Chapter 5

NOTIFICATION AND DELEGATION

104

CHAPTER 5 NOTIFICATION AND DELEGATION

A framework can never be complete. It can cover much of the terrain, but it can't
anticipate all the details of every application or what additional structure they'll
need. Therefore, frameworks generally provide ways for you to hook your own
objects up to framework objects. —Object-Oriented Programming and the
Objective-C Language

Goal

To use notification and del egation to extend the behavior of aframework.

Prerequisites
A basic understanding of objects and messaging.

Objectives
After completing this chapter, you'll be able to:

» Create objectsthat register for and receive notifications
» Create objectsthat act as delegates

105

m Close

Are you cerain?

cancel |{_Close |

The problem

Y ou’ ve developed an excellent application for editing 1040EZ tax forms. When
the user triesto close awindow containing an edited document, you want to raise
an alert panel asking if they want to save the document. How can you get
informed that the window is about to close?

There are many situations like this—you want to be notified about an event that
happens to some other object. For example, you want to know when someone
types something in atext field. Or when the value of an object changes. Or when
awindow resizes. Sometimes you also want to be able to control what happens.
That window is not allowed to close right now, because it’s displaying vital
information. Or the user should be allowed a chance to change their mind before
the application quits.

The problem isthat your objects need this information even when they didn’t
initiate the action. For example, closing awindow typically occurs because the
user pushed the close box on the window. How can you find out about this kind
of event?

106 Chapter 5: NOTIFICATION AND DELEGATION

Solution: observers and delegates

Observers receive messages like:

* "Thiswindow is now closing."

Delegates recelve messages like:

*"Isit OK if | close this window?'

Solution: observers and delegates

The solution to the problem is to provide two mechanisms by which an object can
find out about events that happen to other objects.

Observer s are smply informed of an event. They have an opportunity to
execute code, but are not permitted to interfere with the event. For example, an
observer object might see that the window was about to close and save the
document, but it can’t prevent the window from closing.

Delegates can actualy affect the outcome of the event. For example, adelegate
might see that the window was about to close and raise an dert: “Do you really
want to close thiswindow?’ The delegate could then prevent the window from
closing.

An object can have many observers, but only one delegate. Many objects might
want to know that something is happening, but only one is allowed to affect the
outcome.

107

Observers register with notification centers

If any objects post an
NSWindowDidResizeNotification,
send me windowDidResize:

|/

(NSNotificationCenter W myController

Observers register with notification centers

The notification center islike abulletin board. Objects register themselves as
being interested in a certain type of notification from a certain object.

Usually thereis only one notification center in the whole application. It isan
instance of the class NSNotificationCenter, and can be accessed using
NSNotificationCenter’ sdefaultCenter method.

The method used for registering an observer with an NSNotificationCenter is:

- (void)addObserver:(id)anObserver
selector: (SEL)aSelector
name: (NSString *)aName
object:(id)anObject

ThisregistersanObser ver such that it receives the message aSelector when a
notification with the name aName is posted by anObject. If aName isnil, the
observer receives al notifications from anObject. If anObject isnil, the
observer receives al notifications called aName.

108 Chapter 5: NOTIFICATION AND DELEGATION

Objects post notifications

(NSNotification W

name [@"NSWindowDidResizeNotification"
object/la

NSWindow]/

postNotification:

(NSNotificationCenterW

Objects post notifications

While the application is running, objects can post notifications to the notification
center. The notification center looks at itslist of observers and sends messagesto
those that registered as being interested in the specific type of notification from
the object that postsit.

A notification is an instance of NSNotification. It has a name and an object—
generaly the object that posted the notification. Notifications are sent to
observers. Because the notification has a pointer back to the object that posted the
notification, observers can use the notification to find out what object posted it
and communicate with that object directly, if they need to.

Three objects are involved in posting a notification:
» The object posting the notification—NSWindow in this case
» The notification—an instance of NSNotification

» The notification center—an instance of NSNotificationCenter, probably the
default center

Note that observers are essentially passive. They rely on the objects they are
observing to post the appropriate notifications. If an object doesn’'t post
notifications, it does no good to observeit.

109

Notification centers notify observers

N
(NSNotification

name [@"NSWindowDidResizeNotification"
object/la

NSWindow]/

windowDidResize:

N
(myControIIer

(NSNotificationCenterw

Notification centers notify observers

When the notification center receives a notification that some observer is
interested in, it forwards the notification to the observer. The notification sends
the message requested by the observer when it registered, including the
notification as the argument.

Notification isreally a broadcast service -- a notification center forwards

notifications to any object that’ sinterested, and will notify them in whatever way
they want.

110 Chapter 5: NOTIFICATION AND DELEGATION

Registering an observer

There are two steps to registering an object as an observer.

First, you get the default instance of NSNotificationCenter using
NSNotficationCenter’ sdefaultCenter class method. All the objects provided
with OPENSTEP post their notifications to the default notification center. To
receive these notifications, you need to register with the default center.

Then, register your object as an observer with the default notification center.
NSNotificationCenter declares the following method for registering observers:

(void)addObserver: (id)anObserver
selector: (SEL)aSelector
name: (NSString *)notificationName
object:(id)anObject

Note that you can specify what message you want sent with the notification. In
thisway registering as an observer is very much like setting yourself up asa
target in the target/action design pattern. The key differenceis an object can have
many observers, but only one target.

When you register as an observer, the arguments anObser ver and aSel ector
must be non-nil. The name or the object to observe, however, can be nil. When
the observed object is nil, the observer gets the specified notifications regardless
of what object posted them. Similarly, the name of the notification can be nil.
When the name is nil, the observer gets notifications from the observed object
regardless of what type they are.

Objectstypicaly register themselves as observersin their initialization method.
Hereisaninit method that registers the object being initialized as an observer for
NSWindowDidResi zeNotification' s posted by any object:

- (id)init
{

NSNotificationCenter *defaultCenter;

self = [super init];

defaultCenter = [NSNotificationCenter defaultCenter];

[defaultCenter addObserver:self
selector:@selector(windowDidResize:)
name:@”’NSWindowDidResizeNotification”
object:nil];

return self;

}
Initialization methods are discussed in more detail in Chapter 12: Inheritance.

111

Removing an observer

- (void)dealloc

{

NSNotificationCenter *defaultCenter;

defaultCenter = [NSNotificationCenter
defaultCenter];

[defaultCenter removeObserver:self];

// other deallocation code

[super dealloc];

Removing an observer

Notification centers do not retain observer objects, so you should be careful to
remove any observers before they are deallocated. The reason notification centers
don't retain their observersisthe notification center has no way of knowing when
the observer should go away. So the notification center would never release the
observer, and your program would leak memory.

Theruletofollow is: If objectA registers objectB with a notification center,
objectA must remove objectB from the notification center before objectA releases
objectB.

Typically, objects register themselves as observersin their initialization method.
In this case, the object should remove itself from the notification center inits
dealloc method. For example:

- (void)dealloc

{

NSNotificationCenter *defaultCenter;

defaultCenter = [NSNotificationCenter defaultCenter];
[defaultCenter removeObserver:self];

// other deallocation code

[super dealloc];

}
Thedealloc method is discussed in more detail in Chapter 12: Inheritance.

112 Chapter 5: NOTIFICATION AND DELEGATION

Example notifications

NSWindowDidRes zeNotification

NSA pplicationDidFinishLaunchingNotification
NSSplitViewDidRes zeSubviewsNotification
NSTextDidChangeNotification

NSViewFrameChangedNotification

Example notifications

Severa objectsin the Application Kit post notifications to the notification center.
These objectsinclude:

L]

NSWindow
NSApplication
NSSplitView
NSText
NSView
NSTableView

When you use a user interface object from the Application Kit, you should
familiarize yoursdlf with the notificationsit posts. Using notifications gives you a
much more sophisticated level of control over how your application works.

113

Delegates
: A\
(NSWindow myControIIer]
delegate D >
J
Delegates

Severa objectsin the Application Kit have an outlet called delegate. This outlet
can be set to refer to any sort of “helper” object.

114 Chapter 5: NOTIFICATION AND DELEGATION

Delegates are "helper" objects

(NSWindow) myControIIer]
delegate D >

windowShouldClose:

Delegates are “*helper’” objects

The object sends requests to its delegate, allowing the delegate to influence its
behavior and aid in decision making. For example, NSWindow has a delegate
outlet. It sends messages to its delegate like windowShouldClose:, asking the
delegate if the window should in fact close when someone asks the window to
close. This message is sent when the user pushes the close box. The delegate
then getsto decide if the window should close or not.

Delegation is very different from notification. Notification is a broadcast service,
notifying observers when an event takes place. Delegation isaway of delegating
decision making power to some other object. Essentially, delegation alows you
to modify the behavior of objects provided in the Application Kit without having
to subclass them yourself.

115

2 ,
Review

Co you want to save changes to Portfoliohanager.nib?

Cancel ”Dn:un’tSave”I Save I

Example of delegation at work

Hereis an example of delegation at work. In applications where you can edit
documents, there' s usually a mechanism for preventing you from losing work by
carelesdy closing awindow. If you try to close awindow containing an unsaved
document, the del egate of the window brings up an alert panel before allowing
the window to close.

116 Chapter 5: NOTIFICATION AND DELEGATION

| mplementing a delegate

A window delegate can give input about some window events

» window resizing

 window hiding

» window moving

* 14 other eventsin the life of awindow

Not every delegate cares about all window events...
the del egate implements methods for events that
itisinterested in.

Implementing a delegate

Windows can do lots of things. Some of the more interesting things are resizing,
closing, moving, and hiding. In general, a delegate might want to take action for
any of these window events. For example, before awindow closes, the delegate
might want to give the user the opportunity to save changes, or prevent the
window from closing altogether.

For each separate type of event in the life of awindow that is suitable for input by
adelegate, NSWindow declares a del egate method. For example, the
windowShouldClose: method isthe delegate method for window closing.
Before the window closes, it sends awindowShouldClose: messageto its
delegate. The delegate can put code that allows the user to save changesin its
windowShouldClose: method.

Not every delegate wants to provide input for all seventeen different occurrences
in the life of awindow. Y ou can implement only the delegate methods you want
called, and to leave the other del egate methods unimplemented.

117

How it works

-(BOOL)windowShouldClose:

if delegate (NSWindow *)sender;
(0)
(NSWindow myControIIer]

delegate D >

respondsT oSelector ;

No

windowShouldClose:

(2)

Howv it works

Before an object sends any message to its delegate, it first makes sure the
delegate implements the appropriate method. It does this by using the
respondsT oSelector : method. Thisisamethod al objects inherit from
NSODbject. The method ssimply checksto seeif the object knows how to respond
to a specified message.

For example, before an instance of NSWindow sendsawindowShouldClose:
message to an instance of MyController, it first does something like this:

[delegate
respondsToSelector:@selector(windowShouldClose:)];

Thisis marked as step (1) in the diagram. The instance of MyController checksto
seeif itimplementswindowShouldClose:. Assuming it does, it returns Y ES.

The instance of NSWindow then sendsthe windowShouldClose: message.
Thisis marked as step (2) in the diagram. The instance of MyController is now
free to allow the user to save changes, cancel the close, or perform whatever
other action it wants to take. In the example, the user cancels the close so the
instance of MyController returns NO.

If the delegate doesn’'t implement window ShouldClose:, no message is sent.

118 Chapter 5: NOTIFICATION AND DELEGATION

Examples of delegate methods

-(BOOL)windowShoul dClose: (id)sender;
-(BOOL)applicationShouldTerminate: (id)sender;

-(BOOL)textShouldEndEditing:(id)sender;

Examples of delegate methods

A few classesin the Application Kit have delegates:
« NSWindow

« NSApplication

« NSText

119

Implementing a delegate method

Here is an example implementation of the delegate message
windowShouldClose:.

- (BOoOL)windowShouldClose: (NSWindow *)sender

{
int answer;
answer = NSRunAlertPanel(@”Close”, @”Are you certain?”,
@”Close”, @”Cancel”, nil);
switch (answer) {
case NSAlertDefaultReturn:
return YES;
default:
return NO;
3
3

120 Chapter 5: NOTIFICATION AND DELEGATION

Common errors with delegates

-(BOOL)windowShouldClose:
(NSWindow *)sender;

(NSWindow] myControIIer]

delegate |:|

Common errors with delegates

A very common complaint is, “My delegate method isn't getting called.” Thisis
typically because the name of the method is misspelled, or the del egate outlet
was never set.

Y ou can set the delegat e outlet in two ways—in Interface Builder, or
programmatically by using the object’ s setDelegate: accessor method.

121

Delegates are automatically observers

Example: awindow delegate is registered to receive al
notifications

* Posted by a window

» Implemented by a delegate

Delegates are automatically observers

Often, adelegate is interested not only in delegate messages, but also
notifications. To make this easier, delegates are automatically registered as
observersfor naotifications if they implement a correspondeing notification
method.

For example, assume the object myController has been set as the delegate of an
NSWindow. If myController implementsthe method windowDidM ove:, it
isautomatically registered as an observer for NSWindowWillMoveNaotifications
posted by the window.

122 Chapter 5: NOTIFICATION AND DELEGATION

DEMONSTRATION 5.1 DELEGATION: A DELEGATE OF NSAPPLICATION

m| Terminate

Are you certain you wish to guit?

Mo I | Wag !

Notification and delegation are powerful design patternsthat give you agreat deal
of control over how an application runs. This demonstration shows how to
simply and cleanly create an application that asks the usersif they really want to
quit after they choose the Quit command.

In this demonstration you create a controller object called ApplicationController.
ApplicationController isthe controller for the application asawhole. Thisis
where functionality that applies to the entire application goes. In this
demonstration you write code to make ApplicationController notice when the
application is about to terminate, and give the user achance to interrupt the
process.

Objectives

After completing this demonstration, you' |l be able to:
» Create a controller object for the PortfolioManager application
» Make a connection from the File’'s Owner in Interface Builder
» Make your controller the delegate of NSApplication

» Implement amethod that allows users to prevent the application
from quitting

123

Demonstration

1.

Create anew application project called Por tfolioM anager . Open
PortfolioM anager .nib.

Create a new subclass of NSObject called ApplicationController. Create the.m
and .h filesfor ApplicationController using the Create Files command in Interface
Builder’s Classes menu.

Create an instance of ApplicationController by choosing Instantiate in the Classes
menul.

. Connect the delegate outlet of File's Owner to ApplicationController. The File's

Owner of the main nib file for an application isthe NSApplication object. At run-
time, the ApplicationController instance will be NSApplication’s delegate and will
therefore receive del egate messages.

. Add the following method declaration to ApplicationController.h:

- (BOOL)applicationShouldTerminate: (NSApplication *)sender;

. Add the following method definition to ApplicationController.m:

- (BOOL)applicationShouldTerminate: (NSApplication *)sender
{

int answer;

answer = NSRunAlertPanel(@"Terminate",
@"Are you certain you wish to quit?",
@"vYes",
@""No"™, nil);
switch (answer) {
case NSAlertDefaultReturn:
return YES;
default:
return NO;
}
}

This method runs an attention panel when ApplicationController receives an
applicationShouldTerminate: message. If the user presses the default
button, Y es, the method returns Y ES and the application quits. Otherwise, the
method returns no and the application continues running.

Make sure all the files are saved. Build and test the project. Ensure that attempting
to quit the application brings up the alert panel, and that the two buttons function
as intended.

124

Important ideas from this section

»

»

»

»

»

»

»

»

»

Before closing, awindow does two things:

Sendsits delegate awindowShouldClose: message, if the delegate
implements the corresponding method

Posts an NSWindowW: llClose notification on the default
notification center
Observersreceive notifications of eventsthey can’t change
Delegates can dter events they are informed of
Notification is donein three parts:
Observersregister with the notification center

Posters post notifications on the notification center
The notification center informs the “interested” observers

Remove observers from the notification center before they are deallocated
A delegate acts as a hel per object for several Application Kit classes

An object can have many observers, but only one delegate

Delegates only implement delegate methods they are interested in
Delegates are automatically registered to receive notifications

125

REVIEW DELEGATION AND NOTIFICATION

1. What isan observer? How do you make an object an observer?

2. Describe the notification process.

3. What isadeegate? How do you make an object a delegate?

4. What are the following classes for?

a. NSNotificationCenter

b. NSNoatification

5. Namethree classesin the Application Kit that can have both del egates and
observers.

126 $paratext[ChapterNumber]: $paratext[ChapterTitle]

EXERCISE 5.1 DELEGATION: A DELEGATE OF NSWINDOW

m| Close

Are you cerain?

(e,
Cancel I || Close I|
I A

Y ou’ ve seen how to set up an application delegate in Interface Builder and
implement a delegate method. In this exercise, you set the main window’s
delegate outlet to the instance of ApplicationController. Thisalowsthe
application to bring up an dert pand if the user attemptsto closeits

main window.

Objectives

After completing this exercise, you'll be able to:

» Set adelegate of NSWindow in Interface Builder
» Add adelegate method to a class you' ve written

» Use awindow delegate to control window closing

127

Exercise
1. Open the PortfolioManager project from ExerciseMaterials/Provided.

2. Add the method windowShouldClose: to the ApplicationController class. Make it
bring up an aert panel that asks the user if it's OK to close the window.

3. Set up the necessary connectionsin Interface Builder so your instance of
ApplicationController receives del egate messages from the gpplication’s main
window.

4. Build and test the application. Make sure the aert panel comes up when you try to
close the main window and that the buttons do what they’ re supposed to.

128 $paratext[ChapterNumber]: $paratext[ChapterTitle]

