
Chapter 8

LOCALIZATION

150 Chapter 8: LOCALIZATION

CHAPTER 8 LOCALIZATION

Goal

To identify application resources requiring localization and to learn how to
implement multi-lingual applications.

Prerequisites

Experience with NSString, NSBundle, and basic NIB-based applications.

Objectives

At the end of this lesson, you will be able to:

» Create multiple versions of NIB files, each localized to a
particular language

» Dynamically load locale-specific strings and images for localization outside the
NIB

» List other objects and interfaces that support localization

Reading
NSBundle class in the Foundation

Locales in Other Features of the Reference

151

Applications can support multiple languages

In the increasingly smaller world of international business and distributed
computing, it is likely that your application needs to speak more than one
language. It is easily possible that different users even at the same site will have
individual language preferences. What are the concerns and how can multi-lingual
support be implemented?

152 Chapter 8: LOCALIZATION

Users have individual language preferences

It is all driven by the user’s individual preferences. A particular computer
installation can have a default language for the system as a whole. A particular
user can further specify a language preference, even a list of possible languages
arranged in order of preference.

Available as a runtime resource, these preferences are accessible to your
application, enabling it to dynamically handle locale-specific resources and speak
in terms the user understands.

The configuration of site and user language preferences is platform specific and
will not be covered here.

153

What resources are localized?

In General
 • Strings
 • Icons, Images

Where are they?
 • Nib Files
 • Project Builder resources: Images, Context Help
 • Embedded in Custom code, such as MyController.m

What resources are localized?

The most obvious locale-specific aspect of an application is the text in the user
interface. Menu item titles, button labels, messages appearing on alert panels and
on-line help all contain string object values written in a specific language. Besides
alphabet, vocabulary and sentence structure, locales may have unique string
representations for dates, numbers, currency and other symbols. It is easily
possible that different languages require moderate differences in the user interface
in general—the selection and layout of graphical components. The same label or
concept expressed in different languages may differ substantially in length,
requiring the size and placement of controls to be unique. With the different
strings may go different mnemonics, accelerators and icons. With language
differences often come cultural differences that may require different images,
either more effective or more sensitive to inappropriate associations.

154 Chapter 8: LOCALIZATION

Language-specific strings files

String constants embedded in your code need to be extracted, placed in a string
file and replaced with string tokens that map to the specific string value in the file.
A string file is much like an NSDictionary in that it is a set of key-value pairs.
The key is the string token used much like a variable name. The value is a locale-
specific value that should be used where ever its symbolic string token appears in
your code.

Once defined, the string file can then be replicated, the string values within each
copy localized to the different language. Stored in an application’s main bundle,
the string files are available for dynamic loading by your application, based on the
user’s language preferences.

155

Language subprojects within the main bundle

With Project Builder, application files can be flagged as “Localizable”. Within the
project, these files are collected into language subprojects, directories under
which a locale-specific version of each file is located. When built, the main
bundle contains language project directories, one for each of the locales your
application provides. Note that the same application resource file is replicated
with the same name under each language subproject.

NIB and help files are automatically flagged as Localizable. The default language
project is English and appears on the Project Builder inspector as the project
attribute “Language”.

156 Chapter 8: LOCALIZATION

Getting a localized resource at runtime: NSBundle

NSBundle

NSBundle

 + (NSBundle *)mainBundle;
+ (BOOL)loadNibNamed:(NSString *)nib owner:(id)owner;

- (NSString *)pathForResource:(NSString *)name
 ofType:(NSString *)ext;

- (NSString *)localizedStringForKey:(NSString *)key
 value:(id)value table:(NSString *)table;

- (NSString *)pathForImageResource:(NSString *)name;

Getting a localized resource at runtime: NSBundle

Nib files, string files, even arbitrary file-based resources using a unique file type
can all be dynamically located and loaded using NSBundle. NSBundle is aware
of the user’s language preferences as well as the set of locales, language
subprojects, for which your application provides resources. Where multiple
versions of a nib or string table are found, a particular one will be selected to suit
the desired locale.

157

Convenient access to strings: NSLocalizedString()

NSBundle

NSLocalizedString(@"HELLO", @"comment")

Main Bundle Localizable.strings

"HELLO" = "Hola"

@"Hello"

Convenient access to strings: NSLocalizedString()

NSBundle provides a macro for encapsulating the most common case—loading a
string value from a default file name in the main bundle. If your application
requires only one string file, you can name it Localizable.strings and access
string values using NSLocalizedString. The first parameter is the string key,
the second is a string comment used only for documenting the code by
specifically indicating the intent of the string in the context of the application.

NSLocalizedString calls more general macros that you can use for cases where
multiple string files are necessary, one per modular user interface component, or
where you use multiple bundles internal or external to the application’s main
bundle:

NSLocalizedStringFromTable(key, table, comment)

NSLocalizedStringFromTableInBundle(key, table,
bundle, comment)

All three of these are convenience functions that, after determining the correct
bundle, use NSBundle’s localizedStringForKey:value:bundle instance
method.

158 Chapter 8: LOCALIZATION

Objects with locale-specific formats

NSString - Unicode

NSCharacterSet

NSScanner

NSCalendarDate

NSTimeZone

NSNumber

NSDecimalNumber

Objects with locale-specific formats

A number of other Foundation objects have built-in locale support, dynamically
sensing the user’s current locale and adjusting the format and content of their
string values to reflect it. NSString and NSCharacterSet are built around the
Unicode international character encoding standard for full handling of alphabets.
Calendar dates and time zones use locale-specific formatting as well as content
strings like month and day. NSNumber and its subclasses use locale-specific
decimal number representations. There are a number of ANSI functions for
dealing with locales and retrieving a wide-range of parameters for proper
localization support.

159

Access to the current locale and its attributes

Locale represented as a dictionary of key-value pairs

Values in preferred language domain of NSUserDefaults:

Example locale keys
 • NSCurrencySymbol
 • NSDecimalSeparator
 • NSWeekDayNameArray
 • NSMonthNameArray

[[NSUserDefaults standardDefaults] objectForKey; localeKey];

Access to the current locale and its attributes

A locale is a set of rules and values used to format locale-specific strings such as
decimal numbers, currency figures, dates and times. These are packaged together in
a dictionary of key-value pairs. The values are available from NSUserDefaults,
stored in the preferred language domain. NSUserDefaults.h defines the set of
available keys including such values as:

» NSCurrencySymbol—the string used to denote currency such as “$”

» NSDecimalSeparator—the string used in decimal numbers to separate the ones
from the tenths place

» NSWeekDayNameArray—an array of strings giving the names for the days of
the week

» NSMonthNameArray—an array of strings giving the full names for
the months

160 Chapter 8: LOCALIZATION

Important ideas from this section

» Applications should provide multiple localizations to suit the preferences of a
diverse multilingual user community. System-wide and user-specific language
preferences are available to applications at runtime and direct the dynamic
loading of localized resources.

» Application main bundles include language subprojects where localizable
resources are replicated. Each instance is bound to a particular locale.

» NSBundle provides API for retrieving and loading file-based resources in
language subprojects that best suit the user’s language preferences.

» Several other objects encapsulate their own analogous dynamic behavior which
is responsive to locale-specific formats and content when building and
returning a variety of string values.

Class featured in this section

NSBundle

161

162 Chapter 8: LOCALIZATION

