
Chapter 2

DEFAULTS AND USER PREFERENCES

16 Chapter 2: DEFAULTS AND USER PREFERENCES

CHAPTER 2 DEFAULTS AND USER PREFERENCES

Goal

To explore the Foundation classes, user interface objects and designs for building
a multi-view preferences component with persistent user defaults.

Prerequisites

Familiarity with user preference interfaces of some typical applications.

Objectives

At the end of this section, you will be able to:

» Register application defaults and dynamically get and set user
default values.

» Describe how NSDictionary stores key-value pairs.

» Implement a view switching panel

Reading
NSUserDefaults class reference in the Foundation.

NSDictionary class reference in the Foundation.

NSPopUpButton class reference in the Application Kit.

17

Users customize application defaults

Most applications provide customizable options to suit the preferences of
individual users. Examples include things like default fonts, auto-save features,
dynamically loadable application extensions and the ability to enable or disable
elaborate or time-consuming features. The application has a set of “factory
settings” that provide default choices in lieu of a user’s particular preference.
Once the user has modified these, the application must remember the new values
and put them into effect every time it is launched by that user. The Foundation
provides an object for managing this and the Application Kit provides some
convenient features for implementing a typical graphical component with a
flexible interface.

18 Chapter 2: DEFAULTS AND USER PREFERENCES

NSUserDefaults - object-oriented defaults registry

NSUserDefaults

MyController

File System

Process
 Image

get

set

register

NSUserDefaults—object-oriented defaults registry

The NSUserDefault object provides API for managing persistent as well as
dynamically changing application parameters. It stores values in the file system
for future use and maintains a collection of current values in the application’s
memory space so that values can be queried at run time. Your application can
communicate with user defaults in the following
general manner:

» register—during application start-up, register the default “factory settings” for
your application

» get—when the application needs a particular value to configure its user
interface or its behavior, it retrieves it from the repository

» set—if and when a user configures a non-default setting, the application sets
this value in the user defaults repository where it will be saved and returned for
future get actions

In this way, the application gets a value when it needs it, unaware of whether the
value is a registered default, a value customized by the user or even a temporary
setting just for the current invocation of the application.

19

Domains - properties and defaults search order

DOMAIN IDENTIFIER PERSISTENT?

Argument

Application

Global

Language

Registration

NSArgumentDomain

NSGlobalDomain

NSRegistrationDomain

Application Name

Prefered Language Name

NO

YES

YES

NO

NO

Domains—properties and default search order

Default values may be specified in several different layers that form a hierarchy.
Each layer is called a domain which has a name and an search order relative to the
other domains. Some domains store values that will persist while others are said
to be volatile—their values only live for this invocation of the application.
Together, they form a coherent hierarchy where one domain can override the
other. When a value is sought by the application, the domains are consulted in a
fixed order, one at a time. The search stops as soon as one of the domains
provides a value or until all domains are exhausted.

» Argument—the highest priority, this represents values specified on the
command line that launched the application. They apply strictly to this one-time
invocation of the application

» Application—this layer provides the persistent values customized by the user
for this particular application

» Global—these are persistent values, customized by the user, that potentially
apply to all applications unless overridden by a particular application’s domain

» Language—these apply to a user’s language preferences and relate to features
that are locale-specific

» Registration—the lowest level in the hierarchy, these are the factory settings
provided by the application to be used in lieu of any customizations in the
higher domains

20 Chapter 2: DEFAULTS AND USER PREFERENCES

NSUserDefaults value types

C Types (non-object)
 • bool, integer, float

Dynamically Typed Object
 • object

Statically Typed Objects (convenience)
 • string
 • array, stringArray
 • dictionary
 • data

NSUserDefaults value types

What types of values can the NSUserDefault object deal with? It has methods for
handling the full array of values your application is likely to need:

» C types—not objects, these are the basic C primitives

» Dynamically typed object—that is, type id. Note, it must be a kind of value
object, capable of archiving and unarchiving and copying itself. It must
conform to the NSCoding and NSCopying protocols

» Statically typed objects—these specific object types are used to build property
lists and so have explicit API in the NSUserDefault object. It is likely that you
will use these most frequently

As listed here, each type has two corresponding accessor methods in the
NSUserDefault object. Using string as an example, you can get and set a string
value with the following methods:

NSUserDefaults *defaults = [NSUserDefaults
standardUserDefaults];

[defaults setString: aString] // set

aString = [defaults string] // get

21

Defaults are key-value pairs

NSArray

KEY VALUE

@"autoSave"

@"Saveinterval"

@"startupFile"

@"stuff"

(BOOL)YES

(int)60

@".startup"

@"thing"

@"whatever"

Defaults are key-value pairs

Values stored by NSUserDefaults must have two pieces:

» key—the name of the parameter used to distinguish it from all others

» value—the current value of the parameter

Keys are typically strings you choose to be meaningful to your application code
and possibly to a user who wishes to modify the value directly from the
command line. A key can actually be any value object class—hashable,
copiabled, and archivable. The value can be any one of several value or collection
object classes including arbitrarily complex objects like arrays
of strings.

22 Chapter 2: DEFAULTS AND USER PREFERENCES

NSDictionary - a collection of ky-value pairs

NSDictionary

key value

@"startupFile" @".startup"

@"stuff"

- (id)objectForKey:(id)key;

NSMutableDictionary
- (void)setObject:(id)object:forKey:(id)key;
- (void)removeObjectForIKey:(id)key;

NSArray
@"thing"

@"whatever"

NSDictionary—a collection of key-value pairs

Representing parameters as key-value pair is so common that the Foundation
provides an object to managing collections of them. NSDictionary stores a set of
key-value pairs much like what are generally called associative arrays. You can
think of NSDictionary as an object-oriented hash table. Instead of accessing a
value with a numerical index, you access it with a meaningful string—the value’s
name.

Like many Foundation classes, NSDictionaries come in two forms:

» Immutable—a read-only object efficient for sharing

» Mutable—an instance you can modify by adding or deleting values

Value objects can be retrieved using objectForKey:, set using
setObject:forKey: and removed altogether with removeObjectForKey:.
There are a number of ways to instantiate a dictionary, including loading one
from a property list file—a text-based representation of a dictionary saved in the
file system. You should familiarize yourself with the power and flexibility of this
useful Foundation class.

objectForKey: returns nil to indicate that there is not a value for the specified
key in the dictionary. To avoid any possible ambiguity, you cannot use nil for
either a key or a value—NSDictionary raises an exception if you do.

23

Registering defaults

+(NSUserDefaults *)standardUserDefaults

standardUserDefaults

registerDefaults:

MyController

- (void)registerDefaults:(NSDictionary *)d;

@"stuff"

@"startupFile" @".startup"

@"whatever"

NSDictionary

key value

NSUserDefaults

NSUserDefaults

Registering defaults

The first step your application takes when it starts is to register the “factory
settings” as the initial application defaults. Like most NSUserDefault interactions,
it takes two steps:

» Get an NSUserDefault instance – standardUserDefaults will return the
standard shared instance. You can allocate custom instances for more exotic
application needs

» Register the defaults—pass an NSDictionary of key-value pairs using the
message registerDefaults:.

24 Chapter 2: DEFAULTS AND USER PREFERENCES

When should you register defaults?

+ (void)initialize
{
 NSUserDefaults *defaults;
 NSMutableDictionary *values;

 if (self == [MyController class]) {
 // get standard UserDefaults instance
 defaults = [NSUserDefaults standardUserDefaults];

 // build dictionary of registered defaults
 values = [[NSMutableDictionary alloc] init];
 [values setObject:@".startup" forKey:@"startupFile"];

 // Register
 [defaults registerDefaults: values];
 [values release];
 }
}

When should you register defaults?

You need to register a default value before any part of your application attempts to
get it. Otherwise, it may not be any of the domains in which case it is undefined.
Objective-C provides for a class to initialize itself before any other messages are
sent, all other factory or instance methods included. Your class can implement +
(void)initialize, a factory method, and perform its UserDefault registration
there. initialize is sent to the class object just before it is sent its first message
from within the program. This implies that the class must receive a message
before any other application object tries to get a UserDefaults value.

Which class should handle this responsibility? It might be your application
controller or a controller object that manages your application’s preference
component. You might want to split your defaults into subsets that are managed
by different objects. The important thing is you must message this class and
provoke initialize before any other UserDefaults activity. Often this is
accomplished by instantiating the relevant controller in the main nib so that its
class is messaged early during application start-up.

This example demonstrates how you might register your defaults. Instead of
hardcoding your default values, you might read them from a separate data file
located in your main bundle and accessible through NSBundle. See NSDictionary
and the method + dictionaryWithContentsOfFile:.

25

Getting and setting defaults

NSUserDefaults *defaults;
NSString *file;
int time;

// Get standard defaults instance
defaults = [NSUserDefaults standardUserDefaults];

// Getting values
time = [defaults integerForKey:@"interval"];
file = [defaults stringForKey:@"startupFile"];

// Setting values
[defaults setInteger:time forKey:@"interval"];
[defaults setObject:file forKey:@"startupFile"];

Getting and setting defaults

You get NSUserDefault values exactly when you need them—during application
start-up, after loading a separate nib file based component, during the course of a
procedure, when the user asks to see the current settings. Setting default values is
almost always driven by the user’s interaction with your preferences user
interface.

26 Chapter 2: DEFAULTS AND USER PREFERENCES

Preferences component: panel and controller

Applications typically have many different configurable preferences that together
require a flexible user interface for management. A common way of designing for
this is to provide a panel that can dynamically switch among different views
within the panel, one per logical group of configuration parameters. You might
have one view for start-up options, another for backup options and so on. View-
switching within a single window is a useful feature and it can be used in a
variety of places throughout your application—preferences panel, inspectors, tab
views and so forth. The next few pages present one of many approaches for
implementing this feature with a hypothetical preferences component in mind.

A familiar basic design—a component controller with a separate nib-based panel.
In this case, the panel is rather bare. It contains simply an instance of NSBox, a
place holder where any one of several different views will appear. Although the
picture shows the outline of box, you would typically make its border
invisible.To manage the switching of views, the controller needs an outlet to the
box and well as to the panel itself.

27

Individual preference modules: view and controller

Within the same nib file, a second window is used to build each different view.
In this design, each view is placed in its own NSBox instance. The NSBox
border is visible for convenience when working with Interface Builder. The
design is recursive—each view has its corresponding controller much like the
entire preferences panel has its controller. Each controller has the following
attributes and methods:

» view—an outlet to the view that it owns

» additional outlets—not shown but typically required. Each controller will have
to configure the values and appearance of the controls in its view to reflect
UserDefault settings. The PrefBackup object, for example, is likely to have an
outlet to the check button, another for the slider and the read-only textfield next
to it

» change:—a message interface for the controls to tell the controller that the
user has changed something. This enables the controller to read the new
settings from the user interface objects and set them in the User defaults
registry.

28 Chapter 2: DEFAULTS AND USER PREFERENCES

NSPopUpButton—multi-way target/action

Each preference view controller, like full panel controllers, provides a method for
displaying itself. NSPopUpButton provides a perfect multi-way target/action
control for messaging one of many such controllers. The user presses the desired
button, it messages the corresponding view controller and it switches itself into
view, filling the previously empty box on the main panel.

In many ways, NSPopUpButton is like a menu. It might even be that like menu
items, NSPopUpButton items need dynamic updating to enable or disable choices
as your application state changes. NSPopUpButton items do in fact conform to
the NSMenuItem protocol and will be auto enabled—this is turned on by default.
They will interact with a target that conforms to the NSMenuActionResponder
protocol.

29

View switching

Like NSWindow, NSBox has a contentView, the top of an arbitrarily complex
hierarchy of views. The preference panel has an NSBox instance as does each
individual preference object. The idea is simple: when its time, set the
contentView of the NSBox on the main panel to be that of the desired preference
view. In this design it follows these steps:

» NSPopUpButton item activated. Sends show: to a preference
view controller

» The view controller sends a message to the panel controller telling it to
switchView: and passes its NSBox’s contentView as a parameter

» The panel controller sends setContentView: to the main panel’s NSBox,
passing the preference view as a parameter

There is an aesthetic concern: what if the preference view is not the same size as
the NSBox on the preference panel? Of course, it must at least be smaller to work
You will find that, by default, a smaller view will end up in the lower left corner
since the 0,0 origins of each are matched. Better to have it centered, possibly
expanding to fill the NSBox. You can do this programmatically by adjusting the
view’s frame or, more conveniently, with Interface Builder’s size inspector. Set
each preference view so that the box and everything within expands when
resized. You may have to polish the effect through trial and error.

30 Chapter 2: DEFAULTS AND USER PREFERENCES

View switching code: preferences controller

- (void)switchView:(NSView *)view
{
 // put the new view in place
 [box setContentView:view];

 // display it
 [box setNeedsDisplay:YES];
}

View switching code —preferences controller

Here is a possible switchView: method for the panel controller. the box outlet
is type cast here because it needs to be declared as “id” for Interface Builder
connections but two different Application Kit objects respond to
setContentView: with conflicting prototypes. By explicitly declaring which of
those we expect to use here, we avoid a compiler warning.

31

Individual preference controller

- (void)awakeFromNib
{
 view = [[view contentView] retain];
 // Read defaults and set panel view controls
}

- (void)show:(id)sender
{
 [[NSApp delegate] perferences] switchView:view];
}

- (void)change:(id)sender
{
 // Write defaults from panel view controls
}

Individual preference controller

This code belongs to the individual view controllers.

» awakeFromNib—set the view instance variable to point to the contentView
of the box and retain it. By default, the view is retained by the NSBox that
contains it. When it is set as the contentView of the other NSBox, it is retained
there and released here (automatically by the NSBox implementation). When
another view is switched in, this view is released again and no one is retaining
it unless the controller retains it once here permanently. The more elaborate
responsibility of awakeFromNib would is to read the relevant
NSUserDefaults parameters and configure the user interface to reflect them

» show:—the view controller can get to the panel controller in a variety of ways
depending on outlets and connections. This code assumes that AppController
has a method for dispensing the preferences controller

» change:—the user modified a value in the view. Fetch it and write it back to
the NSUserDefaults object

Since each preference view controller has to implement the common code shown
above, it might be great opportunity to factor out an abstract superclass from
which each of the view controller can subclass.

32 Chapter 2: DEFAULTS AND USER PREFERENCES

NSWindow

Backup

Sort

Design for a preferences component

File's Owner
PrefController

panel
Startup

view

NSPanel

delegate

nib

Design for a preferences component

Where should the NSUserDefault registration go? Remember, it should be in the
+initialize method of some class so that preferences are registered before
anyone asks.

This all depends on how dynamic your application is—whether objects are
instantiated in the main nib or allocated lazily. You might even be bundle-loading
some components so that the controller classes are not even defined until that
point. With the class code linked in, you can always send it +initialize
regardless of whether you have any object instances. Which object does the
work? The possibilities are various:

» Application controller

» Preferences controller

» Individual preference view controllers

The last is arguably the most dynamic and the most object-oriented in style. This
design would support dynamically loadable preference objects which manage
their own default parameters. But implementing this approach is more
complicated. You should remember that other application objects will need to get
at these parameters, the reason they are parameters in the first place. Such
extreme dynamism, while interesting, is not always the most practical design
approach.

33

Communicating changes to other application objects

Who wants to know?
 • Your application controller
 • Your document controller

When?
 • Never - read new defaults at startup
 • exit, re-launce application
 • close, re-open document
 • Now - Preferences component can:
 • directly message objects that care
 • post a notification, anyone can register

Communicating changes to other application objects

Once the user has established a new preference by changing a default value, the
application must decide how to update the relevant parts of itself. This might be
updating the appearance of one or multiple windows, starting or cancelling a
timer, or simply that subsequent actions will retrieve the new value and take effect
at that time in the future.

Communicating these changes from your preferences component to other
application objects requires additional API, additional dependencies between
objects. There are a variety of ways to accomplish the task from a tightly coupled
direct message to the concerned party, to a more loosely coupled notification. If
possible, you should avoid forcing a user to stop and restart your entire
application just to have the new settings take effect.

NSUserDefaults automatically posts a notification every time a value is
modified—NSUserDefaulsDidChangeNotification. Application components—
such as the application controller—can register for this notification and re-fetch
the default values when they change.

34 Chapter 2: DEFAULTS AND USER PREFERENCES

Important ideas from this section

» NSUserDefault provides an object-oriented defaults registry.

» It features several domains arranged in a priority hierarchy and with some
domains persisting and others volatile, living only for the life of the application
in memory

» The basic NSUserDefault API provides for getting a standard shared instance
and messaging it to affect values:

register

get

set

» NSDictionary stores key-value pairs. The key is the index for retrieving the
corresponding value

» View switching is a convenient user interface technique for multiplexing
several different views on to a single panel. It is convenient to implement it
with NSBox since it has a content view. Complex preference panels are
typically implemented with view switching.

Classes featured in this section
» NSUserDefaults

» NSDictionary

» NSPopUpButton

35

REVIEW DEFAULTS AND USER PREFERENCES

1 . What’s the purpose of the NSUserDefaults object?

2 . Explain the idea behind the domain concept when designing a user
preferences system.

3 . Which class should handle the responsibility of registering preference defaults
in an application?

4 . What happens if a requested user default key is not in any of the domains?
Why might this happen?

5 . Give some examples where view switching might be used?

36 Chapter 2: DEFAULTS AND USER PREFERENCES

EXERCISE 2.1 VIEW SWITCHING PREFERENCES PANEL

In this exercise, you add the preferences panel shown below to the Expense
Report application. It lets the user switch between views—different sets of
preferences stored and retrieved from the user defaults registry. The user can
configure the desired default value and the application will respond accordingly.

Objectives

After completing this exercise, you’ll be able to:

» Configure an application to use defaults to control its behavior

» Create user interfaces employing switchable views

37

Exercise—Stage 1

1 . Make a copy of the Expenses project which as found in the folder
SuppExercises/Provided/Supp_2.1_Prefs. (This is the Expenses
project as it would appear after completion of Chapter 14 of the main
Programming Yellow Box text.).

2 . Although the preferences panel we will create in this exercise is specific to
this application, making a preferences panel subproject for the sake of
organization is a good idea.

 Create a new Component subproject named Preferences. Drag the
following files from SuppExercises/Provided/Supp_2.1_Files into
your Preferences subproject project:

» Into the Preferences subproject Classes suitcase: PrefController.m,
PrefViewController.m (the corresponding .h files are automatically
copied for you).

» Into the Preferences subproject Other Resources suitcase:
Defaults.plist. This file contains the defaults as a property list. It is
convenient to have them in a separate file so that they can be modified
without recompiling the application.

» Into the Preferences subproject Interfaces suitcase: Preferences.nib.
The preferences main panel is already assembled for you. Your job is to
implement the individual preference views and their corresponding
controller objects.

3 . The PrefController class is a controller for the preferences component. Its job
is to manage the nib file, the panel, and to handle the view switching. It also
registers the application defaults using Defaults.plist. Your first task is to
equip your application with the preferences panel via its controller.

» Open the main application nib file. Drag the PrefController.h file into
the class browser.

» Instantiate a PrefController object in the main nib.

» Add a prefController outlet to AppController and an accessor method
with the same name—(id)prefController;. This is how each individual
preference object will find the main controller. Add these to
AppController.h directly and then re-read it into Interface Builder.
Implement the accessor in AppController.m.

» Connect the prefController outlet to the Preference instance.

» Add a Preferences menu item to the Tools or Help menu. Enable it.

» Connect the Preferences main menu item to the show: action of the
PrefController instance.

» Save the main nib.

38 Chapter 2: DEFAULTS AND USER PREFERENCES

4 . Open the Preferences.nib file and study what is already in place:

» File’s Owner is set to the class PrefController.

» Its panel outlet is connected to the panel instance.

» The panel contains a popup button with the three different preference
view labels. They will eventually connect to your individual view
controllers. Sorting is covered in Exercise 2.2. PrefController has a popup
outlet which is connected to the popup button.

» The panel also contains a line—a very thin box. Beneath the line, the
panel contains an invisible box. This is where the individual preference
views will be switched into place. PrefController has a box outlet which is
already connected.

39

5 . Read the PrefController.m file to understand how this controller works. It
is fully implemented for you.

» initialize—a class method. Locates the Defaults.plist file in the main
bundle, instantiates and autoreleased dictionary from the file and registers it
with the user defaults object. Since PrefController is instantiated in the main
nib, this method is invoked when your application starts up.

» show:—loads the nib and makes the panel key and front. The first time
around, it must programmatically switch the first view into place. It determines
the selected popup button item—configured in Interface Builder—and invokes
its target/action. The individual preference view sends a switchView:
message back to PrefController and it becomes visible.

» switchView:—sets the contentView of the box on the main panel to the
view passed in by one of the individual preference view controllers and marks
the box for redisplay.

6 . At this point, build the project and check that when you select the Preferences
menu option, the Preferences panel appears.

Stage 2

1 . The interface now requires separate preference views, one of which will be
switched into the box on the main panel at any given time. To save you some
time, two views have been preconstructed on a second window inside the nib
file. Open the window labelled “Views” and examine the them, each of which
is a simple set of controls inside a box. Each will require a separate controller
instance, specialized for its particular user interface and the user default value
it reflects.

40 Chapter 2: DEFAULTS AND USER PREFERENCES

2 . Study the PrefViewController class. It provides a simple abstract superclass
that implements common functionality. You need to subclass this for each
particular type of default—in this case, three different types. In the subclass,
you provide a way of retrieving and updating the user default(s) associated
with the individual view.

Note: You do not need to switch the correct view into the preferences panel
as that is done in the superclass (Preference) show: method, provided
everything is connected correctly.

3 . Implement the PrefViewController subclass for the “Categories” default. Start
with the Preferences nib file in Interface Builder.

» Drag the PrefViewController header file into Interface Builder’s class
browser.

» Subclass PrefViewController and call the subclass Categories.

» Add a category outlet.

» Add a change: action.

» Create the files and add them to the project.

» Instantiate a Categories object.

» Connect its view outlet to the box and the category outlet to the text
field that you placed in the view.

» Connect the text field target/action to the Categories instance using its
change: action.

4 . Connect the Categories menu item in the Preferences pop-up button to the
show: action in the Categories object. The PrefViewController superclass
implements show: by messaging the PrefController to switch its view on to
the panel. Notice that Categories does not need to be connected to the
PrefController instance—it locates it via the application delegate. (See
awakeFromNib in PrefViewController.m)

5 . At this point, build the application and verify that the view switching is
working correctly. The initial view switched in place corresponds to the first
or “selected” item in the popup button. If the panel is initially blank, select the
Categories item in the popup button. If everything is in order, the Categories
view should appear.

41

Stage 3

With the user interface working, you can now interact with the user defaults
registry. The Categories object must implement awakeFromNib to fetch the
current user default and set the text field’s value to reflect it. The user default key
is @”defaultNewCategory”. Since the PrefViewController superclass implements
awakeFromNib, its subclasses must incorporate a call to super:

- (void)awakeFromNib
{

// fetch user defaults value and configure user
interface

[super awakeFromNib];
}

1 . Complete the change: method in the Categories class. It should set the
appropriate user default value to the value of the text field when the user
changes the selection. Be sure to use the same user default’s key.

Hint: To save the changed the user defaults to persistent store, use the
synchronize method—refer to the NSUserDefaults documentation for more
information.

2 . Look in Expense.m in the Documents subproject—you can see that the
class already checks the user defaults for the value it should use for new
Expense instances—you need not change anything. Once again, make sure
you are using the same key for the default value—it must match in three
places: Defaults.plist, Expense.m and Categories.m.

3 . Try out the application with this new preference view. Create new Expense
items and change the default to see if the new items use the new default. Quit
and restart the application and verify that the changes persisit. Once you are
happy the application is working correctly, move on to the next part of the
exercise where you will add a second view.

42 Chapter 2: DEFAULTS AND USER PREFERENCES

Stage 4

1 . To make the view switching worthwhile, you need to add at least one more
view and PrefViewController subclass to coordinate the view and the default.
Repeat the procedure, this time for the “Startup” defaults:

» Return to the Preferences nib and subclass PrefViewController— name
the class Startup.

» Add an outlet for a switch and a change: action.

» Create the files and add them to the project.

» Instantiate a Startup object.

» In the preferences views window, add a switch button and label it “Show
Inspector at Startup”.

» Group the switch and label in a box.

» Connect the Startup object outlets to the box and the switch, and connect
the switch to the change: method.

» Implement awakeFromNib—the view displays the current default
value when it first appears. The default key is @”showInspector”.
Remember to call super’s awakeFromNib as well.

» Implement change:—when the switch is activated, the user default
value is updated with the user’s preference—the state of the check.

2 . Your application should now use the showInspector parameter and show the
inspector at startup if its value is YES. Add the relevant code to
AppController to show: the inspector at startup if this default is set. A logical
place is the NSApplication delegate method
applicationDidFinishLaunching:.

3 . Save all the files, build the project and see that it functions as you expect.

43

EXERCISE 2.2 ADDING A SORTING PREFERENCE

This exercise demonstrates how to add sorting capability to the table view in the
application, and provides a preferences panel view for the user to specify the sort
attribute. Each document will sort its table view accordingly.

SuppExercises provides an object which you can insert into your nib file to
perform the sorting. You then create a Sort PrefViewController subclass to save
the user’s sort category in the user defaults registry.

Once the user can configure a sort key, the change needs to be propagated to each
document. It is possible to walk through each document in turn and tell it
explicitly to re-sort, but it is more elegant to use notifcations. A change to the sort
attribute broadcasts a message to any observer objects that wants to know.

The sorting object provided in SuppExercises listens for the notification
NSUserDefaultsDidChangeNotification. This is a standard notification provided
as part of the NSUserDefaults class for this very purpose.

Objective

After completing this exercise, you will be able to use notifications to signal
changes to observing objects.

44 Chapter 2: DEFAULTS AND USER PREFERENCES

Exercise

1 . Drag SortingDataSource.m and SortableTableRow.m from
SuppExercises/Provided/Supp_2.2_Files and add them to the Classes
suitcase of the documents subproject. These provide the sorting features
configurable in the preferences panel. You can study them to see how the
SortingDataSource instance handles notification, but this is not necessary for
this exercise. SortingDataSource.h defines the user default key for sorting
preferences—@”sortByColumn”.

2 . Open the Document nib in Interface Builder. Drag the
SortingDataSource.h header file into the class browser and instantiate a
SortingDataSource object. This object acts as a filter between the
ExpenseDataSource and the table view to provide sorting capabilities. To use
it, you insert it between the ExpenseDataSource and the table view. To the
table view, it looks like a data source; to the data source, it looks like a table
view.

» Disconnect the ExpenseDataSource from the table view and the table
view from the ExpenseDataSource.

» Connect the SortingDataSource’s tableView outlet to the table view.

» Connect the SortingDataSource as the dataSource and delegate of the
table view.

» Connect the ExpensesDataSource as the data source of the
SortingDataSource.

» Connect the SortingDataSource to the ExpenseDataSource as though it
were the table view. The SortingDataSource will pass on any table view
requests to the table view.

» Save the nib.

3 . Return to the Preferences nib and add the Sort PrefViewController:

» Drag the Sort.h and Sort.m files from
SuppExercises/Provided/Supp_2.2_Files into Project Builder, in
the Classes suitcase of the Preferences subproject.

» Drag the Sort.h file into Preferences nib as well and instantiate a Sort
instance.

» Add a matrix of radio buttons to the set of preferences views to allow the
user to choose among the different sorting attributes. Resize the matrix
using the Alt key to add, or delete, buttons to the matrix. These should be
labelled the same as the columns of the table view. Add a fourth button, at
the bottom, with the label None. Set the tags for each radio button to
number from 0 to 3. Be sure to press Return after typing in the tag value in
the inspector.

» Group this matrix in a box.

» Connect the Sort instance to the radio matrix andthe box and connect the
radio matrix to Sort’s change: action.

» Connect the Sorting popup menu item to the Sort object using the show:
action.

45

4 . The Sort class already contains the code to interpret the user choices and
convert them to the column identifiers the sorter is expecting in its defaults
set. Study the methods if you have time.

5 . By default, a cell’s object value is stored as a string. Without a formatter, you
will find that your Expense objects are being filled with strings instead of
NSCalendarDates. The SortingDataSource expects Number and CalendarDate
objects. To avoid this problem, you will make use of formatters for the
columns. Formatters will be explained in a future section, so don’t worry if
you don’t understand how they work.

» Select the Text palatte in the Interface Builder palette window

» Drag a Date formatter onto the Date column header in your Document nib
tableview

» Drag a Money formatter on to the Amount column header

» Save the nib

6 . Rebuild the project and run the application. Select one of the sort categories
from the Preferences panel and verify that sorting works
as expected.

Enhancements

Currently, sorting is initiated by selecting a different sort attribute. However, the
SortingDataSource can dynamically re-sort if requested to. In Document nib,
connect the SortingDataSource as the target for the table view, using sortBy: as
the action. The SortingDataSource programmatically changes this to become the
table view’s double action. Thus the user can double-click on a column title to
invoke the dynamic re-sort. This does not change the default. Try it.

46 Chapter 2: DEFAULTS AND USER PREFERENCES

