
Chapter 3

FORMATTING AND VALIDATING TEXT

48 Chapter 3: FORMATTING AND VALIDATING TEXT

CHAPTER 3 FORMATTING AND VALIDATING TEXT

Goal

To outline the role that formatters and control delegates play in managing text
display and editing.

Prerequisites

Strong understanding of NSTextField in terms of target/action, object value, cell,
delegate, and editing behavior.

Objectives

At the end of this section, you will be able to:

» Attach your own custom formatter to a text-based control

» Utilize NSString and NSCharacterSet to implement a formatter

» Distinguish formatting from validation and describe how NSControl and its
delegate cooperate to accomplish the latter

Reading
NSFormatter class reference in the Foundation

NSControl class reference in the Application Kit

NSString class reference in the Foundation

NSAttributedString class reference in the Foundation

NSCharacterSet class reference in the Foundation

NSScanner class reference in the Foundation

49

NSCalendarDate

Value objects need meaningful text representations

Thu Apr 25 15:58:51 PDT

NSNumber

-$23,345.56

Value objects need meaningful text representations

NSTextField can take arbitrary value objects and display them as strings. A value
object an afford the service of providing its value as a simple string object by
implementing the description method. It is easy to connect objects and display
vanilla string values.

Good user interfaces should make a larger step towards the sophistication of the
user driving them. Personal preferences, cultural and language differences,
custom business logic and procedure, and greater ease and clarity demand more
meaningful text representations. Money should have a currency symbol, perhaps
green, or red and black for debt or credit. Dates can have a huge variety of
formats that select the few fields of interest, change the order, the month and day
names, the manner of telling clock time. The possibilities are limitless.

NSTextField, a powerful and generally reusable text machine should not be
cluttered with a myriad of diverse value objects and the way they should be
displayed. The value object may provide some efficient means of customizing its
appearance but typically on the character values themselves, not arbitrary
graphical elements like color values and fonts. A value object does not want to
interface with a graphical Application Kit object any more that handing out its
value when asked.

50 Chapter 3: FORMATTING AND VALIDATING TEXT

NSCalendarDate

Not all text is valid for a given value object

-$23,345.56

?

Not all text is valid for a give value object

During text input, a user has full rein to type in arbitrary characters and perform
random edits. Mistakes are likely. The range and shape of a valid text value may
not be readily apparent. Someone needs to check the user’s entry and verify that it
maps to a valid object value. It would be nice if someone could also automate
some data entry chores like automatically adding dashes for phone or social
security numbers.

Once again, good design suggests that the generic NSTextField object should not
be overly burdened with elaborate and specialized tasks like these. And it is clear
that our value objects should be small, efficient, and completely unconcerned
with the complexities of the user interface mechanism.

51

Formatters translate between NSString and value object

Thu Apr 25 15:58:51 PDT

NSCalendarDateNSFormatter

Edit checking and assistance

Meaningful textual representations

A formatter translates between NSString and value object

The solution is a third object. It is quite valid to view this design pattern as yet
another instance of Model-View-Controller and, perhaps at the most fundamental
level, a single value object as the model is exposed to the users view through the
narrow view of a text field. The formatter is essentially a controller. It controls
how the model should be displayed and how user text should be reflected back in
the model.

» Model—value object, in this case, NSCalendarDate

» View—NSTextField

» Controller—NSFormatter subclass

52 Chapter 3: FORMATTING AND VALIDATING TEXT

NSFormatter is an abstract superclass

NSFormatter

NSNumberFormatter NSDateFormatter MyFormatter

NSFormatter is an abstract superclass

With a nicely designed abstract superclass, implementing a custom formatter
subclass is straightforward.The Foundation provides two concrete subclasses of
NSFormatter: NSNumberFormatter and NSDateFormatter. These work with
NSNumber and NSDate value objects with a rich array of configuration options.
You can easily design your own formatters whether they are non-configurable
“filters” that do one job well or are configurable, generalized formatters, reusable
in the finest sense of the word.

53

Review-NSTextField, NSTextFieldCell, value object

Thu Apr 25 15:58:51 PDT

NSCalendarDate
NSTextField

cell

NSTextFieldCell

objectValue

description
- (NSString *)description;

Review—NSText Field, NSTextFieldCell, value object

To clearly see how a formatter works, remember the key objects involved:

» NSCalendarDate—the model. It can return a string representation of this value
with description.

» NSTextField—the view. This is an NSControl that utilizes a corresponding
NSCell subclass.

» NSTextFieldCell—the meat of the text-based control. It contains an outlet for
the value object. For display, it gets a string representation of the object by
sending it the description message.

54 Chapter 3: FORMATTING AND VALIDATING TEXT

Cells and formatters cooperate

Thu Apr 25 15:58:51 PDT

NSCalendarDate

- (NSString *)stringForObjectValue:(id)object;

stringForObjectValue:

NSTextField

cell

NSTextFieldCell

objectValue
formatter

NSFormatter

Cells and formatters cooperate

NSCell has a formatter outlet. If a formatter is available, it is used, instead of the
value object’s description method, to manage the display and editing of the
attached value object.

When necessary, NSCell asks the formatter instance for a string that represents
the value of the object passed as an argument. The formatter maintains a simple
interface with the NSCell—return an NSString instance. It is decoupled from the
cell’s view or control container so that it is not relevant whether the cell is in a text
field, a table view or any manner of custom view or control subclass. On the
other hand, the formatter instance is intimately familiar with the value object. It is
likely designed with NSCalendarDate specifically in mind.

By design, the NSCell and NSCalendarDate objects remain unchanged, pure and
general in their purpose. Any one of a wide range of different custom formatters
could be applied as a controller, mediating between the model and its projection
on to a view.

For more elaborate display features, a formatter can implement
(NSAttributedString *) attributedStringForObjectValue:. Attributed
strings extend NSString objects by associating display attributes such as color
and font, potentially down to the level of individual characters. If a formatter
responds to this message, when possible, it will be used rather than
stringForObjectValue.

55

Attaching a formatter
Given the implementation of a custom NSFormatter subclass, how can you attach it
to a given NSCell? If the NSFormatter is properly palettized, provided to Interface
Builder via a custom palette bundle, it can be instantiated and attached in the familiar
manner. Drag the formatter over the interface component and drop. Note:

» NSMatrix—Once you have attached a formatter to a TextField, you can expand it
into a matrix of TextFieldCells with the expected behavior: each TextFieldCell is
cloned from the original and is attached to its own cloned formatter instance. For
an existing NSMatrix, you can attach the formatter to one of the cells then
configure it as the cell prototype.

» NSTableView—Each column in a table view has a column header that works in
much the same way. You can attach a formatter instance by dragging and
dropping over the header cell and it will be instantiated and attached to the
prototype data cell for that column.

Using Interface Builder’s outline mode, you can see which formatter is attached.
The inspector popup button will include a “Formatter” item which switches the panel
view to the custom formatter inspector if this particular formatter class provides one.

56 Chapter 3: FORMATTING AND VALIDATING TEXT

In lieu of a palette, you can attach a formatter programmatically. For an
NSTextField instance:

[[textField cell] setFormatter: formatter];

For a particular column in an NSTableView:

[[[tableView columnWithIdentifier: @”date”] dataCell]
setFormatter: formatter]];

And for an NSMatrix of cells:

[[matrix prototype] setFormatter: formatter];

How is the formatter instantiated? You can programmatically instantiate with
alloc and init or you can instantiate in Interface Builder and connect a controller
outlet to it for future reference.

57

NSFormatter subclasses - required methods

- (NSString *)stringForObjectValue:(id)obj;

 • return formatted string from object for display in cell

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string
 errorDescription:(NSString **)error;

 • return (by reference) object created from cell display/edit string
 • may fail if unable to map string to object
 • may return (by reference) an error string
 • Note: (id *)obj may be nil; check but do no return object value

NSFormatter subclasses—required methods

NSFormatters get involved in both directions of data transfer—providing a
displable string from the object value and creating a new value object instance
from a given display string. Since
getObjectValue:forString:serrorDescription: returns a boolean value,
whether or not the formatter was able to create a valid object value. The other two
parameters must be returned by reference:

» Object value—return a pointer to a pointer to the new value object instance. If
this method fails, because it cannot provide a value object, return the pointer
passed in, which will be nil.

» Error description—a pointer to a pointer to an NSString instance that describes
the failure to deliver an object value. If this method fails, but provides no error
description string, return the pointer passed in, which will be nil.

What happens when this method fails? The cell flags it objectValue as invalid
with two consequences:

» The user cannot leave the cell. The control refuses to reliquish first responder
status.

» objectValue for the containing control returns nil.

Both methods must be implemented by all NSFormatter subclasses to
be functional.

58 Chapter 3: FORMATTING AND VALIDATING TEXT

Dynamic editing - character by character intervention

- (BOOL)isPartialStringValid:(NSString *)partialString
 newEditingString:(NSString **)newString
 errorDescription:(NSString **)error;

 • called after every keystroke, before cell displays it
 • if NO, keystroke does not appear
 • if newString (by reference), it is displayed instead

Dynamic editing—character by character intervention

Your formatter can monitor each keystroke applied to the cell during user editing.
After each event, but before the results are displayed in the cell, your formatter
will be passed a partial string. Your formatter has the following options:

» Accept the string. Simply return YES.

» Reject the string. Return NO. The user edit will not be accepted and the cell
will remain as though the user typed nothing. Optionally, return by reference
an error string describing in a terse manner why the string was failed—used by
the control’s delegate.

» Accept the string but modify it. Return YES and pass a new editing string back
by reference. This allows the formatter to automatically insert formatting
characters, such as dashes in phone numbers, to save the user from entering
them manually. Another example is simply formatting on the fly, for example,
capitalizing a character as soon as it is typed.

Note, with pasting and flexible keyboard editing, user edits can happen anywhere
in the string, not just at the end. Your formatter should check the entire partial
string with each invocation of this method.

59

Preparing for editing

- (NSString *)editingStringForObjectValue:(id)obj;

 • return formatted string from object for display in cell
 when starting an editing session

$100.00 100.00

Preparing for editing

A formatter can implement an optional interface for providing an initial edit string,
again, derived from a given value object. The allows a formatter to distinguish the
display string, which might include extra characters such as a currency sign or
punctuation, from an edit version of the value, typically the most vanilla
representation of the value. A user will ideally want to input only the essentials
during editing. The formatter can get fancy when it’s time to display the value
with stringForObjectValue:.

60 Chapter 3: FORMATTING AND VALIDATING TEXT

Additional optional formatter methods

- (id)defaultObjectValue;

 • return a default instance of formatter-specific object value class
 • by Interface Builder when formatter is attached to a cell

- (NSAttributedString *)attributedStringForObjectValue:(id)object
 withDefaultAttributes:(NSDictionary *)attributes

 • if the formatter responds to it, used instead of
 stringForObjectValue
 • can associate attributes like color and font for special effect

Additional optional formatter methods

- (id)defaultObjectValue

If your formatter is palettized, Interface Builder uses this method when
necessary. When your formatter is first dragged and dropped on a cell in the user
interface, it may be that the string value already there is incompatible with your
formatter’s value object type. The formatter will be asked for a default and should
return an appropriate value object instance based on reasonable default values.

- (NSAttributedString*)attributedStringForObjectValue:
(id)object withDefaultAttributes:(NSDictionary *)attributes

If your formatter responds to this selector, this method will be used instead of
stringForObjectValue:. NSAttributedString combines a plain NSString with a
set of attributes that associate ranges of the string with special fonts, colors and
other text related features. A number formatter might choose to represent a
negative number in red.

61

NSCharacterSet - building a model for comparisons

punctuation

numbers

letters

MyCharacterSet

NSCharacterSet

+ (NSCharacterSet *)letterCharacterSet;
+ (NSCharacterSet *)numberCharacterSet;
+ (NSCharacterSet *)whiteSpaceCharacterSet;
+ (NSCharacterSet *)characterSetWithCharactersInString:(NSString *)string;
+ (NSCharacterSet *)formUnionWithCharacterSet:(NSCharacterSet *)set;
+ (NSCharacterSet *)formIntersectionWithCharacterSet:(NSCharacterSet *)set;
- (NSCharacterSet *)invertedSet:(NSCharacterSet *)set;

NSCharacterSet—building a model for comparisons

Formatters need some skill with handling strings. A common task is testing a
string or partial string against a reference set of characters. If a formatter allows
only numbers, it will want to check the string against a set of valid number
characters to see that nothing outside of this set is allowed.

NSCharacterSet is a Foundation class that objectifies an arbitrary set of
characters. It provides access to several commonly used instances such as the set
of all letters, numbers or punctuation symbols. It provides methods that allow
you to customize a set by adding or deleting characters in a number of ways. You
can also perform set operations such as union and intersection, creating a new set
instance out of old ones. Once you have a set that matches what is valid, you can
generate the inversion of the set. This is useful for finding invalid characters by
asking, “Are there any characters in the string that belong to this character set?”

Like many value and collection classes in the Foundation, NSCharacterSet is
immutable and provides a mutable subclass, NSMutableCharacterSet. There are
methods to convert between the two forms and some methods apply only to
mutable instances. Like most Foundation objects, NSCharacterSets can be
archived, unarchived and copied. They conform to NSCoding, NSCopying, and
NSMutableCopying.

62 Chapter 3: FORMATTING AND VALIDATING TEXT

Useful NSString methods

Basic
 length, cString, stringWithCString:, stringWithFormat:

Extraction
 characterAtIndex:, substringWithRange:

Formatting
 uppercaseString, lowercaseString, capitalizedString

Comparing
 compare:, rangeOfCharacterFromSet:

Building
 stringByAppendingFormat:(NSString *)format, ...;

Useful NSString methods

The heart of the formatter’s skill is its ability to adroitly handle NSString
instances. In the object-oriented world,- NSString is fortunately quite adept at
manipulating itself. A formatter merely has to message the string to do so.
NSString offers sizable API for a myriad of operations. These are some common
ones organized into basic functional areas:

» Basic—length is useful for checking empty or fixed length values. You can
obtain a primitive C char * if you need to operate using traditional pointers,
macros or functions. Note, you may need to convert back to an NSString if
you a building a new string.

» Extraction—you can extract a character or substring of characters.

» Formatting—A string can produce different formatted instances of itself.

» Comparing—comparing two strings or for comparing a string against a
character string.

» Building—for editing assistance in particular, a formatter will simply want to
append to the partial string and return the new instance.

There are numerous other possible operations involving NSString,
NSCharacterSet, NSRange and possibly NSScanner. This is enough to get you
thinking in the right direction.

63

Design for a custom formatter

inherits
 from

- (NSString *)stringForObjectValue:(id)obj;

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string
 errorDescription:(NSString *)error;

- (BOOL)isPartialStringValid(NSString *)partialString
 newEditingString:(NSString **)newString
 errorDescription:(NSString **)error;

NSFormatter

MyFormatter

Design for a custom formatter

This is the standard design for a full-featured custom formatter. It includes both
required methods and includes partial string validation as a hook for following
each user edit action. This might be the complete interface for even a powerful
formatter but it does not include API for parameterized features. If you design a
more general configurable formatter, you would need to add accessor methods
for getting and setting options.

See the section on Interface Builder Palettes to explore providing a fully
implemented NSFormatter subclass with the convenience of graphical
instantiation and attribute inspection.

64 Chapter 3: FORMATTING AND VALIDATING TEXT

Validation vs. formatting

Formatting ensures text can be represented by object
 • proper characters
 • length, size, magnitude
 • providing editing assistance

Validation ensures that the object fits the larger context
 • value is not only possible but acceptable
 • other fields on the same form
 • application context
 • Enterprise Objects and business rules

Validation vs. formatting

While a formatter is likely to perform some basic checking and even refusing
certain edits or entire string representations, it is not necessarily the place for
more profound and context-sensitive sorts of validation. A formatter handles
basic aspects of a value type—a number cannot have the letter “a” and a date is
likely to need a year specification. It is fundamentally concerned with the value
object and its view only, not the larger context of the window, the application or
the underlying enterprise data model. A formatter is not likely to worry about
whether a number meets a budgetary limit, whether it makes sense in the context
of the other numbers on the window nor whether the number works as an
attribute in a particular model in a particular data base table. Likewise, error
reporting, warnings, suggestions and interactive dialogs with the user are
probably not in the domain of the formatter either.

While there is great flexibility in design and the boundaries between objects are
highly negotiable relative to a particular design situation, it is common to place
this context sensitive and possibly interactive validation in a place other than the
formatter.

65

Thinking about validation

When?
 • After completing cell editing
 • After completing form/dialog
 • When applying or committing transactions

Where?
 • Formatter
 • Control and/or control delegate
 • Window delegate (e.g., form)
 • Enterprise Object
 • Persistence Framework (and/or Database)

Thinking about validation

When does such validation typically take place? Maybe just after the individual
text value is edited, maybe not until several fields are completed and the user
presses “OK”, and possibly not until a business object instance is written to a
data base. While it is ideal to catch user input problems as early as possible and
even avoid them with proper user interface control and feedback, it is not
desirable to embed too much business logic in the user interface.

Validation can therefore belong in one or more of several different objects. How
close to the user’s editing context, how reusable the design needs to be, how
quickly and frequently will the rules change, how much logic is already
implemented in the model and underlying data store—these questions should be
considered when thinking about the right approach to validation. Your application
and business context is likely to suggest a particular approach.

66 Chapter 3: FORMATTING AND VALIDATING TEXT

Validation via NSControl delegation

NSCalendarDate

NSTextFieldCell

objectValue
formatter

NSTextField

cell
delegate

- (BOOL)control(NSControl *)isValidObject:(id)obj;

MyDelegate

control: isValidObject:

NSFormatter

Validation via NSControl delegation

Many controls use delegates and provide API for validation there. Once a
formatter has allowed a string to become a proper value object, the control’s
delegate is given a chance. The delegate can ask some of these deeper questions,
using a larger application context such as taking other cell and control values into
account, and it can provide the more complex user interface interactions required
when the object is invalid.

The control delegate can also find out about strings that did not make it past the
NSFormatter for one reason or another.The delegate can be notified and passed
the error description strings provided by the formatter.

67

NSControl delegate methods

- (BOOL)control:(NSControl *)control isValidObject:(id)obj;

- (void)control:(NSControl *)control didFailToFormatString:
 (NSString *)string errorDescription:(NSString *)error;

- (void)control:(NSControl *)control
 didFailToValidatePartialString:(NSString *)string
 errorDescription:(NSString *)error;

NSControl delegate methods

To fully participate, a control delegate can implement the following as necessary:

- (BOOL)control:(NSControl *)control isValidObject:(id)obj

The control’s delegate gets the final chance to validate the object. If present, the
formatter was able to represent the string as a value object. But does the object
make sense in the current context of the application?

- (BOOL)control:(NSControl *)control
didFailToFormatString:(NSString *)string
errorDescription:(NSString *)error;

- (void)control:(NSControl *)control
didFailToValidatePartialString:(NSString *)string
errorDescription:(NSString *)error;

Both methods result from failures in the associated formatter. The control is now
free to perform more elaborate user interface interaction to communicate and
possibly rectify the unsuccessful edit operation.

These messages are available from any NSControl that uses one or more text-
based cells and a delegate. Examples include NSTextField, NSMatrix and
NSTableView.

68 Chapter 3: FORMATTING AND VALIDATING TEXT

Important ideas from this section

» NSFormatter subclasses can manage the mapping between value objects and
their textual representation in the user interface.

» Your NSFormatter concrete subclass must implement two methods for
mapping between the a cell’s object value and the display string and may
optionally provide special editing strings, attributed strings and perform partial
string validation.

» NSString and NSCharacterSet provide a foundation for manipulating strings
and making comparisons.

» More elaborate and context-sensitive validation of a user-edited value object is
commonly placed in the control delegate, your custom class, leaving the
formatter free to focus on its well-defined and more reusable role.

Classes featured in this section
» NSFormatter

» NSCharacterSet

» NSString

» NSAttributedString

» NSScanner

» NSControl

69

REVIEW FORMATTING AND VALIDATING TEXT

1 . What are some of the differences between formatting and validation?

2 . How does a formatter relate to a Model-View-Controller model?

3 . How can a delegate help a control perform validation?

4 . List some useful formatters you might want to implement?

70 Chapter 3: FORMATTING AND VALIDATING TEXT

EXERCISE 3.1 USING AND IMPLEMENTING FORMATTERS

There a few basic formatters that you will examine in this exercise. With
NSFormatter, it also provides an easy way to create your own custom formatters.
In the Expense Report application, each expense item contains a category, a date
and an amount. The latter two can be dealt with by NSDateFormatter and
NSNumberFormatter. You might require that the category be a non-empty
capitalized string without whitespace—this is a perfect opportunity to write your
own formatter. This exercise extends the previous chapter's Expense Report
application by adding all three formatters.

Objectives

After completing this exercise, you will be able to:

» Use formatters to format dates and numbers for input and output

» Subclass NSFormatter to provide specialized formatters for
other applications

» Programmatically set formatters for Application Kit objects

71

Exercise—Stage 1

1 . The Expense Report application is a perfect context for testing and developing
formatters. Make a backup copy of the previous exercise before moving on.

2 . Open the Document nib. Adding formatters to the current expense report is
straightforward for the Date and Amount columns, if you haven’t already
done so in an earlier exercise:

» Select the Text palette from Interface Builder’s palette window.

» Drag a Date formatter onto the Date column header in your Document nib
table view.

» Drag a Money formatter on to the Amount column header.

» If you have a Total field, drag a Money formatter on to that as well.

» Configure the attributes for each formatter using Interface Builder’s
inspector. Once a formatter has been attached to a cell within a control, the
inspector popup button contains a Formatter item.

» Because the formatters are palettized, you can test the formatters in
Interface Builder test mode. Build the application and check that the
formatters work as expected.

72 Chapter 3: FORMATTING AND VALIDATING TEXT

Stage 2

1 . Now consider how to provide a formatter for the Category column.There are
skeleton files to assist you. Copy AlphaFormatter.m from the
SuppExercises/Provided/Supp_3.1_Files area into the Classes
suitcase of your Document subproject.

» Implement a formatter that accepts only alphabetic characters and
formatters the result to a capitalized string. The formatter should prohibit
empty values—strings of length 0. A simple way to do this is to use an
inverted character set to check the string for characters the formatter should
not allow. Look over the NSFormatter, NSString and NSCharacterSet
documentation. You may wish to look at the NSScanner class.

» Remember to allow partial strings of zero length since the user can clear
the cell while editing.

» Decide whether you want to convert to a capitalized string as the user
types or when they press return.

2 . Your formatter isn’t palettized yet so you will have to connect it to the table
view category column programmatically in the DocController. You will find a
useful code snippet in SuppExercises/Provided/Supp_3.1_Files/
tableViewAttach.m. You may have to customize it for your application.

3 . Once you have made all your changes, build the application and try it out.
Enter various characters and check that they produce the intended behavior.
Think of a reasonable set of test cases to verify your formatter’s functionality.

73

Enhancements
» Since you are using this formatter for the Category column of the table view, it

makes sense to also use it for the Default Category text field, or form cell, on
your preferences panel. Attach an instance of the formatter there as well.

» Make your formatter configurable. As a first step, make capitalization
configurable. To implement this, add two accessor methods for getting and
setting this boolean switch. This and any additional options have to be set
programmatically as you cannot yet do it using Interface Builder. See the
header file for a suggestion of a possible interface for this configurable alpha
formatter.

» It’s possible to have the control respond a formatter conversion failure. Check
the NSFormatter and NSControl documentation to see how, and implement a
control delegate with a method that calls NSBeep() if the user types an invalid
character.

74 Chapter 3: FORMATTING AND VALIDATING TEXT

