Chapter 3

Creating Classes

50 Chapter 3: CREATING CLASSES

CHAPTER 3 CREATING CLASSES

In Objective-C, you define objects by defining their class. The class definition isa
prototype for a kind of object; it declares the instance variables that become part of
every member of the class, and it defines a set of methods that all objectsin the class
can use.

—ODbject-Oriented Programming and the Objective-C Language,

Goal

To understand how to write classes.

Prerequisites

A basic understanding of objects and instance variables.

Objectives

After completing this chapter, you'll be able to:
» Send amessage to an object in Objective-C

» Writeasmple classin Objective-C
Reading:
These references contain more information about creating classes:

/System/Documentation/Developer/TasksAndConcepts/
DevEnvGuide/Chapters/ (Subclass)

/System/Documentation/Developer/TasksAndConcepts/ ObjectiveC

51

52

Objects come from classes
(Person)
name | NSString *
points int
spouse | Person *
_ Y,

[Person) (Person)
name @"Jen Wid" ‘\ name @"Ron Ti"
points 0 _» \p% 0]
spouse E/ spouse | T~]

\ J \ J

Objects come from classes

In Objective-C, you program by writing classes. The class definitionisa
prototype for akind of object. It declares the instance variables that become part
of every instance of the class, and it defines a set of methods all instances of the
class can use.

When the class definition is compiled, it creates aclass. Thisclassexistsin the
program at runtime and acts as an object factory.

All instances of a class have access to the same set of methods, and they all have
a set of instance variables cut from the same mold. Each object getsits own
instance variables.

By convention, class names begin with an uppercase |etter, for example,
“Person.” The names of instances typically begin with alowercase letter, for
example, “aPerson.”

Chapter 3: CREATING CLASSES

Class hierarchy

C

NSObject

L

(Plant

Inherits
from

Inherits
from

Animal

Inherits
from

{
Al

Inherits
from

Whale

Mongoose

]

L

T

J

Class hierarchy

Classes are arranged in a hierarchy. More genera classes are arranged at the top
of the hierarchy, more specialized classes near the bottom. In the example, Whale
isasubclass of Animal. Anima isthe super class of Whale. The subclassto

superclass relationship is adirect child-parent relationship. There can be no
intervening classes in the hierarchy between a subclass and its superclass.

NSObject isan ancestor of Whale. Whaeisadescendant of NSObject. The
descendant to ancestor relationship is an eventua child-parent relationship. There
can be severa intervening classes in the hierarchy between a descendant and its

ancestor.

53

54

| nstances and inheritance

(NsObject - class

L isa Class J

Inherits
from (Person

- age
yearOfBirth int

Inherits
from
[Employee)
) Employee
1sa D >(\ - isexecutive
1 1 *
yearOfBirth 1961 title NSString J
title | @"trainer”
\ J

Instances and inheritance

Class definitions are additive. Each new class you define is based on another
class from which it inherits methods and instance variables. The new class simply
adds to or modifieswhat it inherits. It doesn’t need to duplicate inherited code.

Inheritance links all classes together in a hierarchical tree with asingle class,
NSODbject, at itsroot. Every class except NSObject has a superclass one step
nearer the root, and any class, including NSObject, can be the superclass for any
number of subclasses one step farther from the root. When you define a class,
you link it to the hierarchy by declaring its superclass. Every class you create
must be the subclass of another class.

Chapter 3: CREATING CLASSES

Sending messages

object receiving method argument
the message name /
[aPerson setYearOfBirth: || 1935] ;

[aPerson moveNorth: east:],

RS

object receiving method arguments
the message name

Sending messages

To get an object to do something, you send it amessage telling it to apply a
method. In Objective-C, message expressions are enclosed in square brackets:

[thePerson receiveRaise];

Thereceiver is an object, and the message tells it what to do. In source code, the
message is smply the name of a method and any arguments passed to it. When a
message is sent, the runtime system selects the appropriate method from the
receiver’ srepertoire and invokesiit.

If there are any arguments, they appear after colons in the method name.

[aPerson receiveRaise:10];
[aPerson moveNorth:5 east:8];

Remember the difference between amethod and amessage. A method is a set of
instructions to execute. It’s associated with the class of the object. A message is
the stimulus that causes a method to execute. It’ s transitory, generally triggered
by a user event like pushing a button or in source code.

55

56

Examples of messages

Here are severa lines of a program, with explanations of what they do.

Employee *aWorker;
Department *anOffice;

Two variables are declared. Assume that anOffice isinitialized to contain the
address of an instance of the Department class.

[anOffice raiseMorale];

This sends the messageraiseM or ale to anOffice. raiseM oraleisasimple
method—it takes no arguments and returns nothing.

aWorker = [anOffice personAtDesk:5];

HereaWorker is set to the person at desk number 5. This code sends the
message per sonAtDesk: with an argument of aNum to anOffice. The return
value of this message is assigned to the variable aWorker. personAtDesk: isa
somewhat more complex method—it takes a single argument, and returns an
object asits return value.

[aWorker movelLeft:1 forward:4];

This code moves aWor ker one space to the left and four spaces forward by
sending the message movel eft:forward: with two arguments—1 and 4.
movel eft:forward: takestwo arguments, but doesn’t return anything.
Generally, messages that make an object do something don’t return avalue.
Messages that ask an object for information about itself do.

[[anOffice boss] receiveRaise];

This code sends the message boss to anOffice. boss isamethod that returns
the person object for the department’ s boss. The result of the initial message, the
department’ s boss, is then sent the message r eceiveRai se. Presumably the boss
has done a good job and deserves araise.

This last example shows how messages can be nested. Nesting messages makes
your code more compact, and sometimes makes it easier to read. However, you
should beware of overusing this feature. It's much easier to debug a program
where intermediate results are stored in variables, instead of nested deep within a
complex message expression.

Chapter 3: CREATING CLASSES

Parts of a class definition

Interface file--.h

 Class name

* Superclass name

* |nstance variable declarations
» Method declarations

Implementations file--.m

» Method implementations

Parts of a class definition

To write aclass, you need to create two files—an interface file and an
implementation file. Y ou generally name these files with the name of the class
they define. A class called Employee would have these two files:

» Employee.h—theinterfacefile

» Employee.m—theimplementation file

Thefamiliar extension .h indicates aheader file. The .m extension indicates afile
containing Objective-C source code.

Separating the implementation from the interface maintains encapsul ation.
Someone who wants to use your class needs access to its interface. If you had
both the interface and implementation in asinglefile, they’ d be able to seethe
implementation. By separating the implementation and interface into two files,
you can give someone just the interface without the implementation.

57

58

Interface example: Employee.h

Hereisan example interfacefile. It'sasimple class, so the interfacefile is short.

#import “Person.h”

@interface Employee : Person

{
NSString *title;
3

- (BOOL)isExecutive;
@end

The declaration of aclassinterface begins with the compiler directive @interface

and ends with the directive @end. All Objective-C compiler directives begin with
“@’. The @interface directive names the class and its superclass, separated by a
colon.

Before the declaration of the class, you must import the interface file for the
superclass. Thisway the compiler knows which instance variables and methods
are inherited from the super class.

The #import compiler directiveis similar to #include, but #import ensures that a
fileisonly included once.

The genera format of the interface file for aclassisasfollows:

#import “SuperClass.h”
@interface ClassName : SuperClass
{

instance variable declarations

}

method declarations

@end

Chapter 3: CREATING CLASSES

Implementation example: Employee.m

Hereisthe implementation file that corresponds to the previous interface
example. Again, it’s quite short.

#import “Employee.h”
@implementation Employee

- (BOOL)isExecutive

{
if ([title isEqual:@”President”]) {
return YES;
} else {
return NO;
}
}
@end

The first thing you have to do in the implementation file isimport the interface for
the class. The interface contains important information that the compiler needsto
doitsjob.

The definition of aclass starts with @implementation and ends with @end.
@implementation simply names the class being defined. There' s no need to name
the superclass, as that’s defined in the interface.

The main contents of the implementation file is the implementation of all the
methods defined in the class. The general syntax of an implementation fileisas
follows:

#import “SomeClass.h”
@implementation SomeClass
method definitions

@end

59

60

Method declaration syntax

(void)receiveRaise;

(id)personAtDesk: (int)index;

(void)moveLeft: (int)x forward: (int)y;

(NSString *)name;

(void)setName: (NSString *)aName;

(void)changeTemperature: (id)sender;

Method declaration syntax

Method return types are declared using parentheses. Thisissimilar to the C
casting operator:

- (int)tag;
Parameter types are declared in the same way:
- setTag:(int)anint;

If areturn or argument type isn’t explicitly declared, it's assumed to be the default
type for methods and messages— id. It's good coding practice to always provide
explicit types.

When there' s more than one argument, they’ re declared within the method name
after the colons. Arguments break the name apart in the declaration, just asina
message. For example:

- (void)moveLeft:(int)x Fforward:(int)y;

Y ou can determine the number of arguments by counting the number of colonsin
the method name.

Chapter 3: CREATING CLASSES

Example of method implementation

A method issimply alist of instructions. I1t's much like a function, but has access

to the object’ sinstance variables. This method accesses two instance variables:
celsiusField and fahrenheitField.

- (void)temperatureChanged: (id)sender
{

int celsius; // degrees Celsius
double fahrenheit; // degrees Fahrenheit

celsius = [sender intValue];

fahrenheit = (1.8 * celsius) + 32.0;
[celsiusField setIntValue:celsius];
[fahrenheitField setlIntValue:fahrenheit];

}

Notice the message to sender . temper atureChanged: is an action method.
When abutton or other user interface element sends an action message, it
includes a pointer to itself asthe sender parameter. In this case, the sender isa
dlider object. temper atureChanged: usesthe sender parameter to ask the
dlider its current integer value.

It doesn’t matter if the user interface later changes to use some other dider, or a
completely different user interface element. Aslong asit understandsintValue,
temperatureChanged: will still work properly. This concept of action
messages including sender makes source code much more portable to different
user interfaces.

61

62

Accessor methods

Because encapsul ation prevents access to instance variables from outside an
object, you often need to create accessor methods for your instance variables. An
accessor method allowsyou to read or set an object’ sinstance variable from
outside the object.

By convention, the accessor method for reading an instance variable has the same
name as the instance variable. The accessor method for setting an instance
variable precedes the instance variable name with “set.” For example, accessor
methods for the instance variable name would be declared like this:

- (NSString *)name;
- (void)setName: (NSString *)aName;

The implementation for accessor methods tends to be quite straightforward.

- (NSString *)name
{

return name;

}

- (void)setName: (NSString *)aName
{

if (name = aName) {
[name release];
name = [aName copy];

}
}

Noticetheif clause. Without it, setName would send ar el ease message to
aName-itsretain count could, potentially, go to 0, and aName would be
deallocated. There would be no argument to retain since name and aName
pointed to the same object. Theif clause solves the problem.

Assuming the argument is different from the object in our instance variable, the
old nameisreleased. Ther elease cal in setName: tellsthe old string object that
it can disappear. Thisis how useless objects get cleaned out of memory.

Chapter 3: CREATING CLASSES

self

If object myObject of class SomeClassis executing a method myM ethod, the
method can access severa variables:

» Global variables

» myObject’sinstance variables

» myM ethod’ stemporary variables
» self

self isapointer to the object executing the method. In other words, self isa
pointer to yourself—in this case, myObject. self alows the object to send itself
messages. The most common use of self isto call accessor methods.

[self setName:@”Max Funk™]
Why? Couldn’t you simply say:
name = @”Aaron”;

Y ou could, but you would have forgotten to release the old name. Thiswould be
amemory leak. The accessor method takes care of thisfor you:

- (void) setName:(NSString *)aName

{
if (name = aName) {
[name release];
name = [aName copy];
3
3

By using the accessor method, you centralize the code necessary for setting a new
name. Y ou don’'t have to remember to release the name every time you want to set
anew one—Yyou just call setName: and that's it.

63

DEMONSTRATION 3.1 WRITING A CLASS AND USING IT IN INTERFACE BUILDER

E @ Simpleapp2.nib — ..pleapp2/Englishdproj H1E

f InstancesYClassesY Sn:uunlds\’{Irnag:_qes\i1L
javalang. Ohject =
0 MNSObject
FirstResponder 5T @
IBInspectar 1@ 48
IEF alette 1@
© MyHelloContraller D] &
O MNI&ray
Mahutablesray i
o MaCell 5@ [
L =

In an earlier demonstration you created a simple application using
InterfaceBuilder and a class provided on a palette. In this demonstration, you will
create the same application without the pal ette.

Objectives

After completing this demonstration, you'll be able to:
» Add acustom class to InterfaceBuilder

» Write the code for a custom class and add it to a project

64 Chapter 3: CREATING CLASSES

Demonstration

1. UseProjectBuilder to create a new application project named SimpleApp2.

2. Createthe user interface using InterfaceBuilder. The interface should match the
interface from the demonstration in Chapter 2.

O My Window

| Hello, world!

|

3. Make asubclass of NSObject called MyHelloController. InterfaceBuilder allows
you to add new classesto the list of classesit knows about. Y ou can add these
classes by loading palettes, but sometimes you won’t have a pal ette—for
example, when you're first writing a new class. Y ou add new classes from the
Classes view in InterfaceBuilder’ s instances window.

* Click the Classes tab in the instances window
o Sedlect NSObject
» Select Subclassin the classes menu of InterfaceBuilder

» Change the name of the new class to MyHelloController
E @ simpleappz.nib — ..pleapp2/English.lproj =]

f Instances Y Classes Y aounds Y Imanes \

java.lang.Object
o N5Object
FirstResponder 7@
IElnspector 1@ 4@
|EFalette 1@
~ MyHellaController @)
o MS&rray

{1l

65

66

4. Addtwo actions, sayHello: and clearText:, to the MyHelloController class.
Instances of MyHelloController need to respond to these messages when the user
clicks on the buttons in your user interface. InterfaceBuilder won't let you set
these messages as actions unless you tell InterfaceBuilder that MyHelloController
knows how to respond. Y ou do thisin the Classes view.

» Push the crosshair icon to the right of the word MyHelloController. Press
return.

* Change the name of the new action to sayHello:. Pressreturn twice.
» Change the name of the new action to clearText:.

Jf Instances Y Classes Y Sounds Y Images '\,
L nspect

ﬂ i

o My HelloController

Chilvets

Actics
ClearText:
sayHello:

5. Addanoutlet called helloTextField to MyHelloController. Instances of
MyHeéelloController need access the text field in which they’ re supposed to print,
“Hello world!” Y ou provide that access through an outlet in InterfaceBuilder. An
outlet isssmply avariable of typeid.

F

» Select the outlet icon under the class MyHelloControl ler
e Pressreturn

» Change the name of the new outlet to helloTextField
[Instances Y Classes Y Sounds Y Images \

o MyHelloController

Chaliats
hielloTextField

Aeticens
clearText:
sayHello:

Chapter 3: CREATING CLASSES

6.

Add an instance of MyHelloController to your nib file. You don’'t have a pa ette to
drag the instances from, so InterfaceBuilder gives you another way to instantiate
MyHelloController.

» Select MyHelloController in the class browser

* |Inthe Classes menu for InterfaceBuilder, choose I nstantiate

Instantiate
Edit Class
Read File...
Create Files...

7.

Connect the top text field and buttons to the instance of MyHelloController.
MyHeéelloController has the same actions and outlets as the HelloController class
on the paette. Therefore, you connect the user interface elements the same asin
the Demonstration for Chapter 2. Asareminder, hereis adiagram showing the
connections and actions:

(NSButton]

target

action

\ -
* (HeIIoControIIer (NSTextFleldw
sayHello: helloTextField | [1—®
~N J

(NSButton

target

action |_|__| InterfaceBuilder
* < Connections
clearText:

. Create a second instance of MyHelloController. Connect the other buttons and

text field to the second MyHelloController.

Test your interface. Choose Test Interface in the Document menu. Try the Say
Hello and Clear Text buttons. Wait a second—nothing happened! What’ s wrong?

Actualy, nothing’ swrong. It’sjust that InterfaceBuilder doesn’t have the code for
your MyHelloController class. Y ou’ ve provided InterfaceBuilder with the skeleton
of that code. Y ou've told InterfaceBuilder what outlets your MyHelloController
objects have and what actions they respond to, but you haven't written the code
yet!

67

10.Add MyHéelloController.m and MyHelloController.h to your project. Based on
the information you' ve provided, InterfaceBuilder creates skeleton .m and .h files
where you can add your code.
» Select MyHeloController in InterfaceBuilder’ s class browser
» Select Create Filesin the Classes menu

» Push Yesto add the files to your project

Classes

subclass
Instantiate

Edit Class
Read File...
Create Files...

11.Edit MyHelloController.m and MyHelloController.h in ProjectBuilder.
Hereis MyHelloController.h:
#import <AppKit/AppKit.h>
@interface MyHelloController : NSObject
{

id helloTextField;
3

(void)sayHello: (id)sender;
(void)clearText:(id)sender;

@end

Hereis MyHelloController.m:
#import "MyHelloController._h"
@implementation MyHelloController
- (void)sayHello: (id)sender

{
[helloTextField setStringValue:@"Hello, World"];

}
- (void)clearText:(id)sender
{
[helloTextField setStringValue:@""];
}

@end

12.Build the application and run it. Verify that everything works as expected.

68 Chapter 3: CREATING CLASSES

DEMONSTRATION 3.2 USING THE DEBUGGER

Any sort of serious development effort requires debugging. No complicated
source code is ever fully bug free when first written. A debugger makes this
effort much less painful by giving you tools to help debug programs.
ProjectBuilder provides a graphical interface to gdb, a command-line debugger
that understands Objective-C. In this demonstration you learn how to do ssmple
operations with the debugger.

Objectives

After completing this demonstration, you'll be able to:
» Build aproject for debugging

» Run an application in the debugger

» Set abreakpoint

» Inspect the values of variables

69

Build Options button

70

Demonstration

1.
2.

v

Open theinterface file of your SimpleApp2 project.

Bring up the Connections inspector for one instance of MyHelloController. Select
the helloTextField outlet and push the Disconnect button. Thisisthe bug you'll
use the debugger to diagnose.

Switch back to ProjectBuilder and bring up the Build panel. Push the Build
Options button to bring up the options panel. Choose the debug target, then build
the project.

[0 =————— Build Options =———
.ﬂ.rguments:m=j
Hn:ust:|
Target:[debug :I

Build Far: | » PowerPC
Intel
i MexT

[Continue after errar

4| [

The debugger needs extra debugging symbolsin an application’ s executable to
effectively do itsjob. It’s also easier to debug code that hasn’t been optimized by
the compiler. ProjectBuilder provides a special debug target for the build process
that includes the debugging symbols. The debug target builds your application
with .debug as the extension, instead of .app. In this case, it builds an application
named SimpleA pp2.debug.

Bring up the Launcher panel. The Launcher panel is used for debugging, as well
as running applications.

O

simplefpp2 - Launch - “Simple8pp2.app

=

Lau}mh | TﬂﬂkImPECMI| Hu.‘n ‘ Step Dver |
Debug Launch Options

|
Step Into | Print Ref Value ‘

Continue! Suspend Drint Valye © oot Object

Chapter 3: CREATING CLASSES

. Push the Launch options button to bring up the options panel. Tell the Launcher

to debug SimpleA pp2.debug, not SimpleApp2.app.

. Push Update List to update the list of executables. Select SimpleApp2.debug.

Thetitle bar of the Launcher panel should change to reflect the new selection.

[Launch Options - *Simplefpp2.debuy’
Executahles il
Path: /me/E<erciseMaterials/Exercises/simplesppa/simpleAppz. debugy
Executables Names L
Sitnga Apns Sk
Simpiedppz detug
| Update List Remove ” Add... i

7. Push the Debug application button. The Launcher starts up gdb and displaysit in

the Launcher window. Because you' re running a debugger, the Launcher panel
enables the debugging buttons.

Thisisafully functional version of gdb. If you want, you can type text in the
window and gdb will execute it, just asif you'd run gdb from a Bourne Shell
window.

. Push the Run button to start up the application. Try using the application. What

happens when you push the Say Hello or Clear Text buttons associated with the
instance of MyHelloController whose connection you broke in step 27?

71

9. Set abreakpoint for the sayHello: method. It might be that when you push the
Say Hello button, sayHello: never gets called. Switch to ProjectBuilder and bring
up the project browser window for SimpleApp2. Push the pause button in the
Launcher panel, to issue commands to the debugger.

Display the MyHelloController.m file. Notice the new column aong the
left-hand side of the text window. This column is used for debugging. It displays
the current point of execution and lets you set breakpoints.

Double-click in the column to the left of the sayHello: method. An arrow indicates
that you’ ve set a breakpoint. Program execution will stop when it reachesthis

point.

O

[Simplefpp2 — ~/ExerciseMaterials/Exercises

AN_[o|o

tyHelloContraller.m

iClasses [=
Headers [
other Sources ™
Interfaces [
Images I~

Other Resourc I-
subprojects
Context Help 1
supporing File-

il

by HelloContror-

e
ke il

@hyHelloConr

My Hello Controller.m

mMyHelloCantrolled

B3 ARl=]

i
i

i
i

merid

#import "MyHelloController . h™
dimplementation MyHelloController

- (vwoidiclearText: (id)sender

B - (void)savHello: {id)sender

[helloTextField setStringYalue:@""];

[helloTextField set3tringYalue: @"Hello, world!"™];

72

Chapter 3: CREATING CLASSES

10. Set another breakpoint for the clearText: method. Double-click in the column to
the left of the clearText: method. On second thought, let’ s disable this breakpoint

for now. We only want to debug one thing at atime. Double-click on the arrow to
disable the breakpoint—it dimsto show it’s been disabled.

11.Bring up the Task Inspector. Notice that it displays your breakpointsin asingle
central location. Y ou can enable, disable, and remove breakpoints from this

window.
[Task Inspector - "Simplefpp2.debug’
Breakpoints i’
| Where Use
2 |in-[MyHellaContraller sayHello:] at MyHelloCantraller.m: 10 {0x0001 5
3 Ein -[MyHelloController clearText] at MyHelloContraller.m:s {00000

Enable &1l | Disable &1l | Remove Al view | Remove

12.Choose Stack from the pop-up list in the Task Inspector. This displays the stack
of nested messages, including arguments, that were called to get to the point
where execution was paused. Investigating the stack can show what other method
is caling your method, which can be very revealing.

1 3. Push the Continue button, then switch back to SimpleApp2 and push the Say
Hello button. When execution reaches the breakpoint, SimpleApp2 stops at the
breakpoint.

14. Switch back to ProjectBuilder. The browser window displays the current point of
execution with ared arrow. It also highlights the line of code about to be

executed. Because the program stopped, you know that it’s successfully sending

the sayHello: message to the instance of MyHelloController. So that must not be
the problem.

73

15. Step Into the sayHello: method and then double-click on helloTextField to select
it. ProjectBuilder’ s variable inspection buttons work on the currently selected
text. Push the Print Object button to see the description of helloTextField.

16.Notice that gdb thinks helloTextField isanil object. Thisis because
helloTextField is set to nil. Y ou broke the connection from MyHelloControllerl
to the text field in step 2. So when sayHello: triesto send a message to
helloTextField, it can’t—helloTextField isnil.

But if that’s the case, shouldn’t the application crash? A message is being sent to
anil object, after al. The reason the application doesn’'t crash is because
Objective-C allows messages to nil objects—they’ re ignored. This makesit much
eas er to write methods that might message a nil object. For example, accessor
methods need to autorelease the old object before retaining or copying the new
one. But what if the old object doesn’t exist? Being able to send release to anil
object makes accessor methods much simpler to write.

17 .Push the Continue button to start SimpleApp2 executing again.

See the documentation for more details on using the debugger.

References
/System/Documentation/Developer/Reference/DevT ools/Debugger

74 Chapter 3: CREATING CLASSES

Important ideas from this section

» Towriteaclass, you must:

Giveit aname
Giveit asuperclass
Declare and define its methods

» Messages are made up of:

A receiver object
method name
Arguments

» Method declarations are made up of:

A returntype
A sdlector
Parameter names and types

» Method definitions are a set of instructions to be executed

» Accessor methods are used for setting and getting the values of
instance variables

» self isapointer to the object executing the method

» Generally, use accessor methods instead of accessing instance
variables directly

REVIEW CREATING CLASSES

1. Do more specialized classes appear at the top or at the bottom of the
class hierarchy?

2. What istheroot object for al class hierarchies?

3. What two things do subclasses inherit from their superclass?

4. What are the three parts of a message?

5. What two files must be created to make a class? What does each contain?

6. Whatissdf?

7. What are accessor methods for?

76 Chapter 3: CREATING CLASSES

EXERCISE 3.1 TEMPERATURE CONVERTER, TAKE TWO

0 My Window

Celsius

R

.1
)

Fahrenheit

-

In this exercise you revisit the Temperature gpplication and recreate it with your
own MyConverter class. Most applications that you write need custom classes.
Seldom can you just wire together abunch of objects from palettes and get the
functionaity you require. It’s fairly common to start an application by devel oping
auser interface in InterfaceBuilder, adding custom classes as you go.

Objectives
After completing this exercise, you'll be ableto:

» Add acustom classto InterfaceBuilder
» Create skeleton header and implementation files using InterfaceBuilder

» Write the code for a custom class and add it to a project

77

Exercise

1.
2.

Create a new application project named Temperature2.

Make the user interface using InterfaceBuilder. The interface should have adlider
and two text fields for displaying the temperature in Celsius and Fahrenheit.

Create anew class called MyConverter using InterfaceBuilder’s Classes view.
Converter should have two outlets named celsiusTextField and
fahrenheitTextField. It should aso have an action named temperatureChanged:.

Use the Instantiate command to get an instance of Converter.

. Connect the dider and two text fields to your Converter. The diagram below

shows the connections and related action.

(nssiider | (converter) (NSTextField)

target E__> celsiusTextField

action I_T_| fahrenheitTextField E—
J
J

temperatureChanged:

. Set thelimits and value of the dider using InterfaceBuilder’ s Attributes I nspector.

The dider has arange from -100 to 100, with an initial value of O.

. Set thetext fields to match the initial value of the dider. Remember that the

Converter interprets the value of the dider as the temperature in degrees Celsius.

Make the text fields non-editable so the user won't be able to change their values
except by moving the dlider.

Test your interface. Choose Test Interface in the File menu. Try moving the dlider
around. Wait a second. Nothing happened!
What’ s wrong?

Actually, nothing’swrong. It’'s just that I nterfaceBuilder doesn’t have the code
for your Converter class. Y ou' ve provided InterfaceBuilder with the skeleton of
that code. That is, you' ve told InterfaceBuilder what outlets your Converter

object has and what actions it responds to, but you haven't written the code yet!

10. Generate Conveter.h and Conveter.m. Use the Create Files command in

InterfaceBuilder’ s Classes pull-down menu. Make sure you select the Converter
classfirst!

78 Chapter 3: CREATING CLASSES

11.Alter MyConveter.m to read:
#import "MyConverter.h"
@implementation MyConverter

- (void)sliderChanged: (id)sender

{
int celsius;
double fahrenheit;
celsius = [sender intValue];
[celsiusTextField setIntValue:celsius];
fahrenheit = 1.8 * celsius + 32.0;
[fahrenheitTextField setlntValue:fahrenheit];
}
@end

12.Build your project and run the application. Make sure everything works as
expected.

79

80 Chapter 3: CREATING CLASSES

