
Chapter 1

Introduction To Objects

CHAPTER 1 INTRODUCTION TO OBJECTS

Programming languages have traditionally divided the world into two parts—data
and operations on data. Data is static and immutable, except as the operations may
change it. The procedures and functions that operate on data have no lasting state of
their own; they’re useful only in their ability to affect data.

Object-oriented programming doesn’t so much dispute this view of the world as
restructure it at a higher level. It groups operations and data into modular units
called objects and lets you combine objects into structured networks to form a
complete program. In an object-oriented programming language, objects and object
interactions are the basic elements of design. — Object-Oriented Programming and
the Objective-C Language, page 1.

Goal

To understand the role of objects and classes in object-oriented programming.

Prerequisites

Experience using the C programming language, including a basic understanding
of pointers.

Objectives

After completing this chapter, you’ll be able to:

» Explain objects, instance variables, and classes

» Define polymorphism, encapsulation, and identity

Reading

You can find more information about objects and object-oriented programming in
/System/Documentation/Developer/TaskAndConcepts/ ObjectiveC

3

An object is a piece of memory

gender

38472spouse

2points

yearOfBirth

'F'

1931

An object is a piece of memory

Computers treat nearly everything as a piece of memory. Programs, numbers,
characters, images, and documents are all pieces of memory to a computer.
Objects are no exception.

Typically, an object is a piece of memory that represents something in the real
world. For example, imagine a program that holds data on people for a car
insurance company. While the program is running, there are many pieces of
memory, each containing data for one person. In a traditional C program, these
pieces of memory would be structs. In an object-oriented program, these pieces
of memory are objects.

Inside each object, there are several smaller pieces of memory: a character that
represents the gender of the person, an integer representing the year of birth,
another integer representing the number of points on the person’s drivers license.
These smaller pieces inside an object are called instance variables. Objects use
instance variables to store information about themselves.

4 Chapter 1: INTRODUCTION TO OBJECTS

Instance variables can be pointers

gender

38472spouse

2points

yearOfBirth

'F'

1931

gender

49034spouse

1points

yearOfBirth

'M'

1935

Instance variables can be pointers

Recall that a pointer is a variable that holds a memory address. In C it’s possible
to follow a pointer in order to access the information that resides at that memory
address.

Like other pieces of memory, every object lives at some address. Because
instance variables can be any type, an instance variable can contain the address of
another object. Therefore, an instance variable can point to another object. For
example, an object representing a person could have an instance variable called
spouse. This instance variable would contain the address of the object
representing the person’s spouse. In this way, one object can “know” another.

5

Pointer notation

gender

spouse

2points

yearOfBirth

'F'

1931

gender

spouse

1points

yearOfBirth

'M'

1935

Pointer notation

Objects often have instance variables that are pointers to other objects. To make
the diagrams clearer, this is represented by an arrow that points from the object
with the pointer to the referenced object. It is easy to imagine that objects can be
arranged in a complex network of pointers.

Recognizing object connections is a very important part of object-oriented
development. Object-oriented analysis can be thought of as having two parts:

» Finding the objects that represent your enterprise

» Understanding their connections to other objects

6 Chapter 1: INTRODUCTION TO OBJECTS

Strings

name

points

gender

"Alex Kim"

Strings

Character strings are represented as objects. When your object has an instance
variable that refers to a string, the instance variable is actually a pointer to a string
object. String objects are used instead of char *’s in order to make string
manipulation easier. This has many benefits, including transparent support for
international character sets.

Many other types of commonly encountered data can be represented as objects.
For example, dates can be represented as objects.

7

String notation

gender

38472spouse

name

'F'

@"Alex Kim"

String notation

Strings are very common. Diagrams would be very complex if they used a
separate box for every string. Therefore, the diagrams simply show the string
inside the object. It’s important to remember that the string is actually a separate
object.

The symbol “@” is used in many contexts. It often means, “This is an object.”
The @ symbol that precedes the character string in the diagram is a reminder that
the string is really an object.

8 Chapter 1: INTRODUCTION TO OBJECTS

Objects respond to messages

gender

2points

name

'M'

@"Ann Dodd"
addPoint

Objects respond to messages

Objects are different from most other pieces of memory.They have behavior. In
addition to storing data, they understand how to perform operations on that data.
You send messages to objects to invoke their behavior. Messages are a lot like
function calls—they’re a way to tell an object what to do.

When you send a message to an object, the object invokes a corresponding
method. Methods are like functions, the logic that provides the desired behavior.
Most methods read or change the values of instance variables, because the values
of its instance variables are a large part of what makes an object unique.

For example, a person object might understand the message addPoint. The
response to that message would be to increase the number of points on their
driver’s license by one. This response is the method.

Programmers who are new to objects often confuse methods and messages.
Messages are stimuli that cause a method to be executed. A method is a set of
instructions to be executed. Messages are transient. A method is an unchanging
property of the object.

Each object has a set of messages it understands. Two different types of objects
might not understand the same set of messages. Car objects, for example, would
not understand the message addPoint.

9

Methods can return values

spouse

3points

name @"John Pire"

spouse

2points

name @"Tina Pire"

hasMorePointsThanSpouse

YES

Methods can return values

Some messages are orders to the objects. When you send addPoint to a person
object, you’re telling that object to do something. Sometimes you want to ask the
object something about itself, not make it do something. For example, you might
want to ask a person object if it had more points than its spouse object. You’d
send a message like hasMorePointsThanSpouse. In order for this message to
do any good, the corresponding method must be able to return a yes or no. To
support this, methods can have return values.

Different methods provide different types of return values. Some return a yes or
no, some return a number, some return a pointer to another object. Return values
can be of any C type, including a pointer to an object.

10 Chapter 1: INTRODUCTION TO OBJECTS

Objects cooperate

spouse

3points

name @"John Pire"

spouse

2points

name @"Tina Pire"

hasMorePointsThanSpouse

YES

(1)

points
 (2)

 2

Objects cooperate

In order to implement the hasMorePointsThanSpouse method, the person
object needs to know how many points its spouse has. To find this out, the
person object simply sends a points message to its spouse asking how many
points the spouse has. The person can then compare this value with the number
of points it has. In this way, the person and spouse object cooperate to provide
the correct answer to a hasMorePointsThanSpouse message.

In the diagram, this operation takes place in three steps:

1 . Some client sends hasMorePointsThanSpouse to the person object whose
name is “John Pire.” This is message 1 in the diagram.

2 . To respond to this message, the person object needs to know how many points its
spouse has. The person object sends a points message to the object pointed to by
its spouse pointer. This is message 2 in the diagram.

3. The person object compares the value returned by its spouse with its own number
of points, and returns YES.

Most activity in an object-oriented program is this sort of cooperation. Objects
know about other objects through pointers. Objects send messages to the objects
they know about. It’s useful to think of objects as actors. To find out how many
points its spouse has, the person object asks—it sends a points message to its
spouse.

11

Methods can take arguments

spouse

3points

name @"John Pire"

spouse

4points

name @"Max Plex"

hasMorePointsThan:

NO

Methods can take Arguments

Messages like points and hasMorePointsThanSpouse are fairly static. They
assume there’s an existing object network, and clients are only interested in
querying that network. This is very limiting.

To allow for increased flexibility, methods can be written that take arguments.
For example, the Person class could have a method hasMorePointsThan: that
takes another person as an argument. When you send the
hasMorePointsThan: message, you include a pointer to another person. The
method has access to this pointer and can query the other person about how many
points it has.

As with return values, arguments can be of any C type, including a pointer to
another object. Methods can take multiple arguments. For each argument
expected by a method, there is a ‘:’ in the method name. Again, methods are very
similar to C functions.

12 Chapter 1: INTRODUCTION TO OBJECTS

Objects can be classified

spouse

intpoints

name NSString *

Person *

spouse

0points

name @"Jen Wid"

spouse

0points

name @"Ron Ti"

Person

PersonPerson

Objects can be classified

When you think about objects in the real world, you tend to classify them. For
example, human beings can be classified as “people.” Similarly, objects can be
classified. In the previous example, you saw two different objects that were both
classified as “person objects.” Objects of the same type are associated with the
same class.

A class is like a factory that can create objects of the same type. For example,
take the Person class. The Person class can create objects representing people.
These objects are known as instances of the Person class.

Every object is an instance of some class. Different types of objects are instances
of different classes. If a program contains information about people and cars, it
probably has a Person and Car class. When you run the program, the Person and
Car classes each create several instances of themselves.

The information a class contains can be thought of as a blueprint for an object.
The class has a list of instance variables. It also defines methods for its instances.
Each object the class creates has all the instance variables on the list. Each object
the class creates responds to messages according to the methods defined in the
class. To create a new type of object, a programmer must write a new class.

13

Object behavior

isa

intpoints

name NSString *

Class

Person

isa

2points

name @"Tes Iz"

Person

isa

NSString *format

value int

Class

NSCalendarDate

isa

@"%d%b%Y"format

value 12484732

NSCalendarDate

description

description

@"2 May 1965"

@"<Person:0x14a5c>"

Object behavior

The behavior of an object depends upon the class that created it. Objects of
different classes can respond to the same message in different ways.

For example, all objects respond to the message description. When an object
receives a description message, it returns a string describing itself. Most
objects return a string containing the name of their class and the address in
memory where the object instance resides. For example, an object of the Person
class located at memory address 0x270e8 would return the following description:

<Person: 0x270e8>

While this type of description is accurate, it’s not always the most useful thing.
For example, when you ask a string for its description, you’d expect to get some
sort of representation of its contents. Therefore, a string simply returns a copy of
itself. A date returns a neatly formatted representation of itself, such as this:

22 November 1990

When an object receives a message, it looks up the corresponding method in its
class. How does an object remember which class created it? Every object has an
instance variable isa. The isa pointer contains the address of the object’s class.

14 Chapter 1: INTRODUCTION TO OBJECTS

Polymorphism

isa

2points

name @"Tes Iz"

Person

isa

@"%d%b%Y"format

value 12484732

NSCalendarDate

description

description

@"2 May 1965"

@"<Person:0x14a5c>"

Polymorphism

Note that with description, objects in different classes respond to the same
message in different ways. However, the result is the same: a good text
representation of the object. This concept is known as polymorphism.
Polymorphism is the ability of two objects to respond to the same message in
different ways with analogous results.

The way polymorphism is implemented is by providing a separate namespace for
method names in each class. This allows two classes to have methods with the
same name, but different implementations. Without polymorphism, method
implementations would be unmaintainable rat’s nests of conditional statements.
For example:

if (theObject’s class is Date)
theDescription = [theObject describeAsDate];

else
theDescription = [theObject describeAsPerson];

With polymorphism, this code becomes:

theDescription = [theObject description];

This code is reusable with many different classes of objects. It also means fewer
method names for a programmer to learn and remember.

15

Interface Implementation

Encapsulation

Encapsulation

The only way to manipulate an object is to send it messages. Only the methods of
an object are allowed to read or change the values of its instance variables. You
cannot directly access an object’s instance variables from outside the object. They
are “encapsulated” in the object.

The interface of a class is the list of methods provided by objects of that class.
People using instances of your class only have access to the interface. They don’t
know how your class does something, they just know how to access it. For
example, the interface to a watch is the watch face, minute hand, and hour hand.
Using this interface, someone using a watch can find out what time it is, even if
they don’t know how a watch works.

The implementation of a class is its instance variables and methods. These are
the details of how the work gets done. In the clock example, the gears, springs,
and fly wheels are the implementation. The way the watch tells time is through its
implementation. The way the watch makes the time available to others is through
its interface.

When you use a class, you only need to know the interface. When you write a
class, you need to create an implementation that makes the interface work.
Encapsulation is the separation of interface from implementation.

16 Chapter 1: INTRODUCTION TO OBJECTS

Benefits of Encapsulation

Encapsulation has two main benefits:

1 . To use a class, you need to have its interface, but not the implementation.
Encapsulation makes it easier to use a large framework of classes by providing a
layer of abstraction that hides the implementation. When you use a class you don’t
need to know how an instance does something, you just need to know what the
instance does. Without thinking about the detail of a class, you can think at the level
of the object itself. This shifts the problem solving to a higher level, namely, that of
real world objects.

2 . Encapsulation makes it possible to change implementations. As long as the interface
doesn’t change, clients of the class won’t know or care that the implementation
changed.

For example, imagine you wrote a Person class with the instance variable
yearOfBirth, an integer. Later on, you decide it would make more sense to use
dateOfBirth, a pointer to a date object. You could rewrite the class to use the
dateOfBirth date object without changing the interface. Because other parts of the
program only use the interface to the Person class, changing the implementation
won’t break them.

17

Equality and Identity

2points

name @"Jim Rit"

Person

8377528849

2points

name @"Jim Rit"

Person

Equality and identity

It’s possible for two different objects to be of the same class and contain the same
data. These objects are distinguishable only because they live at different
addresses in memory. However, in many ways the two objects are equivalent.
After all, they’re of the same class and have the same data.

In order to be able to talk about this type of situation precisely, it’s useful to
define some terms for use when comparing pointers to objects.

» Two object pointers are identical if they point to the same address in
memory. They point to the exact same object.

» Two object pointers are equal if they point to equivalent objects. Generally
this means the objects have the same class and the same data. In real terms, it
means that if you send the isEqual: message to one object with the other
object as the argument, the return value will be YES.

For example, imagine two string objects. Each contains the string “dog”.
However, the two objects are located at different addresses in memory. These
two objects are equal, but not identical.

Identity is the property of an object that distinguishes it from all other objects. In
nearly all object-oriented languages, identity is determined by the memory
address of the object.

18 Chapter 1: INTRODUCTION TO OBJECTS

Objects can be shared

lastSale

name @"Sid Slick"

Salesperson

2points

name @"Ron Wyz"

Buyer

vehicle

10,000value

name @"555-ABC"

Automobile

Objects can be shared

When constructing a network of objects, two different objects might both want to
reference some third object. For example, both the buyer and the salesperson
would be interested in the same automobile. The buyer wants to purchase the
automobile, the salesperson wants to sell it. Both need to know how to query the
automobile for information about its price, color, features, or other attributes.

This type of object sharing works very easily. Two different objects can both
have instance variables that point to the same third object. Because neither the
buyer nor the salesperson have their own private copy of the automobile, any
changes made to the automobile are visible to both. For example, if the factory
installs an air conditioning system, both the buyer and the salesperson could find
this out by querying the automobile.

19

Referring to multiple objects: NSArray

NSArray

2points

name @"Ty Hass"

Person

children

0points

name @"Jen Hass"

Person

0points

name @"Mike Hass"

Person

spouse

Referring to multiple objects: NSArray

Sometimes it’s useful for one object to refer to many other objects, all of them
conceptually the same type of thing. For example, imagine that you want the
Person class to include a reference to any children the person might have. A
person might have zero, one, or more children. How can we implement this?

One option would be to create a fixed number of instance variables named
child0, child1, child2, on up to the maximum number of children you think is
reasonable. This suffers from a number of flaws. For example, what if someone
has a different idea of how many children are “reasonable?”

A much better solution is to have a single instance variable that can refer to a
variable number of children. To get this sort of behavior we use collection
classes. The most common collection class is NSArray. An instance of
NSArray can hold references to any number of objects. Using NSArray, you
would create a single instance variable, children, that pointed to an NSArray.
The NSArray would in turn point to however many children the person had.

Arrays are represented in diagrams using a special symbol. While an array is an
object like any other, it is very important to later sections of this course. Arrays
have a special symbol in diagrams so they’re easy to recognize at a glance.

20 Chapter 1: INTRODUCTION TO OBJECTS

Important ideas from this section

» Objects are pieces of memory

» Objects store information about themselves in instance variables

» Instance variables can be pointers to other objects

» Objects have behavior as well as data

» You invoke an object’s behavior by sending it messages

» Classes are blueprints for objects

» Classes create objects

» An object’s behavior depends on its class

» Objects of different classes can respond to the same message in different,
analogous ways

» Encapsulation is the separation of interface from implementation

» Objects can be shared

21

REVIEW INTRODUCTION TO OBJECTS

1. What is an object?

2 . What is a class?

3 . How do you get an object to do something?

4 . Describe polymorphism:

5 . The following is a quotation from Object-Oriented Programming: An
Evolutionary Approach by Brad Cox:

“Before the industrial revolution, the firearms industry was hardly an
industry at all but a loose coalition of individual craftsmen. Each firearm
was crafted by an individual gunsmith who built each part from raw
materials. Firearms produced in this way were expensive and each was the
distinctive product of a gunsmith’s personal inspiration.

The revolution was sparked when Eli Whitney received a large
manufacturing contract to build muskets for the government. Whitney’s
innovation was to divide the work so that each part was produced by a
specialist to meet a specified standard. Each gunsmith focused on a single
part, using sophisticated tools to optimize that task. This produced
economies of scale that drove down manufacturing costs, and best of all,
Whitney’s customer, the government, quickly realized that the standards
would allow parts to be interchanged, greatly simplifying their firearm
repair problems.”

 What does this have to do with encapsulation?

22 Chapter 1: INTRODUCTION TO OBJECTS

