
Chapter 4

CUSTOM VIEWS

76 Chapter 4: CUSTOM VIEWS

CHAPTER 4 CUSTOM VIEWS

Goal

To gain familiarity with custom display and event handling techniques used to
implement custom views.

Prerequisites

Exposure to basic view and event concepts including: the view hierarchy,
the event loop, and the role of NSResponders in handling mouse and keyboard
events.

Objectives

At the end of this section, you will be able to:

» Describe a view in terms of its important attributes—frame, coordinate system,
display methods and the designated initializer

» Identify the main techniques for drawing including PostScript functions,
wrappers and NSImage handling

» Explain how custom views handle mouse and keyboard events making use of
NSEvent data

» List the steps for implementing a custom view and incorporating an instance in
an application

Reading
NSView class reference in the Application Kit

NSResponder class reference in the Application Kit

NSEvent class reference in the Foundation

NSImage class reference in the Application Kit

NSColor class reference in the Application Kit

NSString class reference in the Foundation

77

What is a view?

A view is an area of responsibility within a window. It occupies visible real estate
where it displays itself using custom drawing. Anything you can see on a
window is, by definition, a view object. Within its boundaries, a view also
handles events—mouse clicks and, if first responder, keystrokes. A view is a
subclass of NSView and is used to display images, text, or the dynamic
appearance of a custom control. Mouse and keyboard event handling is used to
implement editable views, drag and drop participants, and controls. NSControl is
a subclass of NSView and provides the abstract behavior for implementing
target/action.

The Window Server provides all the necessary support for servicing hardware
events and queueing them for NSApplication. In conjunction with Application Kit
classes—NSApplication, NSWindow and NSView—the Window Server
provides the necessary interfaces for a custom view to draw. Like most
windowing environments that manage multiple applications on the screen
simultaneously, most of this functionality resides in a separate server process;
this process is called the Window Server.

78 Chapter 4: CUSTOM VIEWS

A view lies within a frame

A view lives within its superview and occupies a rectangular region called a
frame. This is an attribute of NSView. Every view uses a coordinate system to
refer to points within its frame. The origin is the lower left corner and defaults to
the x and y coordinates 0,0. In this case, the x and y axes extend in a positive
direction to infinity. The frame rectangle is used to create a clipping path so that,
despite a theoretically infinite plane, a view cannot scribble outside the lines. A
view’s frame is described by the NSRect structure and contains:

» origin—x and y coordinates in the super view indicating the view’s lower left
corner

» Size—width and height

A view’s frame is established by NSView’s designated initializer,
initWithFrame:. You typically configure the origin and size of a view with
graphical positioning in Interface Builder. The frame can be adjusted at runtime to
move the view and even change its size.

The coordinate system points such as x and y are floating point numbers where
each whole unit corresponds to approximately 1/72 of an inch.

79

A view has its own coordinate system

While a view’s frame describes where it lives within the superview, it is generally
not used by the view itself. A view has its own coordinate system which, by
default, has an origin of 0,0. An alternate rectangle is used by the view for
addressing points within its frame and this is the called the bounds rectangle. It is
another attribute of NSView. When the view addresses points within its bounds,
the underlying system takes care that it is mapped to the right place within the
superview, within the window and within the screen. Whatever mapping the
window server uses, a view can conveniently work with its own simplified world
view.

A view object encapsulates the display and event handling of a given region on
the window. The NSView abstract superclass encapsulates most of the mechanics
of clipping and coordinate system mapping. Your custom view is free to
concentrate the specialized details that make it unique and useful.

80 Chapter 4: CUSTOM VIEWS

Important view data structures

typedef struct _NSPoint {
 float x, y;
} NSPoint;

typedef struct _NSSize {
 float width, height;
} NSSize;

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

Important view data structures

Most view handling involves a few basic data structures used to describe
rectangles and points within them. The coordinate system uses floats. Any point
is an x and y pair of which the origin is a fundamental example. A rectangle
contains an origin and a description of its size, again two floats, which describes
its width and height in the same units.

These are defined in the Foundation kit’s NSGraphics.h and used extensively
by view methods and C functions that provide graphics support.

81

When asked to display, a view draws itself

bounds

MyView

NSRect

display

- (void)display;
- (void)drawRect:(NSRect)rect;

drawRect:

1 2

When asked to display, a view draws itself

To display a view, send it the display message. It is fully implemented in the
NSView superclass to manage all genericWindow Server setup required to put
your view in focus—give it exclusive access for drawing. You do not need to
override it. NSView concrete subclasses implement their custom drawing
behavior in the drawRect: method, sent by display once the Window Server
setup is done. To implement a custom view you must override drawRect:. The
inherited version from NSView does nothing, leaving the view invisible.

Due to necessary setup in display, you should never call drawRect: directly—
rather, initiate drawing by sending display. Usually the containing objects such
as NSWindow and NSApplication send the proper display messages at the
necessary time. Another important behavior in display is that it will recursively
send display to all subviews within the view hierarchy. Code inside your view
might change state requiring that your view be re-displayed. You can mark your
view with setNeedsDisplay:, passing YES. NSApplication will display any
views and windows that need it after every event. Your view can send itself the
display message directly in which case drawing happens more or less
immediately.

If your view must perform dynamic drawing in methods other than display and
a call to display is unnecessary or inefficient, it can manually perform the
required Window Server setup and call drawRect: directly:

[self lockFocus];
// dynamic drawing here
[[self window] flushWindow];
[self unlockFocus];

82 Chapter 4: CUSTOM VIEWS

PostScript and the Display PostScript server

To implement custom drawing behavior, your NSView subclass overrides
drawRect:. How do views implement drawing? The underlying drawing
mechanism is the Display PostScript interpreter—part of the Window Server
process. It is driven by Display PostScript, a very general and powerful
programming language that provides the ability to construct graphics using
points, lines, curves, colors, painting, text and even sampled images. Originally
developed by Adobe, PostScript is a widely used standard with features for
describing document layout, suitable for sophisticated formatting and printing.

All display tasks are implemented with PostScript and the Window Server.
Applications communicate with the server, sending a stream of PostScript code to
do the job. All the Application Kit objects encapsulate their own drawing so you
need worry only about your own view. In addition, while it is possible and even
common for views to incorporate custom PostScript code, there are a number of
convenient object and function API that encapsulate PostScript into a high-level
general purpose interface.

If you plan to use custom PostScript code, there are a number of ways to do so.

83

PostScript C function API

- (void)drawRect:(NSRect)rect
{
 PSmoveto(0,0);
 PSlinto(0,100);
 PSlinto(100,100);
 PSlinto(100,0);
 PSclosepath();
 PSsetrgbcolor(0,0,1);
 PSfill();
}

PostScript C function API

Because your view class is written in Objective-C, you are not able to in-line
PostScript code directly. Instead, you might use the provided C function API
which essentially includes a wrapper for each PostScript operator. The naming
scheme is simple. For any PostScript operator, just prepend “PS”—moveto
becomes PSmoveto(). Real PostScript is stack-based and coded using postfix
notation. The operator comes after the operands. The C functions provide a C
function calling interface with operands coming after the function.

Each function maps to a single PostScript operator and results in a one-to-one
communication with the Window Server process. If your view uses lots of
PostScript for drawing, the communications overhead can become quite
inefficient. For better performance, you will want to use Post Script wrappers
using pswrap.

84 Chapter 4: CUSTOM VIEWS

Rectangle convenience functions

NSEraseRect(NSRect rect);

NSRectFill(NSRect rect);

NSDrawGrayBezel(NSRect rect, NSRect clipRect);

NSDrawGroove(NSRect rect, NSRect clipRect);

NSDrawButton((NSRect rect, NSRect clipRect);

NSHighlightRect(NSRect rect);

Rectangle convenience functions

There are a number of higher level and more generalized C API for drawing.
Each is a wrapper for a block of parameterized PostScript that accomplishes the
indicated function. Especially useful for custom controls, they provide you with
the ability to clear your entire view, fill it with color, draw traditional control and
button borders for a crisp 3-dimensional look, even to highlight your rectangle in
a consistent manner.

These are a few useful examples. You will find them and others in the
Application Kit’s NSGraphics.h.

85

Custom postscript wrapper functions—pswrap

It is likely you will want to implement your own C interfaces of this sort—more
general and highly efficient display functions that require multiple PostScript
operations, conditionals, loops, and all the general features provided by the full-
featured PostScript language. For this you can use PostScript wrappers.

A PostScript wrapper is simply a block of literal PostScript, surrounded by
defineps and endps delimiters to create a parameterized function. One or more
wrappers can be stored in a file with the extension .psw and added to your
project in Project Builder’s “Other Sources” suitcase. When building, Project
Builder automatically invokes the pswrap utility which generates conventional C
.h and .c files. Your custom view can import the header which defines the
wrapper prototype, and call it directly as any C function:

#import “square.h”

- (void)drawRect:(NSRect)rect
{

square(rect.origin.x, rect.origin.y);
}

By providing a clean C interface complete with parameters, pswrap allows you to
create efficient, generalized and reusable display functions.

86 Chapter 4: CUSTOM VIEWS

Why are wrappers more efficient than the individual PostScript C function
operators—like PSmoveto()? The literal PostScript inside a wrapper is compiled
into binary form and when invoked, is sent to the server in a single request.
Anytime you batch multiple data transport operations into a single larger one, you
get a bulk discount—you get better performance.

87

NSImage—access to images

Custom views commonly use images that are not dynamically drawn, but
captured once, stored in a file and loaded into the view when necessary. Often
called sampled images, they are typically created with one of many different
drawing programs and stored using one of many different types of encodings—
TIFF, EPS, GIF, and so forth. While the Display PostScript language directly
supports image handling, there are also true object-oriented API with the
NSImage object. An NSImage instance represents a sampled image and
encapsulates all the necessary functionality for using them in your view—loading
from a file (or NSData, or Pasteboard etc.), rasterizing in preparation for display
and drawing itself at a given point in your view’s coordinate system.

» imageFileTypes—returns an array of supported image file extensions

» imageNamed:—loads the image from the main application bundle

» initWithContentsOfFile:—loads the image from an explicit pathname

88 Chapter 4: CUSTOM VIEWS

Compositing images in your view

- (id)initWithFrame:(NSRect)rect
{
 [super initWithFrame:rect];
 image = [NSImage imageNamed:@"clock"];
 [image retain];
 return self;
}

- (void)drawRect:(NSRect)rect
{
 [image compositeToPoint:rect.origin
 operation:NSCompositeSourceOver];
}

Compositing images in your view

NSImage instances can draw themselves in your view. This is called
compositing. You supply a point in your coordinate system which indicates the
lower left corner of where the image will be composited. You also supply a
composite operator. There are 14 different operators that control how two images
are mixed together to create a composite—the original underlying image in your
view and the new image receiving the composite message. To completely replace
the old view contents with a new image, use NSCompositeSourceOver. This is
the most commonly used operator.

NSImage also supports dissolving—compositing an image with a variable degree
of transparency—with dissolveToPoint:fraction:. The floating point
fractional value ranges between 0 and 1 and indicates how much of the image
should be composited. The smaller the value, the more the previous underlying
image will show through. This creates a hybrid picture composed of a mixture
between the original image and the new one receiving the dissolve message. By
repeatedly dissolving with changing fractional values, the old image appears to
dissolve into the new one. This creates a simple and pleasant form of animation.

89

NSColor - color value objects

NSColor

NSColor
- (void)set;

+ (NSColor *)redColor;
+ (NSColor *)colorDeviceRed:(float)r Green:(float)g Blue:(float)b;
+ (NSColor *)colorWithCatalogName:(NSString *)name
 colorName:(NSString *)color;

NSColor—color value objects

PostScript drawing allows you to easily create lines, curves, closed shapes,
painted or “filled” areas, text and so forth. What determines what color will be
used for the drawing or filling? PostScript uses a context that defines the current
drawing state. Besides the specific view instance “focused” for exclusive access
to the server, the context includes a number of attributes that apply to drawing
operations—color, font, orientation and scaling of the coordinate system and so
on. While you might manipulate these attributes directly in PostScript code, there
is also a higher level object-oriented interface with NSColor.

NSColor has API for obtaining specific color value objects using a variety of
different specifications. Certain methods return standard named colors—
redColor, blueColor. Alternate methods allow you to specify colors in terms
of red, green and blue values or by requesting a named color from an specific
color catalog. Colors can be passed as arguments to drawing functions, or used
to set the current color in the PostScript context with set. This code fragment that
paints your entire view red:

[[NSColor colorRed] set];
NSRectFill([self bounds]);

NSFont provides similar ease of handling whether passing a font as an argument
or setting the current font in the PostScript context. Note, NSColor and NSFont
are considered to be immuttable value objects. They can be archived, unarchived
and copied.

90 Chapter 4: CUSTOM VIEWS

Incorporating strings with attributes

NSFont

NSColor

- (void)drawAtPoint:(NSPoint)point
 withAttributes:(NSDictionary *)attributes;

NSFontAttributeName

NSForegroundAttributeName

NSDictionary

key value

25,25

NSString

Hello World!

Hello World!
NSPoint
x 25
y 25

Incorporating strings with attributes

Incorporating text in your view is straightforward with Application Kit additions
to NSString. NSStrings can draw themselves given a point in your coordinate
system, and a set of attributes that apply. Attributes are supplied in a dictionary of
key-value pairs. Various attributes are supported by NSString including
NSFontAttributeName and NSForegroundColorAttributeName.

The Foundation includes a class that combines text and attributes in one object,
NSAttributedString. It supports the ability to associate different attributes with
different ranges within a string down to the granularity of a single character. A
widely used object, NSAttributedString can also draw itself in your view using
API similar to NSString. NSFormatters can provide their cells with attributed
strings to incorporate color or font changes. NSTextView relies on
NSTextStorage, a subclass of NSAttributedString used for storing entire rich text
documents.

91

A view handles events by overriding event methods

NSView is a subclass of NSResponder. A view claims a visible area that may
also interact with the user, providing control and dynamic behavior through user
events. User events such as mouse and keyboard actions are transmitted from the
window server to a specific application through its NSApplication instance. From
there, the event is mapped to a window instance which in turn locates the
appropriate view in its view hierarchy. The view instance is sent a message
specific to the event type and given the opportunity to respond. Whether the view
is a button, a slider, a text view or a table view, all action begins with a simple
message generated as the result of a user action.

NSView is an abstract superclass. Its default implementation for all event
messages is to do nothing but pass the event on to its superview. It has no
specialized behavior. NSView subclasses override these inherited methods,
perhaps only a useful subset, and deal with the event in a specialized way.
Buttons use mouse events to trigger target/action responses. Text fields process
keyboard events for data input and display. You can create a custom view that is
capable of doing the same.

92 Chapter 4: CUSTOM VIEWS

NSEvent - providing event details

NSEvent

NSEvent

NSEvent

Mouse

Generic

Keyboard

- (NSString *)characters;
- (unsigned short)keyCode;

- (NSEventType)type;
- (unsigned int)modifierFlags;
- (NSTimeInterval)timeStamp;

- (NSPoint)locationInWindow;
- (int)clickCount;

NSEvent—providing event details

Each of the event messages deliver a single argument, an instance of NSEvent.
NSEvents are immutable tokens that provide detailed status for a given event,
allowing the NSView to find out exactly what happened. Each event has a type
so that it can be identified independently of the original message that delivered it.
The event is timestamped so that a view can track the temporal reality of a
sequence of events. Although all the common attributes shown above reside in
every event, some make sense only in the context of a mouse or keyboard event.

A useful attribute for mouse events is the location of the mouse in the window’s
coordinate system. Views such as sliders or custom drawing views make use the
mouse’s exact location to provide visual feedback and tracking. The view must
translate the point to its own coordinate system before using it. Since many views
may look at the event before an arbitrary view claims it, it is more efficient to
leave the point in the window’s terms.

The clickCount allows a view to distinguish between a single and double click,
useful for implementing target/action with an alternate doubleAction selector.

Keyboard events deliver the characters typed as well as the specific key code.
Both mouse and keyboard events are likely to use the modifierFlags to
incorporate special handling for such keys as shift, alt, control, and function
keys.

93

Mouse event methods

Clicking and Dragging

Movement

- (void)mouseDown:(NSEvent *)event;
- (void)mouseUp:(NSEvent *)event;
- (void)mouseDragged:(NSEvent *)event;

- (void)mouseEntered:(NSEvent *)event;
- (void)mouseExited:(NSEvent *)event;
- (void)mouseMoved:(NSEvent *)event;

Mouse event methods

Each event generates an NSEvent instance which becomes an argument to a
specific message. Your custom view class must override one or more of these in
order to specialize its behavior by handling the event. Mouse events fall into two
categories:

» Clicking and dragging. Your view gets these events automatically. If you need
to distinguish right from left mouse buttons, you may also override
rightMouseDown: etc.

mouseDown:—right and left buttons distinguished via NSEvent’s type

mouseUp:—usually mouse clicks generate actions when the mouse is
released, not when it is pressed down. Target/action processing
happens here.

mouseDragged:—sent each time the position of the mouse changes after
the initial mouseDown: while the mouse button is held down.

» Movement. These events happen much more frequently, and are therefore
expensive. Your view must arrange to get these, either by sending its window
the setAcceptsMouseMovedEvents: or by establishing a tracking
rectangle.

mouseEntered:—mouse has entered your view or rectangle

mouseExited:—mouse have left your view or rectangle

mouseMoved:—the mouse moved

94 Chapter 4: CUSTOM VIEWS

Translating to your own coordinate system

NSPoint p;
p = [event locationInWindow];
p = [self convertPoint:p
 fromView:nil];

Window

My View

0,0

100,50 73,30

175,80

Translating to your own coordinate system

When dealing with mouse events, a view may want to know the exact point of the
event in its own coordinate system. The NSEvent instance provides the point in
the window’s coordinate system with locationInWindow. NSView
implements a method that converts a point to your view’s coordinate system from
any other view instance—convertPoint:fromView:. If the alternate view is
nil, the method converts from the window’s coordinate system.

95

First responder and keyboard event messages

Accepting first responder status

Basic keyboard events

- (BOOL)acceptsFirstResponder;
- (BOOL)becomesFirstResponder;
- (BOOL)resignFirstResponder;

- (void)keyDown:(NSEvent *)event;
- (void)keyUp:(NSEvent *)event;
- (void)flagsChanged:(NSEvent *)event;

First responder and keyboard event messages

In order for an NSView instance to receive keyboard event messages, it must be
the first responder. As such, it must identify itself as capable of doing so and
possibly participate in a conditional negotiation if it has reason:

» acceptsFirstResponder—override to return YES if your view wants
keyboard events. By default, this returns NO.

» becomeFirstResponder—notifies your view so it can prepare for keyboard
events and possibly update its appearance.

» resignFirstResponder—notifies your view that it will now lose first
responder status. Your view can refuse e.g. a text field with invalid text.

Once your view is the first responder, it will get these messages:

» keyDown:—key press. Use NSEvent characters, keyCode and
modifierFlags to identify exactly which keys are involved.

» keyUp:—the key has been released.

» flagsChanged:—check modifierFlags, they have changed.

96 Chapter 4: CUSTOM VIEWS

Instantiating custom views in Interface Builder

Custom subclasses of NSView may be instantiated graphically using Interface
Builder for ease of placement, sizing, and automatic insertion into the view
hierarchy. To do this, drag and drop an instance of “Custom View” found on the
Views palette. Make sure you have read your custom class’s interface file into
Interface Builder. Using the “Attributes” view of the inspector panel, set the
custom view’s type to your custom class. Note that, like any of your custom
classes such as controllers and delegates, your custom view code will not be
active until you have built and launched from Project Builder. You cannot test
your view in Interface Builder test mode. Eventually, you can provide the view
on a palette in which case it will display and function properly in test mode.

If your view is a subclass of a concrete Application Kit class such as
NSTextField or NSButton, you can drag and drop an instance of these and using
the “Custom Class” view on the inspector panel, set its type to your custom class
which you have previously read into Interface Builder.

97

Implementing custom views - summary

Subclass NSView and override

Instantiate in Interface Builder
 • drag and drop a custom view; reassign class type to MyView
 • establish frame graphically - origin, size
 • note: cannot exercise MyView in test mode

Test from Project Builder

- (id)initWithFrame:(NSRect)rect (designated initializer)
- (void)drawRect:(NSRect)rect (drawing)
- (void)event:(NSEvent *)event (events)
- (BOOL)acceptsFirstResponder (for keyboard events)

Implementing custom views—summary

The designated initializer for NSView is initWithFrame:. Do you have to
override it? Only if your custom subclass needs its own initialization. With
non-trivial view subclasses, this is almost always the case.

All concrete views override drawRect: since the inherited version does nothing.
Without custom drawing code, your view will be invisible.

Which event methods should your view override? Only those it is specifically
interested in. The default implementations inherited from NSView pass the
message on to the next responder.

To receive keyboard events, your view must accept first responder status.
Implement the additional responder methods if your view needs preparation or
cleanup as its responder status changes or if it accepts or relinquishes first
responder status conditionally.

Use the custom view object on the Interface Builder Views palette to instantiate
your custom view. Reassign the class type to your class. You must build and
launch the application from Project Builder to test your view’s code.

98 Chapter 4: CUSTOM VIEWS

Custom controls are view subclasses

MyControl

NSControl

NSView NSActionCell

MyCell

Inherits from
Inherits from

Inherits from

MyControl

isa
cell

NSActionCell

isa
target
action

Custom controls are view subclasses

NSTextField and NSButtons are NSViews but more specifically they are
instances of NSControl, an abstract yet specialized form of NSView. Remember
that NSControl defines the attributes and methods that add target/action behavior
to NSView. If you are designing a custom control, you will probably want to
subclass NSControl, not NSView. This is required if you wish to make
target/action connects graphically with Interface Builder.

In addition, remember that NSControls typically use NSCells. To derive the full
flexibility of your custom control—e.g. the ability to create an NSMatrix of your
controls or use them in a more elaborate view such as an NSTableView—you
will also want to create a custom NSActionCell. It is even possible that you need
only design a custom NSControl and reuse a standard cell. Or, it may work the
other way around. Lastly, it is possible that you can directly subclass one of the
Application Kit’s concrete classes, either a control or a cell, to accomplish your
needs.

99

Important ideas from this section

» A view is a visible area of responsibility on a window within an application. It
is responsible for two things:

Drawing itself

Handling events that fall within its domain

» A view has basic geometric attributes that control its location, its size and are
used to implement both drawing and event handling:

Frame

Coordinate system

» View’s draw themselves in drawRect: and can use a variety of approaches
for accessing the underlying Display PostScript graphics environment:

PostScript C Function API

Convenience Functions

Custom PostScript wrappers

NSImage for sampled images

NSColor, NSString, NSAttributedString and NSFont objects

» View’s customize event handling by overriding a useful subset of mouse
and/or keyboard methods, gaining access to specifics of each event through the
NSEvent object.

Classes featured in this section
» NSView

» NSResponder

» NSEvent

» NSImage

» NSColor

» NSString

» NSAttributedString

» NSFont

100 Chapter 4: CUSTOM VIEWS

REVIEW CUSTOM VIEWS

1 . What two main functions does an NSView subclass perform?

2 . Name three different features that are useful for implementing custom
drawing.

3 . What default functionality does your NSView subclass inherit if it does not
override a mouse event message?

4 . Describe the main steps for instantiating a custom view in your application’s
interface.

5 . When testing your application, you find that your custom view does not draw
itself—it is invisible. List some possible problems.

101

102 Chapter 4: CUSTOM VIEWS

