
Chapter 6

MENUS

118 Chapter 6: MENUS

CHAPTER 6 MENUS

Goal

To explore the mechanics of menus—updating, associating with a window or
view and dynamically adding and deleting menu items.

Prerequisites

Understanding of target/action including nil-targeted actions and familiarity with
the event loop.

Objectives

At the end of this section, you will be able to:

» Explain how nil-targeted menu items are updated

» Specialize menu updating for any menu item regardless of its target

» Add or delete menu items dynamically at run time

Reading
NSMenu and NSMenuItem classes in the Application Kit

NSMenuActionResponder and NSMenuItem protocols in the
Application Kit

119

Menu items often need to be updated

Sometimes a menu item should not be available
 • it should be disabled
 • its title should change - such as "Off" vs. "On"

How often do you need to worry about this?
 • could be as often as after every event
 • maybe rarely, after an unusual state change

Menu items often need to be updated

Menu items, like other controls, must be sensitive to the state of your application.
A particular action may not always be relevant. Some menu items act as two-state
toggles, alternating between "on" and "off". Good user interface design implies
that a user should not be presented with a meaningless or erroneous option. The
option should be clearly disabled or change state to reflect a new context.

How frequent are such state changes? When to they occur? It depends on the
function of the menu item and it depends on your design. It could be rare or
exceptional, and specific code in your application could change menu items at that
specific point in time. It could be as often as after every user event. Menu items
that target first responder may suddenly become meaningless when the first
responder changes. It can change with the click of a mouse or a <TAB>
keystroke.

In this case, an automatic updating scheme is required after each user event. After
each pass through the event loop, some object should check each menu item to
see if its state should change. The best design would let each menu item that cares
update itself. How is this done?

120 Chapter 6: MENUS

Who knows best? the targeted object...

target

action

NSMenuItem

target

action

NSMenuItem

- (void)myAction:(id)sender;

Responder Chain

myAction:

myAction:

nil

MyComponent

- (void)myAction:(id)sender;
?

Who knows best? the targeted object...

A menu item works by messaging a target object. Menu updating works in
conjunction with that target object. Does it actually respond to the selector? Does
it want to respond to the selector right now with the application in its particular
state?

Your menu item target can be hard-wired or nil, when it refers to an object in the
responder chain. In the latter case, the targeted object must be dynamically
determined. It may be that no object in the responder chain responds to the action
selector. In all cases, if the target specifies an object that responds to the action,
the menu item is enabled. Otherwise, it is disabled. Like all controls, when a
menu item is disabled, its title changes to light gray and it cannot be pressed by
the user.

121

NSMenu auto-enables items after every event

target

action

NSMenuItem

target

action

NSMenuItem

myAction:

NSMenu

autoenablesitems
itemArray

YES

NSArray

otherAction:

respondsToSelector:

?

?

NSMenu auto-enables iterms after every event

Each NSMenu is configured by default to auto-enable its items. Once per event
loop iteration, each menu item determines whether its target responds to the menu
item’s action selector. For hard-wired targets, this status never changes. It is
always true. When the target is nil, the target is dynamic, somewhere in the
responder chain. The target is the first object that responds to the selector. If no
object in the chain responds to the action selector in the menu item, the menu item
is disabled. It has no effect at this point in time.

When first responder is a text field, it responds to cut:. When it is a button or
slider, it does not. A save: selector with a nil target might be intended for your
window delegate. If you have no open or active window, there is no delegate in
the responder chain to respond. In both cases, the menu item will be disabled.

When a menu item’s action is nil, there is no message to send at all. This menu
item will always be disabled. You would never actually use such a menu item in
your application, but it is the case when you first instantiate the menu item, before
you set its action. Remember also that a menu item can be permanently disabled
in Interface Builder whether or not its target and/or action apply at run time.

This first phase of updating happens for you automatically. But this is not always
enough. A target that responds to the selector may not want to respond at this
particular time. Once again, it makes sense to ask the object itself.

122 Chapter 6: MENUS

The action is not always valid - ask the target

myAction:

NSMenu

NSMenu

(BOOL)validateMenuItem:

validateMenuItem:

1

2

MyComponent

MyComponent

respondsToSelector:

NSMenuItem
title

action
tag

@"title"

0

YES

NO

The action is not always valid—ask the target

Once the responsive target object is located, auto-enabling checks to see if it
responds to validateMenuItem:. If so, the message is sent and the return value
determines whether the menu item is enabled or disabled. The target object is
given the opportunity to consult the relevent application state and decide for itself.
If the target object does not implement validateMenuItem:, the menu item is
automatically enabled.

It is typical for a particular controller to be the target for multiple menu items. In
this case, the controller may have to decide based on which menu item is being
updated. The menu item is passed as a parameter. The controller can identify it by
its tag, by its action, by its title, or even by comparing it with
an outlet.

123

Design for a component with updating menu item(s)

Not all menu items need this kind of updating. Often, the first check is sufficient
and your target object doesn’t need to implement validateMenuItem:. If it is,
your design should follow this pattern. For multiple actions, your
validateMenuItem: implementation would need to check for each menuItem,
taking all its actions into account.

This is called the NSMenuActionResponder informal protocol. To properly
participate, your object should conforms to this protocol.

124 Chapter 6: MENUS

Who can have a menu?

NSApplication (e.g., default for all NSWindows)

NSWindow
 • default Application Main menu
 • private/custom/no menu possible

NSPanel
 • no menu by default

NSView - NSTextView, Custom views

Who can have a menu?

Your main nib file contains the main menu. It is applied to all windows in your
application. It is not common UI design, but a specific window could have its
own unique menu, different from the default. It might have no window at all.

NSPanel is a subclass of NSWindow but, by default, has no menu at all.

On Microsoft Windows, any NSView within a window can also have its own
menu. It is invisible but pops up dynamically with a mouse click. It is even
possible for a view to have multiple menus, each available depending on where
the mouse is clicked with the view’s geometry.

NSView’s provide the following outlets:

» menu

» defaultMenu

To implement multiple menus, your custom view would need to override
menuForEvent:. For more information on custom views and overriding event
handling, see the section on custom views.

125

Additional Points to Ponder

126 Chapter 6: MENUS

NSMenu and NSMenuItem architecture

Here is a detailed look at the NSMenu and NSMenuItem objects and how they are
connected to build your application menus.

Each menu has a list of its menu items. Each menu item can be a leaf or a sub
menu. In the case of a submenu, its target outlet points to the submenu, a new
NSMenu object and its action is the message that makes the submenu appear—
subMenuAction:. There is a boolean field that flags the menu item as a
submenu as well.

Each NSMenu can be separately configured to auto-enable its items. The default it
YES.

Each NSMenuItem can be separately enabled or disabled. When useful, they can
be uniquely identified by its integer tag. Some may feature a unique keystroke
equivalent, also know as a short cut or an accelerator.

127

Dynamically adding a menu item

NSMenu *mm = [NSApp mainMenu];
NSMenu *i;

// instantiates and returns a new NSMenuItem
i = [mm insertItemWithTitle: @"Option"
 action: @selector(performOption:)
 keyEquivalent: @"O" atIndex: 1];
// configure MenuItem
[i setEnabled: YES];
// Default Target is nil, e.g., responder chain
[i setTarget: optionObject];
// Resize NSMenu to accomodate new MenuItem
[mm sizeToFit];

Dynamically adding a menu item

Sometimes a useful approach, here is an example of dynamically adding a menu
item at runtime. Certain application items might come and go, though enabling
and disabling a permanent menu item is more traditional. You might consider this
technique for reusable components that can be added to an application and know
how to add themselves to the menu automatically.

You can insert an item at a specific index using the insert method shown here, or
you can simply append it to the bottom of the menu by using the add variant
shown on the following page.

When an item is added or deleted in this way, the menu must be told to resize
itself accordingly.

128 Chapter 6: MENUS

Dynamically adding a submenu

NSMenu *new, *mm = [NSApp mainMenu];
NSMenuItem *i;

// Add new NSMenuItem that launches the submenu
i = [mm addItemWithTitle: @"Sub"
 action: (SEL)0
 keyEquivalent: @""];
[i setEnabled: YES];

// Create NSMenu (if not created in IB)
new = [[NSMenu alloc] initWithTitle: @"Sub"];

// Add submenu items (not shown here)

// Attach it
[mm setSubmenu: new forItem:i];
[mm sizeToFit];

Dynamically adding a submenu

Adding an entire submenu requires that you first add a menu item, then attach a
new NSMenu instance to it. Now the new menu item will display the submenu
when activated.

The NSMenu could be prebuilt or dynamically constructed as demonstrated on
the previous page.

129

Dynamically removing a menu item

NSMenu *mm = [NSApp mainMenu];
NSMenu *i = [mm itemWithTitle: @"Option"];

if (i) {
 [mm removeItem:i];
 [mm sizeToFit];
}

Dynamically removing a menu item

Removing an item requires simply that you locate the item, remove it, then ask
the containing menu to resize itself. The menu item, and any submenus it
contains, will be released.

130 Chapter 6: MENUS

Important ideas from this section

» By default, menus auto-enable their menu cells during each iteration of the
event loop. This can be disabled.

» Auto-enabling involves two steps:

The first step checks the menu item’s target outlet to verify that an object
responds to the action selector. If not, the menu item is disabled.

If it does respond, the second step checks to see if the object responds to
validateMenuItem: If it does, the message is sent and the return value
determines if the menu item is enabled. The target object decides for itself.

» NSViews can have their own popup menus on Microsoft Windows.

» You can dynamically modify menus at runtime, adding or deleting menu items
and entire sub menus.

Classes featured in this section
» NSMenu

» NSMenuItem

131

REVIEW MENUS

1 . There are three steps involved in the automatic menu updating scheme. Name
them.

2 . How often are menu items auto-enabled? Is this always required? Describe in
general, another approach a component might use to update its own relevant
menu items.

132 Chapter 6: MENUS

EXERCISE 6.1 MENU UPDATING WITHOUT LIFTING A FINGER

For a final touch of polish to your application’s menus, this exercise
demonstrates how to provide automatic updating of each menu item. This can be
done explicitly, but it can be difficult to remember every time you should re-
enable or disable one or more menu items. This facility centralizes the logic so
that this aspect of your state management can be held within one method in the
corresponding target object.

Objective

After completing this exercise, you’ll be able to use the NSMenuValidation
protocol to automate menu updating

133

Exercise

1 . In the current version of your application, the Revert to Saved menu item is
enabled all the time. When the document is first opened, and hasn’t been
modified, this is not useful—so the menu validation scheme can be used to do
turn this command off.

» Add a validateMenuItem: method to DocController. You need to
check either the name of the menu item you are passed, its selector, or
its tag to make sure it refers to the revert: method.

» You can move the logic that checked if reverting is necessary from the
revert: method to validateMenuItem:.

2 . Recompile the application and check that the menu item is automatically
disabled until you modify the document, such as by adding a row.

Enhancements
» Provide automatic updating for the Save All command by adding a

validateMenuItem: method to AppController.The menu item should be
enabled only when there are modified documents.

» What other menu items are automatically updated? What happens when there
are no active windows?

134 Chapter 6: MENUS

