
Chapter 10

DRAG AND DROP

176 Chapter 10: DRAG AND DROP

CHAPTER 10 DRAG AND DROP

Goal

To understand the objects and the steps in the drag and drop data transfer cycle
and to apply this knowledge to a case study implementation—a file well.

Prerequisites

A practical understanding of pasteboards and the two elements of custom views:
event handling and drawing, specifically image compositing.

Objectives

At the end of this section, you will be able to:

» List the objects and data transfer cycle involved with Drag and Drop

» Implement a custom view that is a dragging source

» Implement a custom view that is a dragging destination

Reading
NSDraggingSource protocol reference in the Application Kit

NSDraggingDestination protocol reference in the Application Kit

NSDraggingInfo protocol reference in the Application Kit

177

Drag and drop—object-oriented data transfer

Drag and drop is a familiar user interface aspect of most WIMP (Window Icon
Menu Pointer) environments. An icon, graphically representing some kind of
data, is selected from a source location, dragged across the screen to a destination
location and dropped, signifying a data transfer. It is apt to view this user
interface as object-oriented: simple user events such as mouse actions are applied
to graphical objects and applications that know how to respond in a specific way,
encapsulated behind the generic interface. Through polymorphism, each object to
respond to the same messages—mouseDown:, mouseDragged:,
mouseUp:—freeing the user of having to know how or of making a significant
distinction among different object types. Drag and drop equips the user with an
interface that is simple, intuitive, and very powerful. How does it work?

178 Chapter 10: DRAG AND DROP

A graphical representation of pasteboard operations

Since drag and drop implies a data transfer between independent objects—in the
same or across two different applications—it is natural that it involves a
pasteboard. A data object is essentially passed from the source to the destination
object via the NSDraggingPboard pasteboard instance. Graphical feedback
vividly reinforces the transfer in the user’s mind: the data object is represented as
an icon, and typically, the destination illustrates that it is ready to accept the data
and may even animate in some fashion once the data is actually dropped, accepted
and incorporated into the application. While the basic mechanics of drag and drop
are fairly straightforward and fully supported by the Application Kit, the way an
application object uses the data it accepts or decides what data it will provide is
unique to each application, sometimes involving complex internal behavior.

Because the drag and drop source and destinations occupy visual real estate, they
must be subclasses of either NSWindow or NSView. Like pasteboard operations
in general, the data object is dynamically typed and can be just about anything the
source and destination agree upon. The moving image, the iconic representation
of the data being transferred, is a fixed size sampled image of any type that
NSImage understands.

But what kind of transfer is implied by a drag and drop: a copy, a move, a link?
This is something the user may control through keyboard modifiers and is
intimately based on what the dragging source and destination agree to support.

179

What type of data transfer?

NSDragOperationCopy - most common

NSDragOperationalLink

NSDragOperationGeneric - move

NSDragOperationPrivate

NSDragOperationAll - anything possible

NSDragOperationNone - rejection by dragging destination

What type of data transfer?

The Application Kit provides a set of constants for a dragging source or
destination to dynamically identify the type of transfer it supports. The source
indicates which are possible. The destination determines which specific type it
will perform given its capabilities, the type of data on the pasteboard, and
possibly user input. The types can be combined in a bitmask to indicate more than
one possibility. Your objects can also define their own private types.

» NSDragOperationCopy—the most common, it means that the data will be
duplicated and copied to the destination.

» NSDragOperationLink—the same data instance will be shared by both source
and destination.

» NSDragOperationGeneric—the destination decides. Usually a generic
operation is a move, removing the original in the source, relocating it to
the destination.

» NSDragOperationPrivate—the source and destination objects can agree on a
non-standard sort of operation which is not one of the standards. It is a type
private to the two participating objects.

» NSDragOperationAll—represents all types or’ed together. This type is usually
used by the source and implies that any of the operations are possible and
should be determined by the destination.

» NSDragOperationNone—no transfer possible. Returned by destinations to
reject the pending operation.

180 Chapter 10: DRAG AND DROP

File well—a practical example

While the data being transferred can be arbitrary—a string, one or more business
objects, file contents—a common data type is a file name. Perhaps the most
familiar drag and drop involves a file name icon and represents the movement of
one or more files between applications including a file viewer itself. A single
custom view can be designed to display the icon of a file it represents and
implement both dragging source and destination behavior. The file icon can be
dragged away and dropped over another location or dragged into and dropped on
the view, thereby changing the file it graphically represents. An NSView subclass
capable of doing this might be called a file well. Because it implements both the
source and destination behavior and because file name data is easy to grasp and
easy to handle, a file well provides an excellent study for the implementation of
drag and drop.

181

Source - sensing a drag

mouseDown: + mouseDragged: + mouseUp
 • drag sensed in mouseDragged:
 • drag session initiated in mouseDragged:
 • mouse clicks ignored - no target/action

vs.

mouseDown: + mouseUp:
 • mouse clicks acknowledged - target/action
 • no drag session

Source—sensing a drag

The first thing a dragging source must implement is the ability to sense when a
dragging request occurs. Many sources are controls, such as a file well,
needing to distinguish a mouse click from a mouse drag. The former might
trigger a target/action response while the latter initiates a drag and drop. Both
events begin with a mouseDown: message and are not fully defined until the
next mouse event—mouseUp: or mouseDragged:. Either one precludes the
other. As such, the source object does not typically respond until it knows
something is happening. Dragging sessions are usually initiated from
mouseDragged:.

As you will see, initiating the drag session nonetheless requires the event object
passed as an argument to the initial mouseDown: message. Source objects
usually need to retain the mouse down event object, make use of it in
mouseDragged: and release it in mouseUp: or the next mouseDown:.

Once a source has sensed a drag request from the user interface, it must provide
the corresponding data and communicate that a drag and drop session is now in
effect.

182 Chapter 10: DRAG AND DROP

Source - providing the data in mouseDragged:

// Get Drag/Drop Named Pasteboard
NSPasteboard *pb =
 [NSPasteboard pasteboardWithName: NSDragPboard];

//Declare our data type, e.g., a filename
[pb declareTypes:
 [NSArray arrayWithObject: NSFilenamesPboardType]
 owner: self];

// Write the data to the Pasteboard
[pb setPropertyList;
 [NSArray arrayWithObject: filename]
 forType: NSFilenamesPboardType];

Source—providing the data in mouseDragged:

Usually from within mouseDragged:, the source object must now place the
relevant data on the pasteboard. The Application Kit provides a single named
pasteboard instance for the occasion—NSDragPboard. The source performs the
standard pasteboard owner operations for writing data:

1 . Get the NSDragPboard pasteboard instance.

2 . Declare the data types to be provided. The file well uses the pre-defined
NSFilenamesPboardType, an array of one or more filenames.

3 . Write the data to the pasteboard. Property list data types, arrays or
dictionaries of value objects, are written using
setPropertyList:forType:.

As in any of pasteboard operation, the source can provide multiple
representations and even provide them lazily.

183

Source - initiating the drag - mouseDragged:

// Declarations for clarity.
// Typically non-nil instance variables
NSImage *myDataImage;
NSEvent *myLastMouseDownEvent; // from mouseDown:
NSPoint myViewImageOrigin;

// Get Drag/Drop Named Pasteboard
NSPasteboard *pb =
 [NSPasteboard pasteboardWithName: NSDragPboard];

// Start the drag session
[self dragImage: myDataImage
 at: myViewImageOrigin
 origin: myViewImageOrigin
 offset: NSMakeSize(0,0)
 pasteboard: pb
 source: self
 slideBack: YES];

Source—initiating the drag—mouseDragged:

Once the data is available on the pasteboard, the source initiates the drag session
with a method it inherits from its superclass. This causes the icon to appear
under the mouse cursor and notifies the relevant dragging destination as soon as
the icon is dragged into its view. The dragImage: ... method takes the
following parameters:

» dragImage:—an NSImage instance loaded with a sampled image file.

» at:—a point in the source’s coordinate system indicating where the icon will
be initially composited. This will usually correspond to the lower left corner
of the original image in the source, the representation of data available for
dragging. Values must be in the source’s coordinate system.

» offset:—the x and y offset of the current mouse location relative to the initial
mouseDown: location.

» event:—the original mouseDown: event object. If this message is sent from
mouseDragged:, the source must retain the mouseDown event object and
supply it here.

» pasteboard:—the pasteboard containing the source’s data.

» source:—the source object itself, the “owner” of the drag session.

» slideBack:—whether the image should graphically slide back after
unsuccessful or incomplete drop operations.

184 Chapter 10: DRAG AND DROP

Once the source initiates a dragging session, all subsequent mouseDragged:
and the final mouseUp: events are processed by the superclass to support drag
and drop. The source object will not receive another mouse message until the
next mouseDown:. In essence, the source will receive only one
mouseDragged: event or one mouseUp: event, not both. The latter implies
that there was no drag at all.

185

Source - identifying the transfer type

- (unsigned int) draggingSourceOperationMaskForLocal:(BOOL)flag;
 • required
 • returns bitwise "or" of NSDragOperation constants
 • flag is YES if destination is in the same application
 • queried indirectly by destination via NSDraggingInfo

Source—identifying the transfer type

Finally, the source object must identify which NSDragOperations are possible.
The source must implement draggingSourceOperationMaskForLocal:. It
returns a bitmask listing one or more operations that are valid for the given
operation. Dragging destinations invoke this message indirectly by querying the
NSDraggingInfo object passed to them as a parameter. Look ahead to the
destination pages for more detail.

Some applications will permit drag and drop operations between two objects
within the application itself—between to documents or two views on the same
window such as an icon shelf. The application may require special handling
here. Some of these applications may not support dragging of data outside the
application at all. In these cases, the answer will be conditional on whether the
operation is local, within the application, or not, between this and another
application. The flag argument makes this distinction.

To prohibit any kind of drag given the current state, the source may return
NSDragOperationNone.

186 Chapter 10: DRAG AND DROP

Destination - registering acceptable dragged types

// NSView Designated Initializer
- (id)initWithFrame: (Srect)frameRect
{
 [super initWithFrame: frameRect];

 // Declare what types we can accept
 [self registerForDraggedTypes:
 [NSArray arrayWithObject: NSFilenamesPboardType]]

 return self;
}

Destination—registering acceptable dragged types

Destination objects begin their life as potential participants in drag and drop
sessions by registering the pasteboard types they are willing to accept. Whether
NSWindow or NSView subclasses, a destination inherits a method for the
purpose: registerForDraggedTypes:. Analogous to the list of types that a
pasteboard owner provides, the destination specifies an array of one or more
types it will accept. Registration must happen before any drag and drop
operation is possible. Typically, it is done in the classes designated initializer.
For the NSView subclass file well, it is initWithFrame:.

187

Destination - sensing and tracking a drag

Methods implemented by Destination
- (unsigned int)draggingEntered:(id<NSDraggingInfo>)sender;
- (unsigned int)draggingUpdated:(id)<NSDraggingInfo>)sender;
- (void)draggingExited:(id)<NSDraggingInfo>)sender;

What they do
 • validate data type (e.g., on Pasteboard), transfer type
 • update view's appearance
 • message sender for more DraggingInfo
 • return transfer type destination will use
 • to fail, return NSDragOperationNone;

Destination—sensing and tracking a drag

Like the source, the destination needs to sense when the dragging mouse enters
its real estate, signifying a potential data drop. There are three methods a drag
destination must implement for this purpose:

» draggingEntered:—when the mouse first enters the destination view

» draggingUpdated:—each time the mouse is dragged within the view

» draggingExited:—when the mouse completely leaves the view or stops
dragging due to a mouseUp:.

These provide your object with the opportunity for two chores typical of dragging
destinations:

» validate the potential data drop. Check the data on the pasteboard and the
transfer type. If anything is unacceptable, return NSDragOperationNone,
otherwise, return the type of operation the destination will perform.

» update the destination’s appearance. Destination views often provide feedback
that they will accept the data, that a drop is pending and applies directly to
them. This may involve compositing the dragged image or providing some
animated feedback, even tracking the mouse as it drags around within the
view.

The single argument is an object that conforms to the NSDraggingInfo protocol
and provides access to attributes about the session such as the data transfer type,
the pasteboard, the dragged image and the source object if local.

188 Chapter 10: DRAG AND DROP

Destination - Querying for more information

- (unsigned int)draggingSourceOperationMask;
- (id)draggingPasteboard;
- (NSImage *)draggedImage;
- (id)draggingSource;

draggingEntered:

- (unsigned int)draggingEntered:
 (id<NSDraggingInfo>)sender;

NSDraggingInfo

MyDestination

Destination—querying for more information

A drag and drop destination will typically need to gather more information—to
validate the transfer type and possibly the data on the pasteboard, to gain access
to the dragged image, or to message a local dragging source object. All this
information in available through the sender argument passed to all six of the
destination messages in the NSDraggingDestination informal protocol. The
sender conforms to the NSDraggingInfo protocol and is not the same as the
dragging source which is typically in a completely different address space. These
are some of the more commonly used methods.

189

Destination - accepting dropped data

Methods implemented by Destination

- (BOOL)prepareForDragOperation:(id<NSDraggingInfo>)sender;
 • validate

- (BOOL)performForDragOperation:(id<NSDraggingInfo>)sender;
 • validate; query sender
 • read data from pasteboard; application specific actions

- (void)concludeDragOperation:(id<NSDraggingInfo>)sender;
 • all done
 • ok to use NSWorkspace

Destination—accepting dropped data

Once the user releases the mouse button over the destination that has not failed
any of the mouse tracking methods, the drag turns into a drop and the destination
accepts data from the pasteboard. There are three steps involved, each permitting
unique actions typically required by most destinations:

» prepareForDragOperation:—chiefly for a final validation of the transfer
type and the actual data. Once again, the destination can gather additional
information about the context by messaging sender, an NSDraggingInfo
object. The destination may fail this operation for any reason by returning NO.
Typically, this would be due to the data on the pasteboard and/or the transfer
type.

» performDragOperation:—intended for the actual data transfer into the
destination object, it is here where the destination obtains the pasteboard,
requests the valid types, reads the data, then finishes with specialized actions
that incorporate the data into the application-specific context.The destination
may fail this operation for any reason by returning NO. This might reflect an
inability to read the data from the pasteboard or to successfully accommodate it
in the application.

» concludeDragOperation:—any cleanup from the operation is performed
here. File handling destinations such as a File Well are likely to need file
system services via NSWorkspace. This can only be done here, not before in
any of the earlier methods.

190 Chapter 10: DRAG AND DROP

Drag and drop source component - summary

NSWindow or NSView subclass

Required methods
 mouseDown: - retain NSEvent
 mouseDragged: - pasteboard I/O, D&D session initiation
 draggingSourceOperationMaskForLocal: - transfer type

Pasteboard interactions with NSDragPboard

Superclass support for initiating drag and drop session
 dragImage:at:offset:event:pasteboard:source:slideback:
 dragFile:fromRect:slideback:event:

Drag and drop source component—summary

Drag and drop sources are NSWindow or NSView subclasses.

To sense a drag request and to report the supported transfer types, the source
must override mouse event methods mouseDown: and mouseDragged: and
implement the only required method in the NSDraggingSource informal protocol,
draggingSourceOperationMaskForLocal:. Check the protocol
documentation for additional methods a source may choose to implement.

All the action typically happens in mouseDragged: and involves transferring
the data to the pasteboard and initiating the drag and drop session using one of the
two superclass methods.

191

Drag and drop destination component - summary

NSWindow or NSView subclass

Required Methods
 initWithFrame: - register for dragged types
 draggingEntered:, draggingUpdated:, draggingExited:
 prepareForDragOperation:, performDragOperation:,
 concludeDragOperation:

Superclass support
 registerForDraggedTypes:

Pasteboard interactions with NSDragPboard

Additional NSDraggingInfo via sender

Drag and drop destination component—summary

Drag and Drop destinations are NSWindow or NSView subclasses. They register
their unique list of acceptable data types as early as possible, typically in their
designated initializer with a superclass method registerForDraggedTypes:.
Once done, they wait for drag and drop to occur.

Dragging and dropping actions are communicated to the destination in six steps,
each corresponding to a method the destination must implement:

» draggingEntered:

» draggingUpdated:

» draggingExited:

» prepareForDragOperation:

» performDragOperation:

» concludeDragOperation:

Each of these take a part in validating the data, updating the destination’s
appearance, transferring the data from the pasteboard into the application and
cleaning up. All of these but the last can fail, prohibiting the drag and drop from
taking place. All of them can gain additional information by messaging a sender
argument that conforms to the NSDraggingInfo protocol.

192 Chapter 10: DRAG AND DROP

Important ideas from this section

» Drag and Drop is an object-oriented graphical representation of data transfers
using NSPasteboards.

» Drag and Drop involves two important custom objects: a dragging source and a
dragging destination. Each of these objects can be either NSWindow or
NSView subclasses.

» A dragging source must:

Properly sense a mouseDragged: event after retaining the associated
mouseDown: event object

Provide typed data to the dragging pasteboard

Initiate a dragging session using NSWindow or NSView superclass
methods

Identify the data transfer type when the dragging destination queries
through the DraggingInfo object

» A dragging destination must:

Register for acceptable dragged types

Sense and track the dragging mouse

Accept dropped data, reading it from the pasteboard

Optionally query for additional information

Classes and protocols featured in this section
» NSDraggingSource—informal protocol

» NSDraggingDestination—informal protocol

» NSDraggingInfo—protocol

» NSPasteboard

193

REVIEW DRAG AND DROP

1 . Name the key players in the drag and drop data transfer cycle.

2 . What kinds of objects can act as a dragging source? How about a dragging
destination? Does this make sense?

3 . List a few possible things a dragging destination might check for when
validating a pending drop.

4 . How would a dragging source keep from becoming its own dragging
destination?

194 Chapter 10: DRAG AND DROP

