
Chapter 2

Objects and Graphical Interfaces

24 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

CHAPTER 2 OBJECTS AND GRAPHICAL INTERFACES

In learning to develop graphical user interfaces, one of the most difficult things that
programmers have to get used to is not having control. Most programmers are used
to writing a program like it’s a recipe: Do this, then that, and finally do this. When
you put a graphical user interface on a program, the user is in control. The user
decides what happens and when.

Goal

To explore the way user interfaces are built using the Application Kit and
InterfaceBuilder.

Prerequisites

Familiarity with at least one graphical user interface and a basic understanding of
objects and instance variables.

Objectives

After completing this chapter, you’ll be able to:

» Describe the life of an application

» Define target and action

» Explain the purpose of InterfaceBuilder and the nib file

» Program in an event-driven environment

Reading

You can find more information about creating applications with graphical user
interfaces in
/System/Documentation/Developer/TasksAndConcepts/
DevEnvGuide/Chapters/(Composing the Interface)

25

Objects and graphical user interfaces

Every interface component is an object
• Menus
• Windows
• Buttons
• Images

User actions send messages
• Mouse clicks
• Typing

Objects and graphical user interfaces

Graphical user interfaces are event-driven—the user of the application is in
control. When the user pushes a button, something happens. When the user
chooses a command from a menu, something happens.

This type of event-driven program maps very well to an object-oriented system.
All user interface elements are objects. Windows, buttons, menus, and images
are all objects. These objects perform actions in response to messages. For
example, a text field might receive a message telling it to display its contents. In
response, the text field prints out its contents on the screen.

Because everything in a user interface is an object, it’s easy to understand how
user events are handled. User actions send messages to specific objects. For
example, when a user pushes a button, that action sends a message to some other
object. The receiving object could be any object in the application—another user
interface object, or a custom controller object you write. The receiving object then
does something in response to the user’s action.

26 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

What's a button?

A button is an instance of the class NSButton

A button has a space on a window
• It draws in that space
• It handles mouse-clicks in that space

A button sends a message to some other object when pushed

What’s a button?

This chapter talks about building user interfaces using the example of one user
interface element—the button. A button is one of the simplest user interface
elements. It’s simply a location on the screen where mouse clicks are treated in a
special way. Specifically, when the user pushes a button, the program takes some
action.

Buttons are instances of the class NSButton. The framework provides this class
so you don’t have to worry about how to detect mouse clicks in a certain region
of the screen, how to dispatch messages to other objects, or any of the other
details about how a button is supposed to operate. Using NSButton you get the
functionality of a button without having to write a line of code. In the
demonstration and exercise for this chapter, you’ll see exactly how this works.
You’ll also find that many other user interface objects behave a lot like a button—
they send a message to some other object when you activate them.

The only thing a button actually does is display itself on the screen and send
messages. For example, in the Mail application the Delete button itself doesn’t
delete anything when you push it. Instead it sends a message to some other
object. That other object is responsible for carrying out the deletion.

27

Target/Action

target

action

NSButton Converter

changeTemperature:

Target/Action

To implement its message sending behavior, NSButton has two instance
variables—target and action. target is a pointer to the button’s target. When a
user pushes the button, the button sends its message to the target. action is the
name of the message to send to the target.

This setup allows an instance of NSButton to send a custom message to any type
of object. Instead of having a preset method like “buttonPushed:” or something
equally obtuse, you can use descriptive method names like
“changeTemperature:”.

Once a button has a set target and action, it simply sits and waits for the user to
push it. When the user pushes the button, it sends the message specified in its
action instance variable to the object specified in its target instance variable.

28 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

Details: targets and actions

Buttons can have any type of object as their target. That is, an instance of any
class is a valid target of a button. Variables of type id can refer to objects of any
class. Therefore, NSButton’s instance variable target is declared to be of type id.
Instance variables of type id are often referred to as “outlets”.

An action is a special type of method. An action method generally has a name
indicating what the method does, and all action methods take a single argument,
called sender. The sender argument is simply the object invoking the action
method. So when someone pushes a button, the button sends its action message
including itself as the sender argument.

To allow programmers to set which action message to send, NSButton needs a
way to store the name of a method. The action instance variable stores the name
of a method using something called a selector. For every method there is a
corresponding selector, used by the Objective-C runtime system to select a
method. Selectors can be stored in variables of type SEL. If you know the name
of a method, you can get the corresponding selector using the @selector()
compiler directive. For example, the following code sets the methodSelector
variable to the selector for the raisePrices: action method.

SEL methodSelector;

methodSelector = @selector(raisePrices:);

You can set both the target and action of an NSButton using its setTarget:
and setAction: methods.

NSButton is not the only class with a target and action. Sliders, text fields,
and other types of user interface objects users can activate all have a target
and action. When the user activates the user interface object, it sends its
action message to the target.

29

Application timeline

Start app Stop app

Create instance of button

Set target and action for instance

Wait for event

Send action message to target

Application timeline

This time line depicts the life of an application. An object-oriented application
with a graphical user interface has two main tasks when it starts up. First, it must
create a network of objects. User interface elements need to know how to
communicate with each other and other objects in a complex object network. This
task involves creating objects, setting instance variables, and generally doing
initialization work. For a graphical application, much of this work has to do with
positioning user interface elements in a window, setting their titles, and otherwise
making the user interface look right.

The second task is to handle user events. When the user pushes the Delete button,
something had better get deleted or the user is going to be confused. This is the
interesting part of an application, and this is where developers add the logic that
makes their application unique.

Unfortunately, in many environments the first task, setting up the user interface,
takes a majority of the effort. Developers have to write source code to create and
initialize all the buttons, windows, and other objects they want to appear in their
user interface.

30 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

“Where does my code get called?”

The time line raises a very important question. If the user is in charge of an event-
driven application with a graphical user interface, where does your code get
called?

The answer is that user events initiate messages that call your code. You write a
method you want called when the user pushes a button. Say you created a class
SomeClass with a method someMethod:. You need to set up a network of
objects such that a someMethod: message is sent whenever the user pushes a
certain button. To do this, you create an instance of SomeClass and make it the
target of the button. Then you set the action of the button to someMethod:.

Now whenever someone pushes the button, it sends a someMethod: message
to your object.

31

InterfaceBuilder

An object editor for building user interfaces

• Create instances
• Edit instance variables
• Connect objects
• Archive objects into a nib file

Applications read the file and unarchive the objects

InterfaceBuilder

Setting up the network of objects is a time-consuming task, especially if you had
to do it entirely in source code. To make things easier, we have InterfaceBuilder.

InterfaceBuilder is an application that creates and archives a network of interface
objects. Using InterfaceBuilder, you can create a button and an instance of your
class, then connect them using the button’s target instance variable.
InterfaceBuilder allows you to set the button’s action, resize it, and position it on
the screen. InterfaceBuilder saves the important data from the network of objects
into a file, known as a nib file.

When an application starts up, it can read in these “freeze-dried” objects and
recreate the network of objects. This allows you to create an object network using
a graphical, user-friendly tool, instead of having to write source code.

InterfaceBuilder can be found in /System/Developer/Apps/

32 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

Application timeline revisited

Start app Stop appWait for event

Send action message to targetLoad nib file

Application timeline revisited

A nib file simplifies the life of an application with a graphical user interface.
Instead of programmatically creating the objects of the user interface at
run-time, the application simply loads the nib file.

Putting the user interface layout in a separate file makes a lot of sense. The
interface layout is conceptually separate from the logic of how the application
works. If you want to modify the user interface, you modify the nib file. If you
want to change how the application works, you modify the source code.

33

ProjectBuilder

Central tool for developers

• Edit text
• Organize files
• Build projects
• Debug applications

ProjectBuilder

A project contains many different kinds of resources, generally represented by
different files. A typical application project contains these types of resources:

» Source code

» nib files

» Images

» Sounds

» Documentation

» Supporting files

ProjectBuilder keeps track of these files and builds them into an application.
Many of the tasks of building an application can be done within ProjectBuilder.
It serves as an editor for source code files, allows you to build projects, and
provides a graphical front-end to a debugger for debugging projects.

ProjectBuilder can be found in /System/Developer/Apps/

34 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

DEMONSTRATION 2.1 OBJECTS AND INTERFACEBUILDER

A big part of developing an application is coming up with a user interface.
However there is a tool that makes this easier—InterfaceBuilder. InterfaceBuilder
is more than a screen painter. It lets you create real objects and connect them
together, allowing you to build a good deal of functionality into an application
without having to write a single line of code.

This demonstration shows off some features of InterfaceBuilder. Led by the
instructor, you build an application with a simple user interface incorporating
some objects that do not have a direct screen representation. These “controller”
objects, of the class HelloController, are provided on a palette. A palette is a
collection of objects that can be manipulated in InterfaceBuilder.

Your main task is to connect user interface elements to instances of the
HelloController class. When the demonstration is completed, a user of the
application will be able to print “Hello, world!” in a text field by clicking a
button, and clear the text field with another button.

Objectives

After completing this demonstration, you’ll be able to:

» Create a new application using ProjectBuilder

» Modify a nib file using InterfaceBuilder

» Set targets and actions for Button objects

» Test an interface in InterfaceBuilder

» Build an application

» Start up an application from ProjectBuilder

35

Demonstration

1 . Create a new project. Start up ProjectBuilder.app -- located in /System/Developer/
Apps/ -- and select the New command in the Project menu. Name the project
SimpleApp1 and select Application in the Project Type pop-up list.

2 . Open the user interface file (called a nib file). Select Interfaces in the first column of
the project window browser. Double-click SimpleApp1.nib to open the interface.

InterfaceBuilder edits nib files. ProjectBuilder launches InterfaceBuilder when you
double-click SimpleApp1.nib, and tells InterfaceBuilder to open SimpleApp1.nib.
Finally, ProjectBuilder gives control to InterfaceBuilder so you can edit your user
interface.

3 . Resize the window titled My Window. This is the main window of your
interface. Use the window’s resize bar to make its dimensions match the sample
interface. When you make these changes in InterfaceBuilder, you change the
instance variables of a real live NSWindow object.

36 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

4 . Add a text field to the main window. Apple provides objects pre-loaded into
InterfaceBuilder on palettes. You choose a palette in the palettes window, found in
the upper right-hand corner of the workspace when you start up InterfaceBuilder.
Choose the palette you want by pushing its button in the top portion of the window.
The menu bar of the palette window changes to the name of the selected palette, and
the bottom portion displays the available objects.

Choose the Views palette icon. Drag a text field onto the main window.

5 . Position and resize the text field. While users can normally resize and reposition
windows, they can’t resize or reposition other user interface elements. When
creating a user interface you need to be able to do this. InterfaceBuilder allows
you to do this in the same way a drawing application would.

• Click once on the text field to select it. Small gray squares called control points
appear at the corners and midpoints of the text field.

• Use the control points to resize the text field so it matches the sample interface.

37

6 . Add two buttons to the user interface.

• Drag a couple of buttons from the Views palette onto your main window

• Rename the buttons to read Say Hello and Clear Text. You can edit the title of a
button by double-clicking on it and typing the new text.

7 . Copy the HelloController.framework from the /ExerciseMaterials/Frameworks/
HelloController.framework.to your <AccountName>/Library/Frameworks folder
(you may have to create this folder yourself). When asked how the links should be
copied, check the "Repeat" checkbox and then click the "New Link" button.

8 . Add the HelloController palette to InterfaceBuilder. Use the Tools menu in
InterfaceBuilder and select Palettes->Open..., then double-click on
/ExerciseMaterials/Palettes/HelloControllerPalette.palette.

9 . Add an instance of HelloController to your nib file by dragging a HelloController
object from the palette to the instances window in the lower left corner of the
workspace. Because HelloController objects are not user interface elements,
they don’t go in your main window. InterfaceBuilder provides an instances
window that keeps track of all the objects in your nib file.

38 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

10.The next step is to connect the two buttons and text field to one instance of
HelloController. Before getting started on the details of setting up the connections,
take a moment to study this diagram of how the two buttons, the text field, and the
HelloController object are connected:

target

action

NSButton

HelloController

target

action

NSButton

helloTextField

NSTextField

sayHello:

clearText:

InterfaceBuilder
 Connections

39

11.Connect the Say Hello button to the HelloController object:

a) Hold down the Control key while dragging from the Say Hello button. Drag to
the HelloController icon in the file window and release the mouse button.

b) The Connections Inspector automatically opens. Select target in the Outlets
column. A list of possible actions appears in the Actions column.

c) Select the sayHello: action and push Connect.

InterfaceBuilder uses the word outlet to refer to an instance variable of type id.
An outlet can be connected to any type of object. InterfaceBuilder recognizes
target as a special kind of outlet, one that always has an associated action. When
you connect a target outlet, InterfaceBuilder also lets you set the action.

40 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

InterfaceBuilder uses the word outlet to refer to an instance variable of type id.
An outlet can be connected to any type of object. InterfaceBuilder recognizes
target as a special kind of outlet, one that always has an associated action. When
you connect a target outlet, InterfaceBuilder also lets you set the action.

12.Connect the Clear Text button to HelloController. Set the action to clearText:.

13.Connect HelloController’s helloTextField outlet to the text field. Control-drag
from HelloController to the text field. Select the helloTextField outlet and push
Connect in the Connections Inspector.

For the HelloController object to print out “Hello world!” in the text field, it needs
a connection to the text field. Without this connection, pushing the Say Hello and
Clear Text buttons has no visible effect. The sayHello: and clearText:
messages are still sent to the HelloController object. However, the HelloController
object can’t tell the text field to display anything, because HelloController doesn’t
have a connection to it.

14.Test the interface. Because the user interface elements you create using
InterfaceBuilder are real objects, you can test your interface and see how it works.
Choose the Test Interface command in the File menu. Try out your interface by
pushing the Say Hello and Clear Text buttons.

15.Create another set of buttons and a text field. Position and label them as before.

16.Drag another HelloController object from the HelloController palette. You can
have many instances of the same type of object. Notice that InterfaceBuilder
automatically names the new object HelloController1, so you can distinguish it
from the previous HelloController.

17.Connect HelloController1 to the new text field. Set the target of the new buttons to
HelloController1, with appropriate actions.

18.Test your interface. Choose Test Interface in the File menu. Try both sets of Say
Hello and Clear Text buttons.

19.Add the code for the HelloController class to your project by including the
HelloController.framework to your project.

Switch to ProjectBuilder by double-clicking its icon. Double-click the Frameworks
category in the browser—this brings up an open panel. Navigate to your
Frameworks folder (from step 7) and select HelloController.framework.

41

20.Build the application. Bring up the Build Panel by pushing the Build button in the
project window. It has a hammer icon. In the Build panel, start building the
application by pushing the Build button.

ProjectBuilder’s Build panel allows you to easily build an application. All error
messages are reported in the Build panel. To make debugging easier, when you
click on an error message ProjectBuilder automatically displays the file with the
error, at the line where the error occurred.

42 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

21.Launch the application. Bring up the Launcher Panel by pushing the Launch
button in the project window. Its icon shows application windows on a computer
screen. You’ll use the Launcher panel for debugging in later exercises.

22.Test the functionality of your application. Do the buttons work the same as when
you tested the interface in InterfaceBuilder?

43

Important ideas from this section

» In an object-oriented application with a graphical user interface, you create a
network of objects and then wait for events.

» Creating a network of objects is made easier by InterfaceBuilder.

» An outlet is an instance variable that can point to any object.

» Many user interface objects have the idea of a target and action.

» The target is an outlet.

» The action is the message to send to the target when the user activates the user
interface object. For example, a button sends its action to the target when the
user pushes the button.

44 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

REVIEW OBJECTS AND GRAPHICAL INTERFACES

1 . What is InterfaceBuilder used for?

2 . What do nib files contain?

3 . What is an outlet?

4 . What is a target?

5 . What is an action?

6 . How do targets and actions work together?

7 . What is ProjectBuilder used for?

45

EXERCISE 2.1 TEMPERATURE CONVERTER

Now that you’ve had a chance to try out InterfaceBuilder and ProjectBuilder, it’s
time to use them to create your own application. In this exercise you will build a
temperature conversion application. The application has a user interface similar to
the one shown above. The user moves a slider to change the current temperature,
while two text fields display the temperature in Celsius and Fahrenheit.

The application uses a Converter object, provided on a palette, to do the
necessary calculation. You connect user interface elements to the Converter using
InterfaceBuilder to create a fully functional application.

Objectives

After completing this exercise, you’ll be able to:

» Create a user interface using InterfaceBuilder

» Add a controller object from a palette

» Set the target and action of a slider

» Connect a controller object to a user interface element

» Set attributes of a user interface object using InterfaceBuilder’s inspector

46 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

Exercise

1 . Create a new application project named Temperature1 in ProjectBuilder.

2 . Use InterfaceBuilder to set up a user interface with a slider and two text fields for
displaying the temperature in Celsius and Fahrenheit.

3 . Copy the Converter.framework from the /ExerciseMaterials/Frameworks/
Converter.framework.to your <AccountName>/Library/Frameworks folder (you
may have to create this folder yourself). When asked how the links should be
copied, check the "Repeat" checkbox and then click the "New Link" button.

4 . Add the ConverterPalette to InterfaceBuilder. Use the Tools menu in
InterfaceBuilder and select Palettes->Open..., then double-click on
/ExerciseMaterials/Palettes/ ConverterPalette.palette.

5 . Drag a Converter object from the palette to the your instances window.

6 . Connect the objects in your user interface to the Converter object. The diagram
below shows what connections should be made. Remember that you make
connections in InterfaceBuilder by Control-dragging.

target

action

NSSlider Converter

celsiusTextField

NSTextField

temperatureChanged:

fahrenheitTextField

47

7 . Set the limits and default value for the slider. Select the slider. Choose the
Inspector command in the Tools menu to bring up the inspector.

A slider is a user interface element that allows the user to select a value from a
range of values. As such it has a current value, a maximum value, and a
minimum value. InterfaceBuilder allows you to set these initial values without
having to write any code.

8 . Set the text fields to match the current value. The Converter object takes the value
of the slider as the temperature in celsius. Therefore, you should set the celsius
text field to read 0 and the fahrenheit text field to read 32.

9 . Make the text fields non-editable. One of the attributes of a text field is whether
the user is allowed to edit it directly. The program will provide the values in the
text fields—the user provides input by moving the slider. You don’t want the
user to be able to edit the text fields, so use the Attributes Inspector to make them
non-editable.

10.Test the interface. Make sure everything works as you expect.

11.Add the code for the Converter class to your project by including the
Converter.framework to your project.

Switch to ProjectBuilder by double-clicking its icon. Double-click the
Frameworks category in the browser—this brings up an open panel. Navigate to
your Frameworks folder and select Converter.framework.

Build and run the Temperature1 application.

48 Chapter 2: OBJECTS AND GRAPHICAL INTERFACES

