
The type of file.

C H A P T E R 9

Storage Category

9-46 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

IAStorage*
A pointer to the storage.

Notes

This is the “constructor” for HFSStorage. It constructs an IAStorage as a Macintosh HFS
file. All other operations on HFSStorage will be done as a function of IAStorage. There is
no true subclass named HFSStorage.

Usage

IAStorage * exStorage =

MakeHFSStorage(vRefNum, dirID, exStorName)

VInt32Read 9

Header: VInt32.h

Input

IAInputBlock* input
The input block positioned for the read.

Output

int
The next VInt32.

Notes

A variable length decoding of a uint32.

Usage

vRefID = VInt32Read(input);

VInt32Size 9

Header: VInt32.h

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-47
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

uint32 i
The item to be sized.

Output

byte
The actual size of the item when encloded in VInt32 format.

Usage

IABlockSize HFSDoc::StoreSize() {

return VInt32Size(vRefID) + VInt32Size(dirID)

 + 1 + fileName[0];

VInt32Write(uint32 i, IAOutputBlock* output) 9

Header: VInt32.h

Input

uint32 i
The item to be written.

IAOutputBlock* output
The block to write it to, positioned for the write.

Notes

A variable length encoding of a uint32.

Usage

VInt32Write(vRefID, output);

C H A P T E R 9

Storage Category

9-48 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Typedefs 9

IABlockAddress 9

The storage address of the first byte of a logical block.

Type

uint32

Header

IAStorage.h

IABlockID 9

A unique logical identifier for a block of storage.

Type

uint32

Header

IAStorage.h

IABlockSize 9

The number of bytes allocated to a block.

Type

uint32

Header

IAStorage.h

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-49
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IAMutexConstructor(); 9

Type

IAMutex*

Header

IAMutex.h

C H A P T E R 9

Storage Category

9-50 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Storage Exceptions and Error Handling 9
Errors are currently handled by throwing exceptions.

VSAO 9

StorageAlreadyOpen.
You have tried to reopen storage that already is open. You may have tried an initialize.

Class

IAStorage

VSBI 9

StorageBlockIDInvalid.

The block ID is not found in the table of contents of this storage.

Class

IAStorage

VSDF 9

StorageFull.

The disk is full.

Class

IAStorage

VSEr 9

StoreError.

Class

IAStoreStream

C H A P T E R 9

Storage Category

Storage Class Category Reference 9-51
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

VSEo 9

StorePastEOF.

Class

IAStoreStream

VSIV 9

StorageInvalid

Cannot make or open this type of storage.

Class

IAStorage

VSNI 9

StorageNotInitialized

You have tried to access storage that has been created, but not initialized using the
Initialize() command.

Class

IAStorage

VSNO 9

StorageNotOpen
You have tried to access storage that has been established, but not opened using the
Open() command.

Class

IAStorage

C H A P T E R 9

Storage Category

9-52 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

VSNW 9

StorageNotWritable

You are trying to change storage that was opened as read-only. This may be because of a
deallocate, allocate, write, commit, or compact command.

Class

IAStorage

VSPB 9

StorePastBlockEnd

Class

IAStoreStream

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

C H A P T E R 1 0

Storable Category 10

Understanding Storables and Ordered Storables 3
Creating Subclasses 4

Creating a Subclass of IAStorable 4
Creating a Subclass of IAOrderedStorable 6
Creating a subclass of IAOrderedStorableSet 7

Common Operations 7
Creating an Ordered Storable Set 7
Open an Existing Ordered Storable Set 8
Updating an Existing Ordered Storable Set 8
Sample Code for Updating an Ordered Storable Set 10
Searching and Iterating through an Ordered Storable Set 11

Storable Class Category Reference 13
Header File 13
Class Specifications 14
IAOrderedStorable 14
IAOrderedStorableIterator 17
IAOrderedStorableSet 18
IAStorable 27

Class Utilities 32
Externs 33
Exceptions and Error Handling 33

Listing 10-0

C H A P T E R 1 0

Storable Category

10-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Table 9-0
Figure 10-0

C H A P T E R 1 0

Storable Category

Understanding Storables and Ordered Storables 10-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IAStorable classes have been created to allow easy organization and storage of objects
within the IAT. You won’t have to be aware of the storable classes to use the IAT for
information access, but you may wish to use the classes for other object-oriented storage.
These classes differ from other existing implementations of structures, as they support
very large storable sets of variable-length objects. The sets are paged from disk.

This chapter describes the storable logic and requirements for re-use.

10Understanding Storables and Ordered Storables

A storable (IAStorable) is any object with member data that should persist beyond
program execution. An ordered storable (IAOrderedStorable) is a storable object with a
unique identifier, or key. This identifier is a piece of member data whose value is unique
for any one occurrence of an object. This uniqueness allows sorts, equal, and less than
operations. These permit the use of a set (IAOrderedStorableSet) and an iterator
(IAOrderedStorableIterator) that allows access in sequential order.

Figure 10-1 shows the relationships between the storable classes.

Figure 10-1 Object storage structures

If it is possible to have a unique identifier, you should implement objects to be stored as
subclasses of IAOrderedStorable.

❄

❄

IAStorable

IAOrderedStorable

IAOrderedStorableIterator

obtains in order

constructs

IAOrderedStorableSet

C H A P T E R 1 0

Storable Category

10-4 Creating Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

10Creating Subclasses

Creating a Subclass of IAStorable 10
An IAStorable is an object which may be stored in the logical input and output blocks of
IAT Storage.

See “IAStorable” on page 10-27 for detailed information.

Required Functions 10

■ DeepCopy

■ Store

■ Restore

■ StoreSize

Listing 10-1 Sample header file for an IAStorable subclass

class HFSVolumeInfo : public IAStorable {

public:

HFSVolumeInfo() : name(NULL) {}

HFSVolumeInfo(short vRefNum);

~HFSVolumeInfo();

// methods to store a HFSVolumeInfo

IABlockSize StoreSize() const;

void Store(IAOutputBlock* output) const;

IAStorable* Restore(IAInputBlock* input) const;

IAStorable* DeepCopy() const;

short GetVolumeRefNum() const {return vRefNum;}

StringPtr GetVolumeName() const {return name;}

long GetCreationDate() const {return creationDate;}

void SetVolumeRefNum(short refNum) {vRefNum = refNum;}

void SetVolumeName(StringPtr vname) {name = vname;}

void SetCreationDate(long cDate) {creationDate = cDate;}

private:

HFSVolumeInfo(short v, StringPtr n, long c) :

C H A P T E R 1 0

Storable Category

Creating Subclasses 10-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

vRefNum(v), name(n), creationDate(c) {}

short FindVRefNum(const StringPtr name, long creationDate) const;

HFSVolumeInfo(HFSVolumeInfo&);// don't define a copy constructor

short vRefNum; // volume reference number (ephemeral)

StringPtr name; // volume name (persistent)

long creationDate; // volume creation date (persistent)

};

Listing 10-2 Sample Constructor

HFSVolumeInfo::HFSVolumeInfo(short vrn) {

Str255 nameBuffer;

ParamBlockRec pb;

pb.volumeParam.ioNamePtr = nameBuffer;// set up pb

pb.volumeParam.ioVRefNum = vrn;

pb.volumeParam.ioVolIndex = 0;

OSErr err = PBGetVInfo(&pb, false);// get info

IAAssertion (!err, "cannot get volume info!", HFSVolumeNotFound);

vRefNum = pb.volumeParam.ioVRefNum;

name = IAMallocArray(byte, pb.volumeParam.ioNamePtr[0] + 1);

pstrcpy(name, pb.volumeParam.ioNamePtr);

creationDate = pb.volumeParam.ioVCrDate;

}

Listing 10-3 Sample Implementation of DeepCopy

IAStorable*HFSVolumeInfo::DeepCopy() const {

byte* newName = IAMallocArray(byte, name[0] + 1);

pstrcpy(newName, name);

return new HFSVolumeInfo(vRefNum, newName, creationDate);

}

Listing 10-4 Sample Implementation of Restore

IAStorable* HFSVolumeInfo::Restore(IAInputBlock* input) const {

// read name

byte length = input->ReadByte();

byte* newName = IAMallocArray(byte, length + 1);

C H A P T E R 1 0

Storable Category

10-6 Creating Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

newName[0] = length;

input->ReadBuffer(newName + 1, length);

long newCreationDate = input->ReadUInt32();// read creationDate

short newVRefNum = FindVRefNum(newName, newCreationDate);// find vRefNum

if (newVRefNum == 0)

return NULL;

else

return new HFSVolumeInfo(newVRefNum, newName, newCreationDate);

}

Listing 10-5 Sample Implementation of StoreSize

IABlockSizeHFSVolumeInfo::StoreSize() const {

return 1 + name[0] + sizeof(uint32);

}

Listing 10-6 Sample Implementation of Store

void HFSVolumeInfo::Store(IAOutputBlock* output) const {

output->WriteByte(name[0]);

output->WriteBuffer(name + 1, name[0]);

output->WriteUInt32(creationDate);

}

Creating a Subclass of IAOrderedStorable 10

An IAOrderedStorableSubclass is the same as a storable subclass (see “Creating a
Subclass of IAStorable” on page 10-4) with the addition of functions for Equal and Less
Than.

See “IAOrderedStorable” on page 10-14 for more information.

Required Functions

■ DeepCopy

■ Store

■ Restore

■ StoreSize

■ Equal

C H A P T E R 1 0

Storable Category

Common Operations 10-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

■ Less Than

Listing 10-7 Sample Implementation of Equal

bool OrderedStorableSubClass::Equal(IAOrderedStorable* neighbor) {

int comparison = strcmp(name, neighbor->name);

return (comparison == 0);

}

Listing 10-8 Sample Implementation of Less Than

bool OrderedStorableSubClass::LessThan(IAOrderedStorable* neighbor) {

int comparison = strcmp(name, neighbor->name);

return (comparison < 0);

}

Creating a subclass of IAOrderedStorableSet 10

You don’t have to create a subclass of the IAOrderedStorableSet or the
IAOrderedStorableIterator. The subclasses provided will work on any subclass of
IAOrderedStorable. The application can create instances of these classes, then cast as
required for the specific storable subclasses used.

10Common Operations

Creating an Ordered Storable Set 10

The ordered storable set is the data structure that points to the members of the set and
provides the iterator to allow access to them. Ordered storable sets are used to store large
collections of persistent data.

You must have storage open for write access and an output block in the storage to
establish an IAOrderedStorableSet. See Chapter 9, “Storage Category” for more
information on establishing storage and allocating blocks. Generally you will want to
allocate a named block for storable set so it may be easily reestablished from storage.

Sets are constructed using the utility IAMakedOrderedStorableSet, which takes a
prototype of the OrderedStorable as input.

C H A P T E R 1 0

Storable Category

10-8 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 10-9 Creating an IAOrderedStorableSet

// construct an ordered storable set

IAOrderedStorableSet* anOSSet = IAMakeOrderedStorableSet

(new OrderedStorableSubclass());

// allocate a block for storing the set

IABlockID setBlockID = anIAStorage->AllocateNamedBlock(aBlockName);

// initialize the set

anOSSet->Initialize(anIAStorage, setBlockID);

Open an Existing Ordered Storable Set 10
An ordered storable set is restored from disk by restoring the storage, locating the
blockID, and creating and opening the set.
The example assumes storage was created with a named output block.

Listing 10-10 Open an existing Ordered Storable Set

// open storage (See “Opening Existing Storage” on page 9-6)

// open ordered storable set

IAOrderedStorableSet* anOSSet = IAMakeOrderedStorableSet

(new OrderedStorableSubclass());

IABlockID setBlockID = anIAStorage->TOC_Get(aBlockName);

anOSSet->Open(anIAStorage, setBlockID, writable);

Updating an Existing Ordered Storable Set 10
IAOrderedStorableSet contains member functions to allow the set to be updated.

See “IAOrderedStorableSet” on page 10-18 for detailed information on each of these
functions.

The Put(anIAOrderedStorable) function adds or replaces a member of the set. If a
storable exists that is equal to the supplied input (that is, it has the same key data), the
storable will be replaced with the new storable.

If the storable supplied with Put does not exist in the set, it will be added to the set.

▲ W A R N I N G

Applications should validate supplied input to be certain no unwanted
addition occurs because of an erroneous key.

The Get(anIAOrderedStorable) will retrieve any storable in the set with a matching key.
The supplied input storable must have the key data (that used for the equal member
function) in place. The retrieved storable will replace the input storable.

The Remove(anIAOrderedStorable) will locate and delete any storable with matching
key data from the set.

C H A P T E R 1 0

Storable Category

Common Operations 10-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

If you wish to change the key data of a storable in the set, the storable with the existing
key must first be removed. Then the storable with the new key may be added with the
Put() function.

Old data is not overwritten in storage during the update. This allows the data to remain
consistent if there is a failure. To replace the persistent ordered storable set following any
updates, Flush() the set to place changes in storage, then Commit() the storage to make
the changes persistent.

You can use an iterator during the updates; the results of the update are reflected in the
iterator behavior.

C H A P T E R 1 0

Storable Category

10-10 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Sample Code for Updating an Ordered Storable Set 10
Perhaps Chef Irina requires a list of her customers by name, with additional data such as
number of recipes submitted. This could be kept as an ordered storable set. The
following examples assume a data member “name” which is the key data for the
OrderedStorableSubclass.

Listing 10-11 Adding a storable to an OrderedStorableSet

// add a storable

char* addName = "Liam";

OrderedStorableSubclass newOrderedStorable

((byte*)addName, strlen(addName));

bool exists = anOSSet->Get(&newOrderedStorable);

if (exists) {

printf ("%s is already there; will not add\n",

newOrderedStorable.name);

} else {

anOSSet->Put(&newOrderedStorable);

printf("%s is added \n", newOrderedStorable.name);

}

Listing 10-12 Updating additional data for an existing storable

// change non-key data in a storable

char * existingName = "Liam";

char* newData = "updated";

OrderedStorableSubclass anOrderedStorable

((byte*)existingName, strlen(existingName));

bool exists=anOSSet->Get(anOrderedStorable);

if (!exists) {

printf ("%s is not there; cannot change\n", anOrderedStorable.name);

} else {

anOrderedStorable.data=newData;

anOSSet->Put(&anOrderedStorable);

printf("%s is replaced \n", anOrderedStorable.name);

}

C H A P T E R 1 0

Storable Category

Common Operations 10-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 10-13 Removing a storable from an OrderedStorableSet

// remove storable

char * existingName = "Liam";

OrderedStorableSubclass anOrderedStorable

((byte*)existingName, strlen(existingName));

bool existed = anOSSet->Remove(anOrderedStorable);

if (!existed) {

printf ("%s was not there; cannot remove\n", anOrderedStorable.name);

} else {

printf("%s has been removed \n", anOrderedStorable.name);

}

Searching and Iterating through an Ordered Storable Set 10

There are several means of reading the contents of an object stored in an Ordered
Storable Set:

■ getting the object by its key using the Get member function

■ making an iterator and searching the set sequentially

■ making an iterator positioned at the object

In the above set of customers, you could use the Get function to find a specific
customer’s data.

Use the sequential iterator to list all the customers.

Use a positioned iterator to locate a certain point in the list (such as the letter “L”) and
list from that point on.

If you have a large number of items to look up in an ordered storable set, it may be faster
to iterate through the entire set than to do a series of lookups using Get.

Listing 10-14 Get an object by key

char * existingName = "Liam";

OrderedStorableSubclass anOrderedStorable((byte*)existingName,

strlen(existingName));

bool exists = anOSSet->Get(anOrderedStorable);

if (!exists) {

printf ("%s is not there; \n", anOrderedStorable.name);

}

C H A P T E R 1 0

Storable Category

10-12 Common Operations

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 10-15 Make a sequential iterator

// iterate through the entire set (list it)

uint32 numberStorables = anOSSet->Count();

printf ("%lu Number of storables\n", numberStorables);

IAOrderedStorableIterator*

anOSIter = anOSSet->MakeIterator();

OrderedStorableSubclass* anOS;

while(anOS = (OrderedStorableSubclass*)anOSIter->Next());

printf ("%s\n", (char*)anOS->name);

}

Listing 10-16 Make a positioned iterator

// Iterate from a given point

char* startingPoint = "L";

OrderedStorableSubclass pointOS((byte*)startingPoint,

strlen(startingPoint));

IAOrderedStorableIterator* anOSIter = anOSSet->MakeIterator(&pointOS);

OrderedStorableSubclass* anOS =

(OrderedStorableSubclass*)anOSIter->Next();

if (!(anOS->Equal(&pointOS))) {

printf("%s isn't in the set\n", startingPoint);

}

while(anOS = (OrderedStorableSubclass*)anOSIter->Next());

printf ("%s\n", (char*)anOS->name);

}

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

10Storable Class Category Reference

Header File 10

IAStorable.h 10

IAMakeOrderedStorableSet (utility)

IAOrderedStorable

IAOrderedStorableIterator

IAOrderedStorableSet

IAStorable

C H A P T E R 1 0

Storable Category

10-14 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class Specifications 10

IAOrderedStorable 10
Header: IAStorable.h

Hierarchy 10

Abstract Base Class.

Superclass: IAStorable. See “IAStorable” beginning on page 10-27.

Description 10

An IAOrderedStorable object is something which is meant to be stored as part of an
ordered set of persistent objects. Ordered storables are the same as storables except they
have a unique key.

Class

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 10

Figure 10-2 IAOrderedStorable relationships

Clients 10

See “IAOrderedStorableIterator obtains (in order) IAOrderedStorable” on page 10-17.
See “IAOrderedStorableSet contains IAOrderedStorable” on page 10-19.

Public Member Functions 10

Equal 10

Pure Virtual.

IAStorable

IAOrderedStorable

IAOrderedStorableIterator

obtains in order

constructs

IAOrderedStorableSet

C H A P T E R 1 0

Storable Category

10-16 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

IAOrderedStorable* neighbor
The item to be tested for equality to this object.

Output

bool
The result of the test (true if the keys of the items are equal, false if they
are not.)

Notes

Equal returns true if this object is equal to the input object. The operation is performed
on the member data which make up the key to the ordered storable. Put and Get use this
function to allow access to an ordered storable by key. See “IAOrderedStorableSet” on
page 10-18 for more information on retrieval and update by key.

Listing 10-17 Sample Implementation of Equal

bool OrderedStorableSubClass::Equal(IAOrderedStorable*

 neighbor) {

int comparison = strcmp(name, neighbor->name);

return (comparison == 0);

}

LessThan 10

Pure Virtual.

Input

IAOrderedStorable* neighbor
The item to be tested to see this object’s key is less than the input object’s
key.

Output

bool
The result of the test (true if the key of this object is less than the Input
object, false if it is not.)

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

LessThan returns true if this object is less than the input object, neighbor. The operation
is performed on the member data which make up the key to the ordered storable.

Listing 10-18 Sample Implementation of LessThan

bool OrderedStorableSubClass::LessThan(IAOrderedStorable*

neighbor) {

int comparison = strcmp(name, neighbor->name);

return (comparison < 0);

}

IAOrderedStorableIterator 10
Header: IAStorable.h

Hierarchy 10

Base Class.

Description 10

The iterator returns members of an IAOrderedStorableSet in sequence of their keys.

Relationships 10

IAOrderedStorableIterator obtains (in order) IAOrderedStorable 10

One iterator may obtain many storables.

Client 10

See “IAOrderedStorableSet constructs IAOrderedStorableIterator” on page 10-19.

Class

C H A P T E R 1 0

Storable Category

10-18 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 10

constructor 10

There is no constructor for this class. Iterators should always be constructed with the
MakeIterator functions of IAOrderedStorableSet. See “MakeIterator()” beginning on
page 10-22.

Next 10

Pure Virtual.

Output

IAOrderedStorable* key
A pointer to a copy of the next object (sequentially) or NULL if at the end
of the set.

Notes

This returns a deep copy of the next sequential (in terms of the key value)
IAOrderedStorable. If invoked after the end of the set, it will return NULL.

Deep copies must be explicitly deleted by the client.

IAOrderedStorableSet 10
Header: IAStorable.h

Hierarchy 10

Superclass: none.

This is an abstract base class; however, there is an internally implemented subclass that
is used in all cases.

Description 10

An IAOrderedStorableSet is a collection of IAOrderedStorable objects kept in sequential
order. Currently this set is implemented as a variant of a B-tree. IAOrderedStorableSets
are kept in storage objects.

Class

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Relationships 10

IAOrderedStorableSet contains IAOrderedStorable 10

One set stores many storables.

IAOrderedStorableSet constructs IAOrderedStorableIterator 10

One set may construct many iterators.

Client 10

IAMakeOrderedStorableSet constructs IAOrderedStorableSet 10

IAMakeOrderedStorableSet is a class utility used to construct a set. There is no persistent
relationship.

Public Member Functions 10

constructor 10

Do not use the constructor directly. Rather, use the IAMakeOrderedStorableSet utility
found in this header. See “IAMakeOrderedStorableSet” on page 10-32 for more
information.

Count 10

Pure Virtual.

Output

uint32
The number of objects in the set.

C H A P T E R 1 0

Storable Category

10-20 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Count returns the number of objects in the set. The set must be initialized or open.

Usage

uint32 numKeys=KeyNameSet->Count();

Destroy 10

Pure Virtual.

Notes

Frees all storage blocks associated with the set.

Flush 10

Pure Virtual.

Output

void
Changes the storage to reflect changes in the set, but returns nothing.

Notes

Changes made to a set are cached. Flush empties the cache and writes the changes to
disk. The set must be initialized or open, and it must be writable.

Usage

// All changes are complete

KeyNameSet->Flush(); //writes to disk

storage->Commit;

Get 10

Pure Virtual.

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

IAOrderedStorable* key
A “dummy” storable object with the key data of the object to be found.

Output

IAOrderedStorable*
A deep copy of the storable object if it exists, or NULL if it does not.

Notes

Get provides a pointer to a deep copy of an IAOrderedStorable that exists within the set.
If the object does not exist, the output pointer will be NULL.

The set must be open for Get to function.

The caller must explicitly delete the object returned by the Get function.

Usage

char * existingName = "Liam";

OrderedStorableSubclass anOrderedStorable

((byte*)existingName, strlen(existingName));

bool exists = anOSSet->Get(&anOrderedStorable);

if (!exists) {

printf ("%s is not there; \n", anOrderedStorable.name);

else (printf ("%s is the data\n", exists.data);

}

GetMutex 10

Pure Virtual.

Output

IAMutex *mutex
The mutex used to lock the storage.

Description

Get the lock or mutex for committing the entire storage in one transaction.

C H A P T E R 1 0

Storable Category

10-22 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Initialize 10

Pure Virtual.

Input

IAStorage* storage
The storage allocated to the set. Storage must be open (or initialized).

IABlockID block
The allocated block ID for the root of the set.

bool cloneStoreStream
A command to use a duplicate, or clone, of the store stream to increase
throughput in multi-thread applications. True will create the clone.
Default is false.

Notes

Initialize establishes the set in storage with its root at the allocated block. The set is
opened for output and left open.

If you want to improve throughput when working with multiple threads, you may ask
for a cloned store stream.

Usage

IABlockID treeRoot = storage->AllocateNamedBlock(treeName);

KeyNameSet->Initialize(storage, treeRoot,);

MakeIterator() 10

Pure Virtual.

Output

IAOrderedStorableIterator*
An iterator set to the beginning of the set.

Notes

MakeIterator creates an IAOrderedStorableIterator positioned before the first
IAOrderedStorable in the set. The first call of Next() will return the first object.

This function, or MakeIterator(IAOrderedStorable* key), should be used to construct the
iterator.

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

You can have multiple concurrent iterators on the same set. Iterators will function
correctly during concurrent updates to the set.

Usage

IAOrderedStorableIterator* iter =KeyNameSet->MakeIterator();

//get the smallest one (first one) in the collection

KeyName* baby = (KeyName*)iter->Next();

MakeIterator(IAOrderedStorable* key) 10

Pure Virtual.

Input

IAOrderedStorable* key
An object in the set. Only the key data is required to be present. This
object is used to locate the item with the key and position the iterator at
that item.

Output

IAOrderedStorableIterator*
An iterator set to the item whose key matches the input, or, if that item is
not in the set, set to the next highest item.

Notes

MakeIterator(key) constructs an iterator. If the input IAOrderedStorable exists in the set,
the iterator is positioned such that it will return that object when Next() is called. If the
storable does not exist in the set, the iterator will return the next greater object.

Usage

// List all names after a given point in the list

IAOrderedStorableIterator*

nameIter = KeyNameSet->MakeIterator(&initialLetter);

KeyName* newName = (KeyName*)nameIter->Next();

while (newName!= NULL) {

printf ("%s\n", (char*)newName->name);

newName = (KeyName*)nameIter->Next();

}

C H A P T E R 1 0

Storable Category

10-24 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Open 10

Pure Virtual.

Input

IAStorage* storage
The storage allocated to the set. Storage must be open (or initialized).

IABlockID block
The allocated block for the root of the set.

bool writable
Whether the set may be altered, or written. True if the set is writable, false
if it is read-only. This must be true to Flush, Put, or Remove.

bool cloneStoreStream
A command to use a duplicate, or clone, of the store stream to increase
throughput in multi-thread applications. True will create the clone.
Default is false.

Notes

Open opens an existing ordered set. It is assumed that this set is rooted at the allocated
block.

Setting writable to true allows the set to be updated; otherwise the set is read-only.

A cloned store stream may improve throughput for multithreaded applications.

Usage

KeyNameSet = IAMakeOrderedStorableSet(new KeyName());

IABlockID treeRoot = storage->TOC_Get(treeName);

KeyNameSet->Open(storage, treeRoot, writable, true);

PositionEstimate 10

Pure virtual.

Input

IAOrderedStorable* key
An object whose position in the set is to be estimated.

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Output

float
The fraction of the set that lies before the named key.

Notes

In conjunction with TotalSize(), this function can be useful in estimating the cost of range
iteration.

Purge 10

Pure virtual.

Notes

Purges any cached data from memory.

Put 10

Pure Virtual.

Input

IAOrderedStorable* obj
The object to be placed in the set.

Output

bool
The results of the put. True if the object was replaced, false if it was added.

Notes

Put places the input IAOrderedStorable object into the ordered set. If the object is already
in the set, it is replaced. An object is considered to be in the set if it Equals another object
in the set. See “Equal” on page 10-15.

The IAT assumes responsibility for deleting the object passed to Put.

The ordered storable set must be opened and writable (or initialized) before a put will
work.

Put caches the changes. You must Flush the set to write the changes to disk (and commit
the storage). Changes made to the set by Put will be reflected in iterators and Gets before
the set is flushed, however.

C H A P T E R 1 0

Storable Category

10-26 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Usage

bool isReplaced = KeyNameSet->Put(&outputKey);

if (isReplaced){

printf("%s has been replaced\n", outputKey.name);

} else{

printf("%s has been added \n");outputKey.name);

}

Remove 10

Pure Virtual.

Input

IAOrderedStorable* key
A storable object with the key data of the object to be removed.

Output

bool
The results of the remove. True if the object was removed, false if it was
not found.

Notes

Remove deletes the IAOrderedStorable matching the key object from the collection and
thus from persistent storage, but does not delete the argument object from memory.
Remove returns “true” if the object was found and removed from the set, “false” if the
object did not exist in the set.

Remove changes the cache. You must Flush the set to write the changes to disk (and
commit the storage). Changes made to the set by Remove will be reflected in iterators
and Gets before the set is flushed.

Usage

bool isRemoved = KeyNameSet->Remove(&key);

if (isRemoved) {printf ("%s has been removed\n", key.name);}

else {printf ("%s was already gone\n", key.name);}

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-27
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

TotalSize 10

Pure virtual.

Output

uint32
The total number of bytes of storage allocated by the set.

Notes

In conjunction with PositionEstimate(), this function can be useful in estimating the cost
of range iteration.

IAStorable 10
Header: IAStorable.h

Hierarchy 10

Superclass: None

Abstract Base Class.

Description 10

An IAStorable is an object that may be stored on disk or within a data structure.

Relationships 10

IAStorable stores in IAOutputBlock 10

One storable stores in one output block.

IAStorable restores from IAInputBlock 10

One storable restores from one input block.

Class

C H A P T E R 1 0

Storable Category

10-28 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Public Member Functions 10

DeepCopy 10

Pure Virtual.

Output

IAStorable*
A copy of this object.

Notes

Deep Copy returns a copy of the object itself as an IAStorable. There is no copy
constructor defined for an IAStorable to avoid hidden type errors.

Listing 10-19 Sample Implementation of DeepCopy

IAStorable*HFSVolumeInfo::DeepCopy() const {

byte* newName = IAMallocArray(byte, name[0] + 1);

pstrcpy(newName, name);

return new HFSVolumeInfo(vRefNum, newName, creationDate);

}

Restore 10

Pure Virtual.

Input

IAInputBlock* input
The input block containing the object and positioned at that object.

Output

IAStorable*
The object existing at the set position of the input block.

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-29
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

Restore reads a previously stored object from storage. It reads StoreSize() bytes from
input.

IAInputBlock is a block allocated to the existing storage. This block must be established
and contain a store stream pointing at the beginning of this stored object.

Similar to Deep Copy, implementations of restore should use the protected member
function Restoring to copy the data.

Listing 10-20 Sample Implementation of Restore

IAStorable*HFSVolumeInfo::Restore(IAInputBlock* input) const {

// read name

byte length = input->ReadByte();

byte* newName = IAMallocArray(byte, length + 1);

newName[0] = length;

input->ReadBuffer(newName + 1, length);

long newCreationDate = input->ReadUInt32();// read creationDate

short newVRefNum = FindVRefNum(newName, newCreationDate);//

if (newVRefNum == 0)

return NULL;

else

return new HFSVolumeInfo(newVRefNum, newName,

 newCreationDate);

}

StoreSize 10

Pure Virtual.

Output

IABlockSize*
An integer representing the storage size in bytes of a single storable object.

Notes

This function returns the amount of storage that will be used when this storable object is
stored.
IABlockSize is a typedef of uint32. It represents the number of bytes the object will
occupy after serialization for output.

C H A P T E R 1 0

Storable Category

10-30 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Listing 10-21 Sample Implementation of StoreSize

IABlockSizeHFSVolumeInfo::StoreSize() const {

return 1 + name[0] + sizeof(uint32);

}

Store 10

Pure Virtual.

Input

IAOutputBlock* output
The output block positioned at the next available slot.

Notes

Store outputs the storable object to storage. It will write StoreSize() bytes to output.

IAOutputBlock is an output block allocated to the storage that is to be used. It must be
established and contain a store stream pointing to the position in which to write the
object.

Listing 10-22 Sample Implementation of Store

void HFSVolumeInfo::Store(IAOutputBlock* output) const {

output->WriteByte(name[0]);

output->WriteBuffer(name + 1, name[0]);

output->WriteUInt32(creationDate);

}

Protected Member Functions 10

DeepCopying 10

Pure Virtual.

C H A P T E R 1 0

Storable Category

Storable Class Category Reference 10-31
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Input

IAStorable* source
“this” object.

Output

void
The data members of the object are updated with the input data; nothing
is returned.

Notes

When the creation of a copy requires several steps, it is clearer to implement this internal
routine to simplify the copy. If you do DeepCopying on a new object it will move the
data items of the input object into place.

A map, for example, is a storable that contains two other storables. This example is a
directory of names and numbers. Name and number are each contained storable objects.

Listing 10-23 Sample Implementation of Deep Copy and Deep Copying

IAStorable* StorableSubClass::DeepCopy() {

StorableSubClass* copy = new StorableSubClass;

copy->DeepCopying(this);

return copy;

}

void StorableSubClass::DeepCopying(IAStorable* source) {

StorableSubClass* other = (StorableSubClass*) source;

name = (ContainedStorable)other->name->DeepCopy();

number = (ContainedStorable)other->number->DeepCopy();}

}

The source is “this,” the object itself which is to be duplicated in this routine.

Restoring 10

Pure Virtual.

Input

IAInputBlock* input
The input block containing the item with the store stream positioned at its
beginning.

C H A P T E R 1 0

Storable Category

10-32 Class Utilities

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

IAStorable* proto
An empty new object to be used as a prototype for the restore.

Notes

Restoring is an internal routine used when the creation of the storable object requires
several steps.
If the storable object were a map, for example, of two other storables, this function will
simplify the copy. This example shows a restore of a directory of names and numbers.

Listing 10-24 Sample Implementation of Restore and Restoring

IAStorable*StorableSubClass::Restore(IAInputBlock* input) {

StorableSubClass* restoredObject = new StorableSubClass;

restoredObject->Restoring(input, this);

return restoredObject;

}

void StorableSubClass::Restoring(IAInputBlock* input,

IAStorable* source) {

StorableSubClass* other = (StorableSubClass*) source;

name = (ContainedStorable*)other->name->Restore(input);

number =(ContainedStorable*)other->number->Restore(input);

}

10Class Utilities

IAMakeOrderedStorableSet 10

Header: IAStorable.h

Input

IAOrderedStorable* proto
Used as a prototype for the Restore() functions. An empty example of the
type of item stored in the set.

Output

IAOrderedStorableSet*
An empty storable set for the input object.

C H A P T E R 1 0

Storable Category

Externs 10-33
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Notes

This constructs an IAOrderedStorableSet. This must be used rather than an explicit
constructor. The input object provided is used as a prototype to establish new objects of
the type.

Usage

IAOrderedStorableSet* KeyNameSet=

IAMakeOrderedStorableSet(new KeyName());

10Externs

extern bool IACloneOSSetStoreStreams;
When true, OrderedStorableSets will use cloned StoreStreams. False by
default.

10Exceptions and Error Handling

Errors are currently handled by throwing exceptions.

VSBE 10

OrderedStorableSetEntryTooBig
The store size is greater than the IABlockSize / 2. Currently, store sizes
should be less than 2K.

Class

IAOrderedStorableSet

C H A P T E R 1 0

Storable Category

10-34 Exceptions and Error Handling

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

A P P E N D I X A

AddDoc 5-34
AddDoc 5-50
AddDoc 5-51
AdvanceTo 7-38
Allocate 9-32
AllocateNamedBlock 9-33
AllocData 7-30
Clients 10-15
Clients 6-28
Clients 6-30
Clone 9-19
Clone 9-40
CollectDirInfo 8-35
Commit 9-33
Compact 5-35
Compact 5-48
Compact 9-33
ComponentsRead 5-64
ComponentsSize 5-64
ComponentsWrite 5-65
Count 10-19
CurrentPos 7-38
Deallocate 9-34
DeepCopy 10-28
DeepCopy 5-26
DeepCopy 5-61
DeepCopy 5-67
DeepCopy 6-44
DeepCopy 7-28
DeepCopy 7-46
DeepCopy 8-22

DeepCopy 8-30
DeepCopy 8-40
DeepCopying 10-30
DeepCopying 8-25
DeepCopying 8-41
DeleteDoc 5-35
DeleteDoc 5-51
Destroy 10-20
DocID 5-74
DocLength 5-74
Equal 10-15
Equal 5-26
Equal 5-44
Equal 5-61
Equal 7-28
Equal 8-22
Equal 8-40
EqualNonVirtual 7-29
Flush 10-20
Flush 5-36
Flush 5-51
Flush 9-19
Flush 9-41
FlushProgressFn 5-74
FreeSpace 9-34
Get 10-20
GetAccessorType 6-24
GetAnalysis 5-36
GetBuffer 7-39
GetBufferPos 7-39
GetBytesForUpdate 5-59

Alphabetical List of
Functions 1

A P P E N D I X A

Alphabetical List of Functions

A-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetCharStream 7-20
GetComponents 5-65
GetComponents 6-49
GetCorpus 5-36
GetCorpusType 8-43
GetCreationDate 8-30
GetCreator 9-19
GetData 7-29
GetDataLength 7-29
GetDeletedDocCount 5-49
GetDir 8-33
GetDirCount 8-33
GetDirID 8-23
GetDirID 9-19
GetDirIndex 8-33
GetDirInfos 8-34
GetDocCount 5-36
GetDocCount 5-51
GetDocID 5-26
GetDocID 5-28
GetDocInfo 5-52
GetDocInfoIterator 5-52
GetDocIterator 5-37
GetDocIterator 5-53
GetDocIterator 8-37
GetDocIterator 8-43
GetDocIterator 5-37
GetDocIterator 5-53
GetDocText 8-18
GetDocText 8-44
GetDocTopic 6-38
GetDocTopic 6-52
GetDocument 5-26
GetDocument 6-28
GetDocument 6-31
GetDocumentCount 5-61
GetDocumentLength 5-26
GetDocumentLength 5-65
GetDocumentLength 6-49
GetEndChar 7-39
GetEndPosition 7-32
GetEOF 9-19
GetEOF 9-41

GetFileName 8-23
GetFileName 9-20
GetFileType 9-20
GetFlushProgressData 5-53
GetFlushProgressFn 5-53
GetFlushProgressFreq 5-53
GetFRefNum 9-20
GetFreq 5-29
GetFreqPostings 5-49
GetHighFreqTerms 5-72
GetIDDoc 5-54
GetIDTerm 5-54
GetIndex 6-28
GetIndex 6-31
GetIndexCount 6-24
GetIndexRoot 5-38
GetIndexType 5-38
GetIndexTypes 5-38
GetIndices 6-24
GetInvertedRankedQueryMaxTerms 6-35
GetInvertedRankedQueryMinTerms 6-35
GetMatchingTerms 6-44
GetMatchingTermsLen 6-44
GetMaxDocID 5-55
GetMaxDocumentSize 5-39
GetMaxTermID 5-55
GetModDate 8-40
GetMutex 10-21
GetMutex 9-35
GetMutex 9-40
GetName 8-23
GetName 8-48
GetNamedBlock 9-35
GetNextBuffer 7-22
GetNextBuffer 7-42
GetNextBuffer 8-26
GetNextBuffer 8-50
GetNextChar 7-39
GetNextCharInBuffer 7-40
GetNextDoc 8-49
GetNextToken 7-19
GetNextToken 7-24
GetNextToken 7-34

A P P E N D I X A

Alphabetical List of Functions

A-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

GetNextToken 7-36
GetNextToken 7-43
GetPBRec 8-33
GetPercent 6-31
GetPosition 9-24
GetPosition 9-26
GetPreferredAnalysis 5-39
GetProtoDoc 8-18
GetProtoDoc 8-37
GetProtoDoc 8-44
GetProtoTerm 7-26
GetProtoTerm 7-45
GetQueryAnalysis 5-39
GetRefNum 8-27
GetRootDirID 8-37
GetScore 6-45
GetStartPosition 7-33
GetStorage 5-40
GetStorageType 9-35
GetStoreStream 9-35
GetStreamBuffer 7-20
GetTerm 5-61
GetTerm 6-46
GetTerm 7-33
GetTermCount 5-56
GetTermID 5-61
GetTermInfo 5-56
GetTermInfoIterator 5-56
GetTermInfoIterator 5-57
GetTextSpan 7-20
GetTextSpan 7-35
GetTextSpan 7-37
GetTextSpan 7-40
GetTFVector 5-70
GetTheDirID 8-27
GetTheFileName 8-27
GetTheVolumeRefNum 8-27
GetTWVector 6-52
GetVectorBlockID 5-66
GetVolumeCount 8-19
GetVolumeInfos 8-20
GetVolumeName 8-30
GetVolumeRefID 8-23

GetVolumeRefNum 8-30
GetVolumeRefNum 8-37
GetVRefID 8-19
GetVRefNum 8-19
GetVRefNum 9-20
HFSCorpus 8-16
HFSIterator 8-16
HFSTextFolderCorpus 8-16
HitEqual 6-39
HitLessThan 6-40
IAAccessor 6-20
IAAssertion 4-4
IABlockAddress 9-48
IABlockID 9-48
IABlockSize 9-48
IACorpus 8-16
IADefaultMutexConstructor 9-30
IAFree 4-7
IAFreeArray 4-8
IAFreeArraySized 4-9
IAFreeSized 4-7
IAFreeStruct 4-9
IAMakeOrderedStorableSet 10-32
IAMakeStorage 9-45
IAMalloc 4-6
IAMallocArray 4-7
IAMallocArraySized 4-8
IAMallocSized 4-7
IAMallocStruct 4-9
IAMutexConstructor 9-49
IAReadIndexTypes 5-72
IAThrowException 4-4
Increment 8-34
Initialize 10-22
Initialize 5-40
Initialize 5-49
Initialize 5-57
Initialize 6-24
Initialize 7-25
Initialize 8-45
Initialize 9-20
Initialize 9-36
Initialize 9-42

A P P E N D I X A

Alphabetical List of Functions

A-4
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Initializing 8-20
Initializing 8-38
Initializing 8-46
InitialSize 8-20
InitialSize 8-38
InitialSize 8-46
InVecAccessor 6-20
InvertedAccessor 6-20
IsDocIndexed 5-40
IsDocIndexed 5-57
IsHit 6-40
IsInitializationValid 6-25
IsOpen 9-21
IsOpen 9-36
IsOpen 9-40
IsWritable 9-21
IsWritable 9-36
IsWritable 9-41
LessThan 10-16
LessThan 5-27
LessThan 5-62
LessThan 7-29
LessThan 8-23
LessThan 8-40
LessThanNonVirtual 7-30
Lock 9-30
MakeHFSStorage 9-45
MakeIterator 10-22
MakeIterator 10-23
MakeTokenStream 7-26
MakeTokenStream 7-45
MaybeFlushBuffer 9-42
Merge 5-41
Merge 5-57
MergeHits 6-41
Next 10-18
Next 5-30
Normalize 6-49
Open 10-24
Open 5-41
Open 5-49
Open 5-57
Open 7-27

Open 8-45
Open 9-21
Open 9-36
Open 9-42
Opening 8-20
Opening 8-38
Opening 8-46
operator delete 4-11
operator delete 4-12
operator new 4-11
operator new 4-12
PositionEstimate 10-24
Purge 10-25
Put 10-25
RankedAccessor 6-20
RankedProgressFn 6-53
RankedSearch 6-33
RankedSearch 6-34
RankedSearch 6-41
RankedSearch 6-42
RankedSearch 6-53
RankedSearchBoolean 6-34
Read 9-22
Read 9-43
ReadBuffer 9-24
ReadByte 9-24
ReadUInt32 9-25
Remove 10-26
RemoveNamedBlock 9-37
RenameDoc 5-41
RenameDoc 5-58
Restore 10-28
Restore 5-27
Restore 5-62
Restore 5-67
Restore 7-30
Restore 8-24
Restore 8-30
Restore 8-40
Restoring 10-31
Restoring 8-25
Restoring 8-41
SetAccessorType 6-25

A P P E N D I X A

Alphabetical List of Functions

A-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

SetBuffer 7-41
SetBufferPos 7-41
SetBytesForUpdate 5-59
SetCharStream 7-20
SetComponents 5-65
SetComponents 6-50
SetCreationDate 8-31
SetDirID 8-24
SetDirIndex 8-35
SetDocument 5-27
SetDocument 6-29
SetDocument 6-31
SetDocumentCount 5-62
SetDocumentLength 5-65
SetDocumentLength 6-50
SetEndChar 7-41
SetEOF 9-21
SetEOF 9-43
SetFileName 8-24
SetFlushProgressData 5-58
SetFlushProgressFn 5-58
SetFlushProgressFreq 5-58
SetFRefNum 9-21
SetIndex 6-29
SetIndex 6-32
SetIndexCount 6-26
SetIndices 6-26
SetInvertedRankedQueryMaxTerms 6-36
SetInvertedRankedQueryMinTerms 6-36
SetMaxDocumentSize 5-42
SetModDate 8-40
SetNextCharInBuffer 7-41
SetPercent 6-32
SetPreferredAnalysis 5-42
SetRefNum 8-28
SetRootDirID 8-38
SetScore 6-45
SetStreamBuffer 7-21
SetTerm 5-62
SetTerm 6-46
SetTheDirID 8-28
SetTheFileName 8-28
SetTheVolumeRefNum 8-28

SetVectorBlockID 5-66
SetVolumeCount 8-20
SetVolumeInfos 8-21
SetVolumeName 8-31
SetVolumeRefID 8-24
SetVolumeRefNum 8-31
SetVolumeRefNum 8-38
ShortWordFilter.h 7-16
Similarity 6-50
Store 10-30
Store 5-27
Store 5-62
Store 5-67
Store 7-30
Store 8-24
Store 8-31
Store 8-41
StoreInitialization 6-26
StoreSize 10-29
StoreSize 5-27
StoreSize 5-62
StoreSize 5-67
StoreSize 7-30
StoreSize 8-25
StoreSize 8-31
StoreSize 8-41
StoreSize 5-29
StoreSize 5-29
Sum 6-51
TermFreq 5-75
TermID 5-75
Text 7-46
TextLen 7-46
TOC_Get 9-37
TOC_Remove 9-38
TOC_Set 9-38
TotalSize 10-27
TotalSpace 9-39
TWVector 6-20
Unlock 9-30
Update 5-43
Update 8-45
UpdateSize 8-21

A P P E N D I X A

Alphabetical List of Functions

A-6
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

UpdateSize 8-39
UpdateSize 8-47
Updating 8-21
Updating 8-39
Updating 8-47
VAAI 6-54
VAIV 6-54
VANI 6-54
VASU 7-48
VCHE 8-51
VCHV 8-51
VCID 8-51
VectorAccessor 6-21
VIAI 5-79
VIAO 5-79
VIDN 5-79
VIIV 5-79
VINO 5-80
VInt32Read 9-46
VInt32Size 9-46
VInt32Write 9-47
VSAO 9-50
VSBE 10-33
VSBI 9-50
VSDF 9-50
VSEo 9-51
VSEr 9-50
VSIV 9-51
VSNI 9-51
VSNO 9-51
VSNW 9-52
VSPB 9-52
VTSU 7-48
Write 9-22
Write 9-44
WriteBuffer 9-27
WriteByte 9-27
WriteUInt32 9-27

A P P E N D I X A

Alphabetical List of Functions

A-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

T H E A P P L E P U B L I S H I N G S Y S T E M

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created
using Adobe Illustrator™. PostScript was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

	Introduction to the Apple Information Access Toolk...
	Some Possible Applications
	RecipeSwap

	How It Was Done
	Indexing Facility
	Search Facility
	Analysis and Filtering
	Storage and Document Type

	Construction with IAT

	Overview of IAT Content
	Facilities of IAT by Category
	Index
	Accessor
	Analysis
	Corpus
	Storable
	Storage

	Designing an Application
	Determining High Level Requirements
	Determining the External Interfaces

	Mapping to IAT Classes
	Internal Task Design
	Recipe Query
	Submit Recipe
	Duplicate Recipe
	Stop Word Maintenance
	Database Creation

	Common Practices in IAT
	Primitive Types
	Globals
	Exceptions
	Exception codes
	Throwing Exceptions

	Memory Allocation
	The Memory Functions
	Base Classes
	IAObject
	IAStruct

	Deletion of Allocated Memory
	IADeleteOnUnwind
	IADeleteArrayOnUnwind
	IADeletePointerArrayOnUnwind

	Index Category
	Choosing an Index Type
	Index Types Currently Available
	Comparison of Searches Available
	Index Size vs. Speed

	Common Operations
	Creating an Index
	Establishing an Existing Index
	Updating an Index
	Iterating Through the Documents in an Index
	Merging Indexes
	Compacting an Index

	Index Class Category Reference
	Header Files in the Index Category
	Class Specifications
	DocInfo
	FreqPosting
	FreqPS
	FreqTerm
	IAIndex
	IAIndexTypes
	InVecIndex
	InvertedIndex
	TermIndex
	TermInfo
	TFComponent
	TFVector
	VectorDocInfo
	VectorIndex

	Class Utilities
	Typedefs
	Extern Data
	Constants
	Index Exceptions and Error Handling

	Accessor Category
	Choosing an Accessor Type
	Query Logic
	Query Analysis
	Common Operations
	Building an Accessor
	Answering Queries
	Answering a Simple Ranked Query
	Answering a Query by Example
	Answering a Boolean Query
	Describing a Document
	Finding Related Words

	Accessor Class Category Reference
	Header Files in the Accessor Category
	Class Specifications
	IAAccessor
	IAHit
	IAProgressReport
	InVecAccessor
	InvertedAccessor
	RankedAccessor
	RankedHit
	RankedProgress
	RankedQueryDoc
	TWComponent
	TWVector
	VectorAccessor

	Typedefs
	Constants
	Accessor Exceptions and Error Handling

	Analysis Category
	Understanding Tokens and Terms
	Understanding Tokenizers
	Understanding Filters
	Existing Filters
	Filter Sequence

	Creating Analysis Subclasses
	Creating a SimpleAnalysis Subclass
	Creating a Subclass of IAAnalysis
	Creating a Subclass of IATokenFilter
	Creating a Subclass of IATerm
	Creating a Text Utility

	Analysis Class Category Reference
	Header Files in the Analysis Class Category
	Class Specifications
	AlphaTokenizer
	DocTextCharStream
	DowncaseFilter
	IAAnalysis
	IATerm
	IAToken
	IATokenFilter
	IATokenStream
	IACharStream
	ShortWordFilter
	SimpleAnalysis
	StringTerm

	Constants
	Exceptions

	Corpus Category
	Introduction
	The HFS Implementation
	HFS Corpus
	HFSTextFolderCorpus

	Common Procedures
	Using a Corpus to Provide Documents
	Creating a New Corpus
	Establishing an Existing Corpus
	Using an HFSCorpus to Locate a Document in HFS

	Creating Corpus Subclasses
	Creating a Subclass of IACorpus
	Creating a Subclass of IADoc
	Creating a Subclass of IADocIterator
	Creating a Subclass of IADocText
	Creating a Subclass of HFSIterator

	Corpus Class Category Reference
	Header Files in the Corpus Category
	Class Specifications
	DirectoryInfo
	HFSCorpus
	HFSDoc
	HFSDocText
	HFSVolumeInfo
	HFSIterator
	HFSTextFolderCorpus
	HFSTextFolderDoc
	IACorpus
	IADoc
	IADocIterator
	IADocText

	Constants
	Exceptions

	Storage Category
	General Storage Logic
	HFS Implementation
	Creating New Storage
	Sample Code to Create Storage

	Opening Existing Storage
	Sample Code for Establishing Existing Storage

	Allocating and Deallocating Blocks of Storage
	Reading and Writing Storage
	Reporting on Storage
	Compacting Storage
	Using the Mutex Facility
	Cloning Store Streams
	Creating Storage Subclasses
	Creating a Storage Construction Utility
	Creating a Subclass of IAStoreStream
	Creating a Subclass of IAMutex

	Storage Class Category Reference
	Header Files in the Storage Class Category
	Class Specifications
	HFSStoreStream
	IAInputBlock
	IAOutputBlock
	IALock
	IAMutex
	IAStorage
	IAStoreStream

	Storage Class Utilities
	Typedefs
	Storage Exceptions and Error Handling

	Storable Category
	Understanding Storables and Ordered Storables
	Creating Subclasses
	Creating a Subclass of IAStorable
	Creating a Subclass of IAOrderedStorable
	Creating a subclass of IAOrderedStorableSet

	Common Operations
	Creating an Ordered Storable Set
	Open an Existing Ordered Storable Set
	Updating an Existing Ordered Storable Set
	Sample Code for Updating an Ordered Storable Set
	Searching and Iterating through an Ordered Storabl...

	Storable Class Category Reference
	Header File
	Class Specifications
	IAOrderedStorable
	IAOrderedStorableIterator
	IAOrderedStorableSet
	IAStorable

	Class Utilities
	Externs
	Exceptions and Error Handling

	Alphabetical List of Functions

