
Chapter 12

WORKING WITH TABLE VIEWS

274 Chapter 12: WORKING WITH TABLE VIEWS

CHAPTER 12 WORKING WITH TABLE VIEWS

Goal

To study the common techniques for using an NSTableView including the
design of a custom data source.

Prerequisites

An understanding of delegation and notification.

Objectives

At the end of this section, you will be able to:

» Write a custom data source object that works with a multi-column
table view

» Make use of common NSTableView methods for reloading, selecting and
tracking changes

Reading

NSTableView class reference in the Application Kit

275

NSTableView for presenting tabular data

An NSTableView displays a set of related records, typically business objects. A
row maps to a single object. Each column maps to an attribute of the object for
that row. Most often, the number of rows and or columns is variable and exceeds
the dimensions of NSTableView real estate so NSTableViews are usually
surrounded by an instance of NSScrollView. Take note of this. When making
connections in Interface Builder, be sure you are pointing to the table view, not
the ScrollView.

The user selects rows or columns in the table by clicking and edits individual cells
by double-clicking. The user can rearrange columns by dragging the column
headers and can resize the columns by dragging the divider between headers. You
can configure the table in various ways programmatically or using Interface
Builder. A table view can be configured for multiple selection or no selection, or
prohibit the user from editing or rearranging particular columns, and so on.

Though designed for multiple columns, NSTableView is convenient even for a
single column list of items. In either case, the programmatic interface is
the same.

276 Chapter 12: WORKING WITH TABLE VIEWS

NSTableView attributes

Some basic vocabulary is useful when dealing with NSTableViews:

» row—a row usually maps to one object in your data model.

» column—a column maps to an attribute of the object for that row. Some
columns may hold derived or calculated values. Often, only a subset of the
object’s attributes appear in the table view. Each column sports a handful of
configurable attributes:

title—the column heading in the table.

identifier—an object value, most often a string, that is used to map a
column to an attribute in the object. It might be the attribute name o a
number like a tag.

dataCell—a single object value within a table view. It is possible to
configure a column to use a custom cell if your application needs to use
one. By default, it uses NSTextFieldCell.

formatter—like a text fields, a table view column can use a formatter. The
formatter automatically applies to all cells in the column.

Like most user interface elements, NSTableView is a subclass of NSControl. As
such, it supports a target/action connection. In addition, you can set a
doubleAction which will be sent when the user double-clicks on anything other
than an editable cell. This cannot be set in Interface Builder: use
setDoubleAction:(SEL)action.

277

NSTableView uses a data source

The data source provides the table view with data
 • number of rows
 • value object for each cell

The data source tracks user interactions with the table view
 • saves user-edited values
 • is notified of state changes - selection, editing

NSTableView uses a data source

Unlike more simple NSControls, NSTableView doesn’t store the data it displays.
Instead, it cooperates with a custom helper object that you provide—its data
source.

Your data source can manage its data in any way, but it must be able to map data
instances to an integer index—a row—and must implement methods to provide
the following:

» How many records the data source contains—rows.

» What the value is for a particular record’s attribute—columns.

» A method for changing a value of an attribute in the data source. If your table view
is configured to allow editing, changes must be saved back to the data source.

278 Chapter 12: WORKING WITH TABLE VIEWS

A data source is a controller

This is another example of the Model-View- Controller pattern:

» model—the business objects being displayed

» view—the NSTableView user interface object

» controller—your custom data source

Typically, a data source points to an array of business objects. This is the true
source of data used to fill the NSTableView cells.

279

Data source methods

MyDataSource

tableViewdataSource

NSTableView

- (int)numberOfRowsInTableView:(NSTableView *)tableView

-(id)tableView:(NSTableView *)tableView
 objectValueForTableColumn:(NSTableColumn *)column
 row:(int)row

- (void)tableView:(NSTableView *)tableView
 setObjectValue:(id)object
 forTableColumn:(NSTableColumn *)column
 row:(int)row

Data source methods

The NSTableView sends several messages to access the contents of its data
source. These methods are implemented by you in your data source:

» numberOfRowsInTableView:—return the number of rows to display

» tableView:objectValueForTableColumn:—return a single value object
corresponding to a specific row/column pair. Cells are filled lazily, one at a time,
and only if they are actually visible.

» tableView:setObjectValue:forTablecolumn:row:—works in the reverse
direction—the table view is passing the data source a user-modified value from the
user interface. It needs to be written back to the data source.

The data source must implement the first two methods to work properly with a
table view. If the table view is read-only, you don’t need the third.

280 Chapter 12: WORKING WITH TABLE VIEWS

Getting the number of rows

- (int)numberOfRowsInTableView:(NSTableView *)tableView
{
 return [expenseArray count];
}

Getting the number of rows

When a table view is told to display itself, it is sent a reloadData message, it
first asks the data source how many items will be displayed. The data source
consults its model, such as an NSArray of objects, and returns the count.

281

Getting a value

- (id)tableView:(NSTableView *)tableView
 objectValueForTableColumn:(NSTableColumn *)column
 row:(int)row
{
 Expense *expense;
 NSString *identifier;

 expense = [expenseArray objectAtIndex:row];
 identifier = [column identfier];
 if ([identifier isEqualToString:@"Category"])
 return [expense category];
 else
 return [expense date];
}

Getting a value

Equipped with the proper number of rows, the table view now asks the data
source for individual cell values for the rows that are currently visible. As the
user scrolls around, new cells come into view and need to have their values
fetched from the data source. Each time the table view messages the data source
with tableView:objectValueForTableColumn:row:.

The table view is expecting a dynamically typed object as a return value. What
kind of object is appropriate? Just like a text field, the object can be any value-
type object that responds to the description method. Ultimately, the table view
needs a string value to display in the cell. ObjectValues are typically NSStrings,
NSCalendarDates, NSNumbers or custom value objects of your own design.

How do you know which attribute goes with which column? Remember that the
user can rearrange the columns so the column number is not helpful. This is
where the identifier is used. This is an object value that you choose to be
helpful in this exact situation. You can set a string value in Interface Builder. You
can programmatically set any value object you wish. In this example, a string
value is used—a tag that names the attribute in the business object.

282 Chapter 12: WORKING WITH TABLE VIEWS

Saving a change (optional)

- (void)tableView:(NSTableView *)tableView
 setObjectValue:(id)object
 forTableColumn:(NSTableColumn *)column
 row:(int)row
{
 Expense *expense;
 NSString *identifier;

 expense = [expenseArray objectAtIndex:row];
 identifier = [column identifier];
 if ([identifier isEqualToString:@"Category"])
 [expense setCategory:object];
 else
 [expense setDate:object];
}

Saving a change (optional)

If the user edits a value in the table, the table view informs the data source so that
the table view and the data model are kept in sync. If your table view is read-
only, you are not required to implement this.

Your document component design should track changes to the data so that
attempts to close without saving generate warnings. This is an ideal place to do it.
But this is not the only change typical of a table view. Your interface might allow
the user to add or delete a row. Such actions would be possible through other
controls on the window that contact your data source or controller object directly.
Inside each control’s action message, you track the modification for future use.

So how would you add or delete a row dynamically? Change the data model—
add or remove an object from the NSArray—then tell the table view something
has changed. Ask the table view it to reload itself with reloadData.

283

Commonly used NSTableView methods

Forcing the table view to reload data

Informing table view that number of rows has changed

Finding out the selected row

Programmatically selecting and scrolling

[myTable reloadData];

[myTable noteNumberOfRowsChanged];

selection = [myTable selectedRow];

[myTable selectRow;row byExtendingSelection: NO];
[myTable scrollRowToVisible: row];
[myTable scrollColumnToVisible: column];

Commonly used NSTableView methods

You have learned the methods that the table view uses in your data source object.
Messages will flow in the opposite direction too. The data source needs to message
the table view to bootstrap data loading, inform it of changes in the data,
programmatically select rows and cells and a variety of other possibilities.

Here are some of the most commonly used NSTableView methods:

» reloadData—forces the table view to reload from the data source.

» noteNumberOfRowsChanged—informs the table view that the size of the
data source—the number of objects—has changed.

» selectedRow—returns the index of the currently selected row.

» selectRow:byExtendingSelection:—programmatically selects a row, with
a provision for either appending to the currently seleted rows or clearing the
previous selection.

» editColumn: row: withEvent: select:—like NSTextField’s selectText
this allows you to put an individual cell into edit mode programmatically.

284 Chapter 12: WORKING WITH TABLE VIEWS

NSTableView delegation and notification

NSTableViewSelectionDidChangeNotification

NSTableViewColumnDidMoveNotification

NSTableViewColumnDidResizeNotification

NSControlTextDidChangeNotification

NSTableView delegation and notification

Your data source can closely follow the user’s interaction with the table view by
registering as an observer for these and other notifications. Note, unlike some
objects, attaching yourself as a data source or delegate does not automatically
register you for all notifications.

It is likely whenever a user modifies the object value of a table view cell, your
document should be marked as edited in preparation for saving it when the time is
right. You could track such changes in two different ways:

» NSControlTextDidChangeNotification

» tableView:setObjectValueForTableColumn:row:

Your data source must implement the latter if you expect to save the user’s
changes to the document. The former might be a useful addition depending on
your design.

Note: NSTableViewSelectionDidChangeNotification is posted when the
selected row changes, not necessarily the column. You can think of it as the
selected object changed since one row typically maps to one object in your data
source model.

285

Table view and data source component design

window

dataSource

DocController

Model

NSWindow

delegate

dataSource

DocController

TableView

data

MyDataSource

nib

Table view and data source component design

This approach separates the document controller from the data source since the
former controls the document as a whole while the latter controls one of possibly
many views on the document window. The document controller is still File’s
Owner and is created outside the nib file. It manages the common reusable
aspects of a document controller—loading the nib, tracking modificatn status,
handling window delegation, and dealing with Open and Save panels and
pathnames.

The data source, on the other hand, is instantiated inside the nib file since it is
tightly coupled with the table view itself. It is the controller in a Model-View-
Controller trio with the table view (view) and the data (model). Its job is to
synchronize the view with the model. It is possible to imagine some general and
reusable designs for the data source itself, such as a data source that takes a
simple array of objects.

Some amount of communication must happen between the document controller
and the data source—the document controller will likely pass a filename or even
the unarchived data model to the data source. The data source must inform the
controller that the data has been modified; the document should be considered
edited.

An alternate design might combine the document controller and table view data
source into a single object. While this is more simple, in the long run it is a less
flexible design.

286 Chapter 12: WORKING WITH TABLE VIEWS

Important ideas from this section

» NSTableViews rely on their data source for:

number of rows

objectValues for each cell

saving user changes back to the model

» A data source is much like a delegate, a “helper” for customizing the table view
for your application.

» A data source is required to implement the following:

numberOfrowsInTableView

tableView:objectValueforTablecolumn:

» NSTableView posts a number of useful notifications. You must explicitly register
your observer to get them. This would typically be your data source object.

Class featured in this section

NSTableView

287

REVIEW WORKING WITH TABLE VIEWS

1 . Why should table views use data sources?

2 . In what way is a Table View radically different from a NSControl?

3 . How do you know which attribute in your data object maps to which column
in a table view?

4 . Why might a table view with a single column be useful?

288 Chapter 12: WORKING WITH TABLE VIEWS

EXERCISE 12.1 EXPENSE REPORT—ADDING A TABLE VIEW TO THE DOCUMENT

In this exercise you evolve the multiple-document template application into a
simple expense report application. Expenses are listed in a scrollable table view.
The expense report is built around a simple business model object, Expense,
which is fully implemented for you as part of the exercise materials. The data for
the expense report is an array of Expense objects. Your custom table view data
source will map the data into the user interface and reflect user edits back into the
data.

Objectives

After completing this exercise, you will be able to:

» Display tabular data using NSTableView

» Write a data source for a table view

» Modify tabular data via NSTableView and a data source

289

Exercise—Stage 1

1 . Make a copy of the previous project to keep a reference copy. Open the new
project and change the project name to Expenses, in order to distinguish it
from earlier versions. Save it.

2 . You will need the Expense object and the skeleton table view data source. These
files are all in the ExerciseMaterials area—Expense.h, Expense.m,
ExpenseDataSource.h and ExpenseDataSource.m.

» Drag these files into the Classes suitcase of your Documents subproject.

» Study ExpenseDataSource.m carefully to understand some of the
support implemented for you. The init method builds a dummy array of
Expense objects so you have some initial test data to work with. In future
exercises, you will evolve the application to open a previously saved file
or bring up a new, empty expense report.

3 . Open the Document nib file in Interface Builder and modify the interface:

» Delete the old modify button.

» Add a table view from the palette. It should have three columns. You can
add columns by selecting one, copying and pasting it.Change the column
titles of the table view to be Date, Category and Amount.

» For each column, set the identifier attribute using the inspector to the
corresponding Expense object attribute names—date, category and
amount. This allows the columns of the table view to be identified by
something other than their titles.

290 Chapter 12: WORKING WITH TABLE VIEWS

Hint: These identifiers are used in the data source methods. They can be used to
generate selectors that communicate directly with Expense objects. Other
mappings are possible.

4 . Next, you provide the data source for the table view and connect it to the other
objects in the nib.

» Drag ExpenseDataSource.h into Interface Builder’s class browser so
you can use the class. Create an instance.

» Connect the table view to the ExpenseDataSource instance which is both
its delegate and its data source. Be sure to connect from the table view and
not the scroll view which surrounds it.

» Connect the ExpenseDataSource tableView outlet to the table view.

» Implement the two required data source methods used to fill the table
view. The data source has a instance variable for the array of Expense
objects called array. Table view rows correspond to array indicies. You
will have to map a column identifier to an instance variable in the correct
Expense object instance. You can use the identifier to generate the
accessor method selector. Your data source already implements the
method accessorFromIdentifier. Use it like so:

SEL sel = [self accessorFromIdentifer: identifier];

id value = [expenseInstance performSelector:sel]

» The data source needs to load the table view in awakeFromNib.

5 . Make sure everything is saved and then build the project. At this stage
you have an application that should display the test data when you open a new
document. You cannot change any of the data yet. Stage 2 adds
this functionality.

291

Stage 2

1 . The next part of the exercise is to allow changes to the underlying data. To do
this, the data source must be able to accept changes from the table view, sent via
the -tableView:setObjectValue:forTableColumn:row: method.

» You can make use of the existing setAccessorFromIdentifier:
method to obtain the required method selector or just do a simple hard-
coded comparison using the column identifier.

SEL sel = [self setAccessorFromIdentifer: identifier];

[expenseInstance performSelector:sel withObject:value];

Hint: When the user edits anything in the table, they are changing the document.
You should include code to notify the document of this change. This can be done
either by messaging the document window’s delegate, which you can find via the
table view, or by updating the window’s isDocumentEdited flag directly.

2 . Rebuild the project and see if you can edit items. Does the document window
indicate that the document is modified? If you had implemented it earlier, are you
still warned if you try to close a modified document?

292 Chapter 12: WORKING WITH TABLE VIEWS

Stage 3

1. The last stage is to make your expense report extensible. The picture above
shows the required user interface controls—Add and Delete buttons.

2 . Make the necessary changes to your ExpenseDataSource, including the addition
of the two action methods:

» -add:—create a new Expense object and add it to the array instance
variable. You should mark the document as modified, as you did earlier
when the user edited a field.

» -delete:—delete the currently selected object from the array instance
variable. You can determine which row is selected by asking the
tableView. The document status also needs updating in this method.

» After any change in the number of rows, you should tell the table view to
reloadData so that the changes are reflected in the display.

3 . Make the changes to the interface:

» Drag the new ExpenseDataSource.h file into Interface Builder to get
the new outlets and actions.

» Position the Add and Delete buttons on the document window.

» Drag connections from the two buttons to the appropriate actions in the
ExpenseDataSource.

4 . Save everything and build the project. Check that you can add and delete
expense items.

293

Enhancements
» The delete button is always enabled. What if there are no rows? What if no row is

currently selected? You will need an outlet to the Delete button so you can toggle
its enabled status. See the table view delegate method
tableViewSelectionDidChange: for more information.

» When you add a new row with the Add button, it should be automatically selected
and scrolled into view.

» Add a total field to the interface and implement the logic in the data source to keep
it up-to-date.

294 Chapter 12: WORKING WITH TABLE VIEWS

