
Chapter 14

USING PANELS

318 Chapter 14: USING PANELS

CHAPTER 14 USING PANELS

Goal

To cover several key distinctions between windows and panels, and to
explore the specific cases of updating for inspectors and designing custom modal
panels.

Prerequisites

Experience using NSWindow with multiple nib files and an understanding of first
responder and the event loop.

Objectives

At the end of this section, you will be able to:

» List key differences between NSWindow and NSPanel including configurable
attributes usually used with one or the other

» Implement a dynamically updating inspector panel

» Design a custom modal panel

Reading
» NSPanel class in the Application Kit

» NSWindow class in the Application Kit

319

A panel serves an auxiliary function

Your graphical application focuses primarily on a window where all the important
action is. It might be a document or a monitor screen or some set of controls for
driving a particular business process. But it is likely that your application
provides additional details, configuration options, customizable preferences,
helper tools, even just pop up warnings, questions or status indicators.

These are usually implemented with NSPanel, a subclass of NSWindow. Often
called secondary windows or dialogs, these serve an auxiliary function to the
primary window or the application as a whole. They operate on a primary
window such as changing the font or color of a selected object. They may
provide additional detail, again depending on the primary window or something
selected within. A panel might change the behavior of all windows or some mode
in the application itself.

Because of this auxiliary role, panels have unique properties. A panel is a
specialized window with configurable attributes for a variety of purposes.

320 Chapter 14: USING PANELS

NSPanel is a subclass of NSWindow

NSWindow

NSPanel

Instance variables
Methods
Delegation/Notification

Inherits
 from

NSPanel is a subclass of NSWindow

NSPanel inherits much of its identity from NSWindow. It has a frame with
window decorations and controls. A panel has a content view which is the top of
a view and responder hierarchy. A panel can have a delegate. It is important to
remember that a large number of methods, attributes and behaviors that apply to
NSPanel will be found in the documentation and understanding of NSWindow.
You already know a great deal about panels.

What makes a panel different from a window?

321

Specialized auxiliary behavior of NSPanel

Key window status
• can become the key window but never the main window
• can avoid becoming key unless required

Not a "first class" window
• does not appear in NSApplication's window list
• does not appear in the Windows submenu
• typically moved off-screen when application is deactivated

Specialized auxiliary behavior of NSPanel

While a panel can become the key window, the place where keystrokes go, it
cannot become the main window. A panel is auxiliary and never the main focus.
A panel, even when it is the key window, often needs to communicate with the
main window to get its job done. Once a panel becomes the key window, the user
must click back on the main window to continue typing there. You can configure
your panel so that its controls can be used without taking key status from the
main window as a convenience. It is useful that you can display your panel with
orderFront: instead of makeKeyAndOrderFront:.

Panels are not added to NSApp’s windows list. You will not get confused about
which are your document windows and which are your inspectors, font, and
print panels. Panels are not listed in the Windows submenu for the same reason.

Because panels usually provide extra detail or are common between applications,
such as the save panel, you can configure a panel to disappear off-screen when
the application is deactivated. When the application is re-activated, the panel
appears again, maintaining its previous state—its position and its appearence.

322 Chapter 14: USING PANELS

Further distinctions often made

Panels often have a less flexible user interface. They may be fixed in size, unable
to minimize or maximize. They may not have a close control other than
responding to the dialog itself—pressing “OK” or “Cancel”. Most often, a panel
does not have a menu and will not default to using your application’s main menu
like windows do. Because a panel applies to the main window which is usually
one of many, your panel can float above all of them to avoid being obscured.

A very important distinction is whether the panel should be released after the user
closes it. A document window should be. If the user opens that document again,
your application will allocate a new controller which loads its nib file which
instantiates a new window for the occasion. Closing your inspector or
preferences panel is not the same. You load the nib once since it is a single
instance component. When the user closes and re-opens it, your controller merely
brings the panel back on-screen with orderFront:. If you do set the Panel to be
released on close, you would have to set your outlet to nil and reload the nib each
time. For complex and seldom used panels, this may make your application more
efficient.

This attribute is configurable using the Interface Builder inspector or
programmatically with setReleasedWhenClosed:.

323

Standard application kit panels

Alert

Save

Open

Print

Page Layout

Font

Color

Standard Application Kit panels

You should be aware of the standard, built-in panels provided. You certainly
don’t need to implement them yourself and they reveal some of the features you
can build into your application in an effortless and consistent way. Many of these
are pre-connected to corresponding menu items available on the Interface Builder
palette.

324 Chapter 14: USING PANELS

NSSavePanel and NSOpenPanel attributes

title

directory

allowsMultipleSelection

file

requiredFileType, file Types

prompt

accessoryView (not shown)

NSSavePanel and NSOpenPanel attributes

Although these are provided for you as Application Kit Framework objects, the
Save and Open panels are quite configurable. You can change the title, restrict the
available types, customize the prompt and even attach a custom view for
additional controls specific to your application. A practical example would be a
set of radio buttons selecting one of many possible file formats
for saving.

325

NSSavePanel and NSOpenPanel methods
Getting the panel

"Running" the panel

Return Values -- NSOKButton or NSCancelButton

Getting the User's Selection

- (id)savePanel;
- (id)openPanel;

- (int)runModal;
- (int)runModalForDirectory:(NSString *)d file:(NSString *)f;
- (id)runModalForTypes:(NSArray *)types;

- (NSString *)filename;
- (NSArray *)filenames;
- (NSString *)directory;

NSSavePanel and NSOpenPanel methods

There is one instance of the save panel shared throughout your application. It is
instantiated once and returned every time you ask for it. You do not have to
release it.

To display the panel, you run it as a modal panel. This means that, unlike a font
panel or your other windows, the save panel takes control of the application
prohibiting the user from interacting with any other window until it is dismissed.
There are a number of different “run” methods depending on where in the file
system the panel should first come up and whether your application has specific
file types.

326 Chapter 14: USING PANELS

Panels work within a context

Application-wide
• About, Preferences, Page Layout

Specific to document or window
• Open, Save, Inspector

Specific to first responder within a window
• Font, Find, Inspector

Specific to a selected item within a complex view like
NSTableView

Panels work within a context

As you think about designing your panel, it is useful to consider the different
contexts within which a panel might work. It highlights a few interesting design
concerns:

» Does the panel apply to your application as a whole or to a specific document—
the main window for example?

» Does it apply to the window as a whole or the first responder or even one of
many possible selections in the first responder such as a row in a
table view?

» Will you need to update your panel to follow a moving target—the main
window, the first responder, or the selection in a table view?

Like menu items, many panels need to be updated as frequently as after
each event.

327

Dynamically updating panels can use a delegate

panel

PanelController

NSNotificationCenter

NSNotification

NSApplication

delegate

NSPanel
update

- (void)windowDidUpdate:

windowDidUpdate:postNotification:

Dynamically updating panels can use a delegate

There are essentially three options for implementing updating panels:

» Message the panel controller directly when a state change requires it

» Post a notification and let any number of concerned objects all register to find
out when a state change requires it

» Let the panel update itself after every event, regardless of whether there was a
relevant state change or not

The third option is similar to auto-enabling menu items and requires the following
implementation details:

» Your panel controller is the panel’s delegate

» Your panel controller implements windowDidUpdate:

With this setup, your panel controller will receive an message after every event. Its
job is to track its item of interest and update the panel to reflect any relevant
changes.

Which choice you make depends on several factors: how often the panel’s state
must change and how much processing it takes to do so. You should avoid
expensive processing that will always occur on every iteration of the event loop. If
the panel does not need to change, the controller should avoid redundant
processing.

328 Chapter 14: USING PANELS

Tracking other objects of interest
Accessing the Main window and/or Delegate

Accessing firstResponder

Searching the responder chain

Basic Queries

[[NSApp mainWindow]delegate];

[mainWindow firstResponder];

[anObject isKindOfClass:class];
[anObject respondsToSelector:selector];
[anObject conformsToProtocol:selector];

[NSApp targetForAction:selector];

Tracking other objects of interest

Your panel will likely need to message other objects in its context, dynamically
tracking them when they are moving targets. Here are some common approaches.
You can easily get to the main window and its delegate which is typically the one
of many instances of your own document controller. Once on the main window,
you can get to the first responder or if you are interested in following the full
responder chain for nil-targeted actions rather than just keyboard events, you can
message NSApp find the target. The methods for locating selected characters or
cells with controls, like text fields and table views, are specific to each object;
consult the documentation.

Once you have the object you are interested in, you might need to query it to
determine its class type or message interface in terms of a selector or a protocol.
A find panel might use these techniques to determine which first responders it can
actually search and ignore those that are incapable.

329

Dynamic inspector panel component design

The basic picture is familiar—a show: message to a controller which is File’s
Owner for a nib containing its user interface. The panel controller is connected as
the panel’s delegate and responds to windowDidUpdate:. The controller can
update the state of the panel after every event. Since this reflects the intention of
tracking a dynamic target, it fits a category of panels generally called
“inspectors”.

330 Chapter 14: USING PANELS

Additional Points To Ponder

331

Modeless vs. modal panels

NSApplication

NSWindow
NSWindow

NSPanel

NSWindow
NSWindow

NSPanel

Modeless Modal

NSApplication

Event Loop

Modal Loop

Event Loop

Modeless vs. modal panels

Panels fall into two categories—modeless and modal. Like windows,
on-screen modeless panels receive events intended for them and sit idle and
unobtrusive while the user interacts with other windows and panels. Each one is
independently available and unconcerned with events targeted at any of
the others.

Modal panels put the application into a specific mode. They become the primary
and exclusive focus of the application, seizing control and prohibiting events
from reaching any other on-screen window or panel. They must be dealt with
before the user is allowed to move on and freely interact with other on-screen
objects. Modal behavior is required when the application has to carry out a dialog
with the user— to obtain confirmation, to post a warning before proceeding, or to
retrieve a piece of information such as a file name.

Examples of modal panels: NSAlertPanel, NSOpenPanel, Print panel, a login or
authentication panel. Examples of modeless panels: Font panel, inspectors,
preferences panels, version information.

332 Chapter 14: USING PANELS

NSApplication modal panel support

Methods

Return Value Constants
 NSRunStoppedResponse
 NSRunAbortedResponse
 NSOKButton
 NSCancelButton

- (int)runModalForWindow:(NSWindow *)theWindow;
- (void)stopModalWithCode:(int)returnCode;
- (void)stopModal;
- (void)abortModal;

NSApplication modal panel support

Modal panel support requires special handling of the event loop. NSApplication
must restrict its fetching and processing of events to those belonging to the
current modal panel, ignoring all others until the modal session is terminated.
NSApplication provides an API for starting and stopping a modal session on a
designated window. In addition, the Application Kit defines constants to be used
to report the modal session termination code
or condition.

Methods:

» runModalForWindow:—runs the window or panel in a modal session

» stopModalWithCode:—stops the modal session returning code

» stopModal—stops the modal session returning NSRunStoppedResponse

» abortModal—aborts the modal session returning NSRunAbortedResponse

Standard button codes:

» NSOKButton

» NSCancelButton

333

Presenting a custom modal panel

The sequence of events is more complex for a modal session because it does not
follow a simple event flow. Rather, the complete modal session spans multiple
event loop iterations when the design is pleasantly encapsulated:

1 . A caller object messages the modal panel controller to run a modal loop.

2 . The modal panel controller, after loading its nib, messages NSApplication to
start the modal session. The initial caller is now blocked inside runModal
which in turn is blocked inside runModalForWindow: until user actions
terminnate the modal loop.

334 Chapter 14: USING PANELS

User interacts with the modal panel

1 . The user now interacts with the modal panel, typing some input and eventually
pressing one of the panel buttons, in this case, OK

2 . Target/action from the button messages the modal panel controller which
messages NSApplication to terminate the modal loop and return the standard
button token NSOKButton.

335

Dismissing the modal panel and returning

1 . runModalForWindow: returns back from its original call and returns the
button token to the caller, the modal panel controller.

2 . Now that the modal session has technically finished, the panel itself should be
removed from the screen with the orderOut: message.

3 . Control continues in the original runModal method which finally returns the
NSOKButton token back to the caller object. The modal session is complete.

All is done. The caller discovers that the user pressed OK. What about the user’s
data input in the text field?

336 Chapter 14: USING PANELS

Interactions after the modal loop has ended

A typical design has the caller message the panel again, asking for pertinent data
from the modal session. A hypothetical userInfo message fetches the value from
the panel’s control and returns it. This assumes that the panel was merely ordered
off screen, not released. In the latter case, the panel controller might cache the
desired values before releasing the panel. A more generalized form of the
userInfo method might return an array or dictionary in the event that the panel
presented a multi-control dialog.

337

Modal Panels

NSAlertPanel

NSOpenPanel

NSSavePanel

Print

PageLayout

Modal panels

There are a number of modal panels for standard Application Kit functions.
NSAlertPanel in particular is very general and can be customized for a variety of
basic purposes—warnings and errors, confirmations, and other simple choices
with up to three options.

338 Chapter 14: USING PANELS

Important ideas from this section

» A panel serves an auxiliary function in the application or for a window.

» It is a subclass of NSWindow that has specialized behavior supporting this
auxiliary role.

» The Application Kit provides a number of standard panels, some highly
configurable to a variety of customized uses.

» Panels often track a moving or changing target and need to be updated:

Directly

Via notification(s)

Via window notification/delegation after every event

» Modal panels take control of the application until they are dismissed.
NSApplication provides the support for running modal panels.

Classes featured in this section
» NSPanel

» NSWindow

» NSOpenPanel, NSSavePanel

» NSApplication

339

REVIEW USING PANELS

1 . Name at least three ways in which NSPanels typically differ from
NSWindows.

2 . What is the difference between a modal and modeless panel?

3 . What is the difference between the main window and the key window? How
does this distinction relate to panels?

4 . The essence of an inspector-type panel is that it stays in sync with the object it
is inspecting. There are many different ways to achieve this in terms of design
and features. Describe two.

340 Chapter 14: USING PANELS

EXERCISE 14.1 UPDATING INSPECTOR PANEL

In an application involving the presentation of a wide range of data, it often makes
sense to present only the key information to the user, to avoid cluttering up the user
interface. The application can provide a mechanism for viewing the detailed
information for the particular item the user has selected. A common paradigm is an
Inspector panel that tracks whatever the user has selected. It can be dismissed if not
needed. Inspectors are most suitable when not all users need to see the information
all the time or where the data is difficult to present in the context of the rest of the
information. In this exercise, you add an updating inspector panel to the Expense
Report application. It displays an additional boolean attribute of the Expense
object—isBillable.

Objectives

After completing this exercise, you’ll be able to:

» Understand the distinction between Panels and Windows and when to use one
or the other

» Create Inspector-style panels

341

Exercise—Stage 1

1 . Return to your expenses application. As usual, make a backup if you wish to
keep a copy of the previous version.

2 . The inspector component will be part of the Documents subproject, as it is
specific to this kind of document. A template for the Inspector class—the panel
controller—can be found under ExerciseMaterials.

» Drag a copy of Inspector.m from ExerciseMaterials into the classes
suitcase of the Documents subproject

» Using Project Builder’s file attributes inspector, make Inspector.h a
Project header file

3 . Use Interface Builder to create a new, empty nib module.

» Drag and drop a panel from the palette into the interface

» Ensure the Inspector panel has a close box

» Add a switch to the panel and label it “Billable to Client”

» Save the nib as Inspector.nib in the Interfaces suitcase of the
Documents subproject

4 . The Inspector component needs a controller object. It will be the File’s Owner
for this nib.

» Read Inspector.h into Interface Builder

» Make the File’s Owner class Inspector

» Connect the File’s Owner’s panel outlet to the NSPanel instance

» Connect File’s Owner as the panel’s delegate

» Connect File’s Owner to the switch on the panel using the
billableSwitch outlet

» Connect the switch toFile’s Owner with billableChanged: as the
action

5 . Like all File’s Owner objects, in order to display the panel, some methods must
be implemented—in this case, in the Inspector class. The automatic updating is
handled in Stage 2 of the exercise—here you simply ensure that the inspector
panel can be activated from the menu. Here is a rough sketch of what the
methods should do:

» init—load the Inspector's nib file

» show:—display the panel

» billableChanged:—the action when the user changes the switch. For
now, just log a message using NSLog()

» windowDidUpdate:—the window notification sent to its delegate. For
now, log a message to provide you with some feedback. This will be
finished in Stage 2 of the exercise

342 Chapter 14: USING PANELS

6 . Now, you update AppController to handle the inspector component:

» Import Inspector.h into AppController. Add an inspector instance.

» Add a showInspector: method. It shows the inspector panel. Since the
inspector is not always used, it makes sense to create the inspector object
lazily the first time it is needed, and then message it to show
its panel.

7 . Return to Interface Builder and in the Main nib, add a Tools submenu to the
application menu.

» Label the first item in the submenu Inspector

» Connect it to AppController directly, with showInspector: as the
action

8 . Build the project and check that the application behaves as you would expect—
it brings up the inspector panel upon request.

Stage 2

1 . The inspector should reflect the state of the currently selected expense item in
the table view of main window. In order to implement this, you need to locate
the main window, then the window delegate, and then the delegate’s data
source. From this you can obtain the selected expense object—if one is actually
selected. You need to add some additional accessor methods to the pre-existing
classes:

» Add a dataSource accessor method to DocController that returns its
data source. With the data source, you can obtain the array of expense
objects using the array accessor method.

» Add and implement a selectedObject method in the data source that
returns the Expense object—or nil—thereby encapsulating the table view
handling and its mapping to the array of objects.

2 . To complete the inspector, you must implement the following methods in the
Inspector class:

» billableChanged:—the user has requested a change to the currently
selected object via the switch. Use the Expense class’s setIsBillable:
method to do this. Remember to notify the document or the window that
it has been edited.

» windowDidUpdate: should locate the currently selected object, if
there is one, determine its billable status, and set the switch accordingly.
You can set the panel title to be the category of the selected object. If
there is no selected object you might set the title to “Nothing selected”.

» Remember to import Expense.h as you need to invoke some methods it
declares.

Hint: The windowDidUpdate: method is called after each event—anything
could have changed each time it is called. To determine which row is selected
you need to use the methods in DocController and data source mentioned
above.

343

3 . Re-build the project and check that your inspector tracks the selected item in the
table view.

Enhancements
» What if nothing is selected or there is not a main window? Ideally, the inspector

should disable the switch—re-enabling when appropriate—and reflect that there
is nothing to inspect in the panel title.

» You might wish to use the inspector panel title to reflect the state of the
inspector—whether something is selected in the table view and if so, which
expense is it. Create a title using the expense attributes, the date and category for
example, and updating it along with the other status of the inspector.

» Since the inspector is not always needed by a user, it makes sense to make it
entirely dynamic. See if you can convert the inspector and its panel into a
bundle-loaded subproject. Refer to the Enhancements provided in the About
Panel exercise.

344 Chapter 14: USING PANELS

