
Chapter 5

KEYBOARD USER INTERFACE

104 Chapter 5: KEYBOARD USER INTERFACE

CHAPTER 5 KEYBOARD USER INTERFACE

Goal

To understand the available keyboard user interface features of an application and
how to customize its behavior.

Prerequisites

Familiarity with end-user keyboard navigation of graphical interfaces.

Objectives

At the end of this section, you will be able to:

» Control how the user navigates your graphical interface with the keyboard

» Assign mnemonics, short cuts and default buttons

Reading

NSView class reference in the Application kit.

105

Keyboard user interface and navigation

KEY EFFECT
Tab, Shift-Tab

Arrows

Space

Return

Escape

Mnemonics

Navigate between views

Navigate within a view

Select and activate control

Press default button

Dismiss panel

Navigate between views, activate
control

Keyboard user interface and navigation

Because many applications are mainly text based a user spends most their time
with their hands on the keyboard. Applications can be most productive if they are
easily and quickly driven from the keyboard almost exclusively—minimizing
mouse activity. There are a number of keyboard conventions for navigating,
selecting, activating and cancelling.

The participating Application Kit classes already implement this behavior. But as
the user interface designer for your application, you have some creative and
technical choices to make.

You need to pick the mnemonics and short cuts for your specific control labels.
You have to decide which default button makes sense for each dialog. More
challenging, you have to determine a logical order for visiting the controls on
your window which may incorporate a complex form. You may even create a
new custom control and make sure it plays by the rules. How does it all work?

106 Chapter 5: KEYBOARD USER INTERFACE

Where does it start?

NSApplication

keyWindow
initialFirstResponder

NSWindow

initialFirstResponder

NSWindow

initialFirstResponder

NSWindow

NSTextField

NSTextField

NSTextField

Where does it start?

When your application presents a window for the first time, some user interface
object is in focus, ready to act on a keystroke. This is the
initialFirstResponder of the window. You can connect this to an object of
your choice in Interface Builder. The default selection is based on our literary
penchant for the upper left. The first object spacially located there that is capable
of being first responder is selected.

107

Who's next - the key view loop

Tab

Shift-Tab

NSView

previousKeyView

nextKeyView

NSView

previousKeyView

nextKeyView

NSView

previousKeyView

nextKeyView

Who’s next - the key view loop

All NSViews have the means for being linked together into a doubly-linked list
with nextKeyView and previousKeyView pointers. The list usually wraps back
to the beginning to form a loop. Known as the key view loop, it defines the order
in which views are visited by successive Tab and Shift-Tab keystrokes.

By default, all the views in your window are hooked together into a key view
loop, again, using traditional spacial rules of left to right, top to bottom. But
complex user interfaces often group controls together or modify these
assumptions for aesthetic or technical reasons. In these cases, you are likely to
want a custom key view loop. Some user interfaces group controls into boxes or
forms that work best multiple disjoint loops. In all cases, key view loops can be
connected and disconnected graphically using Interface Builder.

The default key view loop is built by a window only if initialFirstResponder
is nil. Once you connect initialFirstResponder in Interface Builder, or
programmatically at run time it is assumed that you have already configured a
custom key view loop. You have to choose between the default or setting up the
entire loop manually.

108 Chapter 5: KEYBOARD USER INTERFACE

Navigating within a multi-cell control - matrix

NSArray
NSButtonCell

NSButtonCell

NSMatrix
cells

keyCell
tabKeyTraversesCells

nextView
previousView

- (void)setTabKeyTraversesCells:(BOOL)flag;

 Arrow Keys
Tab, Shift-Tab

Navigating within a multi-cell control—matrix

Multi-cell controls like NSMatrix are like nested user interfaces with the need for
an internal policy of keyboard navigation. Arrow keys are used to move up and
down, right or left and this applies to a matrix of radio or check buttons, menus,
NSPopupButton and so on. Depending on your layout, it may or may not make
sense to have Tab and Shift-Tab visit the cells within the matrix or jump right to
the next real view. This is configurable.

Note that NSMatrix still has previous and next key view outlets that point to the
real NSViews on either side. It also has an outlet to point to the key cell. It is up
to the NSMatrix to direct the keystrokes through or over its cells.

109

The next valid key view

To be a key view, a view instance must be able and willing. Not all views will
accept key view status, depending on their current state or in some cases never. A
disabled button should not be visited. A button can be configured so that it will
not be visited at all, regardless.

All views are nonetheless linked together by the next and previous key view
outlets. At any point in time, a view can also determine its next valid key view,
and they may not be the same.

110 Chapter 5: KEYBOARD USER INTERFACE

Mnemonics

Navigation

Navigation and activation

Dial

Phone Number:123-4567

Mnemonics

Mnemonics are single letters that can be used as keyboard navigation aids. They
are used to move the focus to a new object and, in the case of controls like
buttons, will press or activate the button as well. A title can have a mnemonic
and, not being a valid key view, when navigated to will pass control to the next
valid view, the text field just next to it for instance. While editing a text field,
mnemonics are inactive so that keystrokes will be accepted as typed text input,
not navigation commands.

You can assign a mnemonic in Interface Builder by pointing at the letter (not
necessarily the first in a word or phrase) and double-clicking the mouse while
holding down the Alternate key. Note, you cannot be in the middle of editing the
text itself. The control should be selected but not the text that makes up the title or
label.

Mnemonics apply to menus and menu items as well but may require a modifier
key, such as the Alternate key.

111

Command-key equivalents—accelerators, short-cuts

These navigation short cuts apply to menu items and buttons and frequently
conform to an industry-wide convention. Because they use modifier keys, they
are available at all times, even during text data entry into a text field or view.

112 Chapter 5: KEYBOARD USER INTERFACE

Providing a default button

Every window has a defaultButtonCell outlet. This points to a button that will
be activated by any Return or Enter keystroke while the window is key. This
applies even while typing in a text field but not when another button is in focus—
the first responder.

You can assign the default button cell by entering “\r” in the key equivalent field
of the Interface Builder inspector.

113

Dismissing modal panels with Escape

Cancelling or dismissing an dialog is usually done by convention with the Escape
key. It is generally applied to modal panels and has the effect of stopping the
modal loop with the abortModal message. This is the case for the Application
Kit stock modal panels such as NSAlertPanel.

‘\E’ can be set as the keyboard equivalent for any single button on a panel so that
Escape works consistently with your custom modal panels as well.

114 Chapter 5: KEYBOARD USER INTERFACE

Important ideas from this section

» There are a number of keyboard user interface and navigation conventions that
your application should follow.

» The capabilities are generally built into Application Kit classes but you must
assign the mnemonics, accelerators, the default buttons and connect your
controls into a coherent key view loop.

» All connections and assignments can be performed with Interface Builder and
stored in the nib file.

115

116 Chapter 5: KEYBOARD USER INTERFACE

