
Chapter 6

INHERITANCE

CHAPTER 6 INHERITANCE

The easiest way to explain something new is to start with something old. If you want to
describe what a “schooner” is, it helps if your listeners already know what “sailboat”
means. If you want to explain how a harpsichord works, it’s best if you can assume your
audience has already looked inside a piano, or has seen a guitar played, or at least is
familiar with the idea of a “musical instrument.”

With this in mind, object-oriented programming languages, permit you to base a new class
definition on a class already defined. The base class is called a superclass; the new class is
its subclass. The subclass definition specifies only how it differs from the superclass;
everything else is taken to be the same.

—Object-Oriented Programming and the Objective-C Language

When behavior is inherited from another class, the code that provides that behavior does
not have to be rewritten. This may seem obvious, but the implications are important.
Many programmers spend a large percentage of their time rewriting code they have written
before—for example, to search for a pattern in a string or to insert a new element into a
table. Using object-oriented techniques, these functions can be written once and reused.

—Timothy Budd, An Introduction to Object-Oriented Programming

Goal

To explore the issues involved in writing a subclass.

Prerequisites

The ability to create a class.

Objectives

At the end of this Chapter, you’ll be able to write a subclass that properly initializes
and frees its instance variables.

Reading

You can find more information about inheritance in:

/System/Documentation/Developer/TasksAndConcepts/ ObjectiveC

131

Classes are arranged in a hierarchy

isa Class

shares

company

strikePrice float

NSObject

RealEstate

StockOption

owner Trader *

Asset

expirationDate*

writer Trader *
int

NSCalendarDate *
Company*

location
acres

Location*

int

+ (int)version
- (Class)class

- (float)value
- sellTo:(Trader *)buyer

- (void)exercise

inherits from inherits from

inherits from

Classes are arranged in a hierarchy

Each class, except NSObject, has exactly one superclass. Of course, a class can
have several subclasses. Each class inherits all the methods and instance variables
of its superclass.

In this hierarchy, NSObject is at the top and the most specialized classes tend to
be at the bottom. In a well-designed hierarchy, if class A is a subclass of class B,
you should feel comfortable saying “A is a type of B.” For example, realestate is
a type of asset. Thus the class RealEstate might be a good subclass of Asset.

132 Chapter 6: INHERITANCE

Instances and inheritance

NSObject

shares

company

strikePrice float

StockOption

expirationDate*

writer
int

NSCalendarDate *

isa
owner

StockOption

Asset

Trader

Company

Trader

- (Class)class
- (float)value
- sellTo:(Trader *)buyer
- (void)exercise

inherits from

inherits from

Instances and inheritance

An instance of class A has all the instance variables and methods introduced in
class A, and all those introduced in class A’s superclass, and those introduced in
class A’s superclass’s superclass, and so on.

133

Inherited methods

NSObject

shares

company

strikePrice 41.56

StockOption

expirationDate*

writer
181

3/21/98

isa
owner

StockOption

Asset

inherits from

inherits from

+ (int)version
- (Class)class

- (float)value
- sellTo:(Trader*)buyer

- (void)exercise

sellTo:

Inherited methods

When an object receives a message, it checks to see if its class implements that
method. If not, it checks with its superclass. If it gets all the way to the top of the
hierarchy without finding an implementation of the method, it issues an
exception.

134 Chapter 6: INHERITANCE

Overriding inherited methods

NSObject

shares

company

strikePrice 41.56

StockOption

expirationDate*

writer
181

3/21/98

isa
owner

StockOption

Asset

inherits from

inherits from

+ (int)version
- (Class)class

- (float)value
- sellTo:(Trader*)buyer

- (void)exercise
- sellTo:
 (Trader*)buyer

sellTo:

Overriding inherited methods

Because objects search for method implementations from the bottom of the
hierarchy to the top, classes lower in the hierarchy can override the
implementation of the superclasses. As an instance searches up the hierarchy, it
finds the lower implementation first. The implementation higher up in the
hierarchy is not executed.

135

Extending inherited behavior

NSObject

StockOption
isa

StockOption

Asset

inherits from

inherits from

sellTo:

sellTo:
{
 call inherited version
 ...
}

sellTo:
{
 ...
 ...
}

Extending inherited behavior

It’s fairly common to create a subclass and find that the superclass’s version of a
method is good for your subclass, except for some extra work you need to do in
the subclass. What you want to do is use the implementation of the superclass
and extend it, instead of completely rewiring the method.

136 Chapter 6: INHERITANCE

super

- (void)sellTo:(Trader *)buyer
{
 [super sellTo:buyer];
 [write setOwner:buyer forOption:self];
}

super

Using super, a class can call the inherited version of a method. For example:

- (void)sellTo:(Trader *)buyer
{

[super sellTo:buyer];
[write setOwner:buyer forOption:self];

}

A message sent to super starts searching for an implementation with the object’s
superclass, instead of the object’s class.

137

self and super

NSObject

StockOption
isa

StockOption

Asset

inherits from

inherits from

sellTo:

sellTo:
{
 call inherited version
 ...
}

sellTo:
{
 ...
 ...
}

self and super

It’s important to understand the difference between self and super. self is a
variable that points to a distinct object—the object currently executing a method.
super is a way of calling the implementation of a method from your superclass.
super is relative to what class has the implementation. self always points to a
concrete object.

For example, take StockOption and Asset. If an instance of StockOption receives
a sellTo: message, it begins executing the implementation it finds first in the
class hierarchy—in this case, the implementation defined in StockOption. At this
point, self points to the instance of StockOption, and super refers to the
superclass of StockOption, Asset.

Now imagine StockOption’s sellTo: method called Asset’s implementation of
sellTo: using super. At this point, Asset’s sellTo: method is executing. super
now refers to Asset’s superclass, NSObject. However, self still points to the
instance of StockOption. Again, self is a real variable that points to a specific
object. super is a way of calling the implementation of a method in your
superclass.

138 Chapter 6: INHERITANCE

alloc and init

When a new instance of any class is created all instance
variables (except isa) are set to zero:

• Numbers are 0.0
• Characters are '\0'
• Pointers are nil

The init method is responsible for initializing these to a
usable value.

alloc and init

The class method alloc allocates memory for objects. It uses the information in
the class to calculate how many bytes of memory to allocate for instances of that
class. It then sets all the instance variables to zero.

For most classes, it’s inappropriate for instance variables to start out as zero. If
an instance variable used for someone’s name is declared as an NSString, the
variable will initially be a nil pointer. A more appropriate value would be an
instance of NSString whose contents were “”. Having a nil pointer as an instance
variable could easily lead to strange bugs.

To make sure all objects are initialized with valid values for their instance
variables, an initialization method is typically called right after alloc. NSObject
declares and implements a method called init that takes care of initialization.

A typical situation where init is useful is when an object uses another object as
an instance variable. For example, a receipt object might need an array to hold
references to all the items purchased. Thus, for the receipt object to be usable, it
must allocate a new array and set an instance variable to point to that instance.

OpenStep requires you to initialize an object immediately after allocating it. That
is why code for object creation generally looks like this:

myReceipt = [[Receipt alloc] init];

139

Overriding init

Call the inherited init

Initialize instance variables that were not inherited

- (id)init
{
 [super init];
 [self setExpiration:[NSCalendarDate calendarDate]];
 return self;
}

Overriding init

Since classes are arranged in a hierarchy, when you create a class it may inherit
instance variables from several other classes. While you could carefully study the
init method of each super class and write an init method that initializes all the
instance variables, it is much easier to simply call the inherited init method.

So, the first step in any init method is to call the initializer of your super class:

[super init];

Once you have called the superclass’s initializer, you can do further initialization.
For example, setting the expiration to today’s date:

[self setExpiration: [NSCalendarDate calendarDate]]

Finally, return the initialized instance:

return self;

140 Chapter 6: INHERITANCE

init in the class hierarchy

NSObject

StockOption

Asset

inherits from

inherits from

init

init

init

[super init]

[super init]

init in the class hierarchy

Suppose that the init method on the previous page is part of a class that is very
low in a deep class hierarchy. Notice that although the subclass only calls its
superclass’s init, that init calls its superclass’s init method. This continues all
the way up to NSObject’s init method. Then each class initializes its instance
variables as the flow of control comes back down the hierarchy.

Thus, each class is only responsible for initializing the instance variables it
declares. Inherited instance variables are initalized by the class that introduced
them. For example, Asset’s init method is responsible for initializing the instance
variable owner. StockOption’s init method doesn’t have to initialize owner, but
does have to initialize expiration.

141

Initialization with arguments

 It is very common to create an object and then
immediately set the value of an instance variable:

myStock = [[StockHolding alloc] init];
[myStock setShares:aNumber];

 It is often more convenient to have initialization
methods that take arguments:

myStock = [[StockHolding alloc]
 initWithShares:aNumber];

Initialization with arguments

It’s very common to have initialization methods that take arguments. If you have
an instance variable called shares, you might have an initialization method that
takes an initial value for shares. This method would be called
initWithShares:.

142 Chapter 6: INHERITANCE

Asset’s initialization methods

Suppose you have a subclass of NSObject called Asset. Asset declares a single
instance variable called owner. For an instance of Asset to be usable, you must
set owner to a reasonable value.

So, you write a method called initWithOwner: that takes the owner of the asset
being initialized as an argument:

- (id)initWithOwner:(Trader *)aTrader
{

[super init];
[self setOwner:aTrader];
return self;

}

initWithOwner: is called like this:

myAsset = [[Asset alloc] initWithOwner: myTrader];

Of course, Asset inherits the method init from NSObject. So someone might do
this:

myAsset = [[Asset alloc] init];

If you don’t override init, an instance of Asset might be created that doesn’t have
a valid value for owner. You must override init in Asset to ensure that owner
gets set to a usable value:

- (id) init
{

Trader *defaultOwner;

defaultOwner = [Trader floorBoss];
return [self initWithOwner:defaultOwner];

}

Asset’s init method gets a default value for owner and calls Asset’s
initWithOwner: method to do the initialization. Because initWithOwner: is
the method that actually does the work, it’s called the designated initializer.

143

StockOption’s initialization methods

If you create a subclass of Asset called StockOption, it might have the instance
variable expiration. As such, you’d create an initialization method called
initWithOwner:expiration:.

- (id)initWithOwner:(Trader *)aTrader
expiration:(NSCalendarDate *)aDate

{
[super initWithOwner:aTrader];
[self setExpiration:aDate];
return self;

}

Notice how initWithOwner:expiration: calls the superclass’s
initWithOwner: method, instead of init. When calling a superclass’s initializer,
you should always call the superclass’s designated initializer.

If you write a class with several initializers, be certain to clearly document which
is the designated initializer. Generally, the designated initializer is the one that
takes the most arguments.

Just as Asset had to override init, StockOption has to override initWithOwner:
so the following call properly initializes expiration:

myOption = [[StockOption alloc] initWithOwner:
myTrader];

StockOption’s initWithOwner: would probably look something like this:

- (id)initWithOwner:(Trader *)aTrader
{

NSCalendarDate *now;

now = [NSCalendarDate date];
return [self initWithOwner:aTrader expiration:now];

}

StockOption doesn’t have to override init.

144 Chapter 6: INHERITANCE

Designated initializer

NSObject

StockOption

Asset

init
[super init]

[super initWithOwner:]

[self initWithOwner:]

[self initWithOwner:expiration:]

initWithOwner:

initWithOwner: initWithOwner:expiration:

init

[self initWithOwner:]

Designated initializer

Why did initWithOwner:expiration: call Asset’s init method? After all, if
you call Asset’s init method, it calls initWithOwner: for you.

The problem is, Asset’s init method ends up calling initWithOwner: on self .
self is a real variable. When an instance of StockOption executes Asset’s init
method, self still points to the instance of StockOption. So a message to self for
the method initWithOwner: ends up executing StockOption’s
initWithOwner: method. StockOption’s initWithOwner: calls
initWithOwner:expiration:, and you’ve got an infinite loop.

Moral—in the designated initializer, call the superclass’s designated initializer.

Why didn’t you have to override init in StockOption? Suppose someone sent init
to an instance of StockOption. StockOption doesn’t have an init, so the init
method inherited from Asset is used. Asset’s init calls initWithOwner: on
self . In this case that is StockOption’s initWithOwner:, because self is an
instance of StockOption. Thus expiration gets initialized properly.

Moral—it’s only necessary to override the superclass’s designated initializer.

145

Rules for initialization methods

1 . If a class has any initialization methods, it must have one designated initializer.

2 . All initialization methods except the designated initializer must call the designated
initializer, either directly or indirectly.

3 . The designated initializer of a subclass must call the designated initializer of its
superclass.

4 . A subclass must override its superclass’s designated initializer.

5 . Class documentation must clearly indicate which initialization method is the
designated initializer.

146 Chapter 6: INHERITANCE

dealloc

- (void)dealloc
{
 [writer release];
 [expiration release];
 [company release];
 [super dealloc];
}

dealloc

If you allocate or retain any objects in an initialization method, you must release
them in the dealloc method. Then call the superclass’s dealloc method.

Remember that dealloc is called when an object’s retain count becomes zero. If
you forget to release objects that you created, they will not be cleaned up, and
your program will leak memory.

You should not release inherited instance variables. The superclass’s dealloc
method takes care of releasing them. Just as with initialization methods, you’re
only responsible for instance variables that you declare.

147

Abstract classes

A class is abstract if it is not used to make direct instances, but only used as a
base from which other classes inherit. For example, NSObject is an abstract
class. You’d never create an instance of NSObject, but all of your classes inherit
from NSObject.

Abstract classes define behavior that all their subclasses inherit. They’re generally
use to factor out common behavior from a group of related classes. For example,
real estate, stock holdings, and stock options are all different kinds of assets.
They each have their own custom behavior, but there is also behavior that’s
common to all three. By grouping them in a class hierarchy under the abstract
class Asset, you avoid having to reimpliment the same behavior in three different
places. This makes it much easier to maintain.

148 Chapter 6: INHERITANCE

DEMONSTRATION 6.1 PORTFOLIO MANAGER: USER INTERFACE TEMPLATE

The Portfolio Manager application isn’t very interesting yet. All it does is notify
you before its window closes and before it quits, and allow you to cancel either
action.

To make Portfolio Manager a more functional application, it needs to be able to
display one stock holding in a portfolio and switch between multiple stock
holdings in a portfolio. To avoid getting involved with the details of setting up the
user interface, the source code for a user interface is available in the exercise
materials directory. In this demonstration you build the provided template project
and examine its source code. In future exercises, you will add functionality to the
application by inserting your own code into the project.

Objectives

After completing this demonstration, you’ll be able to:

» Explore an existing application to figure out how it works

» Identify provided classes that are suitable for subclassing

» Locate methods in PortfolioController where you can add code to extend the
functionality of Portfolio Manager

149

Demonstration

1 . Copy 06.1_PortfolioManager from ExerciseMaterials/Exercises. Open the project
in Project Builder.

2 . Build and run Portfolio Manager. It presents you with a single window and some
menu items.

3 . Choose the New Stock command in the Stock menu. This creates a new stock
holding, displayed in Portfolio Manager’s main window:

4 . Choose New Stock again to create another stock holding.

5 . Use the Next and Previous buttons to switch between the two stock holdings.
Try to edit information in the different fields. What information is stored for each
stock holding? What information is only stored in the user interface objects?

6 . Delete the first stock holding. Choose the Delete Stock command in the Stock
menu.

7 . Delete the remaining stock holding. What happens when you choose the Delete
Stock command again?

150 Chapter 6: INHERITANCE

8 . Now examine the object model. At a high level, Portfolio Manager’s object model
looks like this:

PortfolioController

Portfolio

interface

portfolio

assets

objects
User

Interface

StockHolding

StockHolding

StockHolding

StockHoldingNSMutableArray

0

1

2

3

A single Portfolio object is used to manage a collection of Assets. Portfolio uses
an NSMutableArray to assist it. In this application, the Assets are instances of
StockHolding, a subclass of the abstract Asset class. These objects are the model
of a portfolio in the Model-View-Controller design pattern.

The user interface consists of a window with text fields and buttons that display a
single stock holding at a time and allows the user to modify the attributes of the
stock holding. There is also a user interface to add, delete, and switch between
stock holdings. These objects comprise the view.

An instance of PortfolioController ties the information in the model to the user
interface. This object is responsible for getting information from the model
objects and putting it into the view when a new stock holding is displayed. It is
also responsible for propagating changes from the user interface back to the
model objects. PortfolioController is the controller for a portfolio.

151

9 . Switch back to Project Builder and open Portfolio Manager’s interface file.
Because Interface Builder is such a powerful tool, a lot of information can be
stored in an interface file. One of the first steps towards understanding how an
application works is looking at its interface file and tracing some of the
connections.

Τhe first task is to identify the controller object for the application. Looking at the
File window, it’s clear that PortfolioController is the main controller for the
application.

10.Select the PortfolioController instance and bring up the Connections inspector.
Notice that the PortfolioController has access to the text fields in the user
interface.

11.Select the Next and Previous buttons. The Connections inspector reveals that
both buttons target PortfolioController, and each is set to send an appropriate
message.

12.Finally, look at the Stock menu. Again, examine the connections for each of the
two menu items.

152 Chapter 6: INHERITANCE

13.Now take a look at the classes used in Portfolio Manager. Portfolio Manager uses
two provided library classes, Portfolio and Asset. Switch to Project Builder and
look at the Asset.h header file.

Asset is an abstract superclass. It keeps track of the name of an asset and
provides supporting methods for initialization, deallocation, and archiving.
Archiving is discussed in Chapter 14, Archiving. Asset also declares a method,
value, that returns a double. Subclasses of Asset are expected to override this
method. They should provide an implementation that calculates the value of the
asset in dollars and returns it as a double.

Notice the @class entry. @class is a compiler directive that notifies the compiler
that the following entries are class names. Asset’s interface file doesn’t need to
know anything about NSString except that it’s a class name. Because interface
files are frequently imported by other classes, it speeds compilation to have
interface files import as few other interfaces as possible. The @class directive
makes it possible to wait until the implementation file to import interfaces other
than your superclass.

14.Look at the Portfolio.h header file.

A Portfolio keeps track of a list of Assets, allowing the user to add, delete, or
access Assets by index. It also implements a value method that calls the value
method of each Asset in turn, adding the results together to return the total value
of the Portfolio.

15.Examine the header and implementation files for the StockHolding class. Notice
that this class is a subclass of Asset but as of yet it has no additional instance
variables or behavior. This is the class you’ll write in the exercise.

16.Tying the model objects, Portfolio and its associated Assets, together with the
user interface is a PortfolioController. Portfolio Manager has one instance of
PortfolioController that manages a single Portfolio, displayed in the main
window. Open PortfolioController’s interface file in Project Builder. First come
some #import statements.

Because the interface to a controller object is not normally imported by other
classes, it’s acceptable to import the entire Application Kit precompiled header.
However, there’s still no need to import Portfolio.h in the header file. You can
simply use the @class directive and import Portfolio.h in the implementation
file.

153

17.Next comes the declaration of instance variables. PortfolioController declares a
number of outlets for the different user interface elements it needs to know about.
In addition, it has two instance variables that are not for user interface elements.
displayedIndex keeps track of the index of the currently selected
StockHolding, and portfolio provides a way to communicate with the Portfolio
instance the PortfolioController manages.

18.The next set of instance methods manage the portfolio’s stock holdings.
deleteStock: removes the currently selected stock holding from the portfolio
and resets displayedIndex to point to the next stock in the list. newStock:
creates a new instance of StockHolding and adds it to the portfolio. It also resets
displayedIndex to point to the newly created stock holding. nextStock: and
previousStock: traverse the list of stock holdings.

19.The final set of instance methods coordinate changes to the user interface with
changes to the object model. PortfolioController calls
saveChangesToSelection when the selection is about to change. This method
saves information from the user interface to the corresponding stock holding in
the object model. fillFields takes information from the selected stock holding
and puts it in the user interface. Finally, blankFields zeroes out the fields when
there is no selection.

20.Open PortfolioController.m. Examine some of the implementation methods.

154 Chapter 6: INHERITANCE

Important ideas from this lesson

» When an object receives a message, it looks for the implementation of the
corresponding method by following the isa pointer to its class. If the method is not
found in that class, it searches up the class hierarchy until it finds an implementation.

» A subclass can do any of the following:

Add instance variables

Add methods

Override methods

Extend methods using super
» A subclass is not allowed to do either of the following:

Remove inherited instance variables

Remove inherited methods

» super is used to call the inherited version of a method.

» An initializer method initializes instance variables.

» A designated initializer must do the following:

call the superclass’s designated initializer

initialize instance variables that are not inherited

return self

» All non-designated initializers call the designated initializer, either directly or
indirectly.

» If you write any initializers in a class, you must override the superclass’s designated
initializer.

» In dealloc, release any helper objects and call super’s dealloc.

155

REVIEW INHERITANCE

1 . How many superclasses can a class have? How many subclasses?

2 . You are writing a program and have to create two classes: Building and House.
Which is most likely to be the superclass of the other?

For the following questions imagine two classes: X and Y. X is a superclass of
Y. X has an instance variable phoneNumber that refers to an NSString. Y has
an instance variable age that is an int.

3 . Both X and Y have implementations of the instance method liquefy. If you
create an instance of Y and send it the message liquefy, will the implementation
in Y or X get executed?

4 . In X’s init method, what instance variables must be initialized?

5 . In the space below, write an init method for Y.

156 Chapter 6: INHERITANCE

EXERCISE 6.1 PORTFOLIO MANAGER: STOCK HOLDING

Now that you understand the basics of Portfolio Manager’s user interface and
object model, it’s time to extend that object model. In this exercise you create a
subclass of Asset called StockHolding. A StockHolding has several instance
variables not present in Asset, including a price and number of shares. Using this
information, an instance of StockHolding can calculate its value. All of this
additional information should be accessible through the user interface.

Objectives

After completing this exercise, you’ll be able to:

» Add instance variables to a subclass

» Correctly override an inherited init method

» Add methods to a subclass

» Implement a method declared in an abstract superclass

» Add code to an existing controller class to support new functionality

157

Exercise

1 . Open the Portfolio Manager project.

2 . StockHolding adds support for several instance variables not declared in Asset.
Specifically, a stock holding has an NSString to represent its ticker ID, a double
to store its stock price, and an integer to store the number of shares. Add
declarations to StockHolding.h for these instance variables.

3 . Add declarations for accessor methods for each new instance variable you added
to StockHolding.

tickerID

stockPrice

StockHolding

shares

NSString *

double
int

- (NSString *)tickerID
- (void)setTickerID:(NSString *)anID
- (double)stockPrice
- (void)setStockPrice:(double)aPrice
- (int)shares
- (void)setShares:(int)aNumber

4 . Write implementations for the accessor methods.

5 . Override init to set the new instance variables to reasonable initial values. Use
the accessor methods you wrote!

6 . Override the dealloc method inherited from Asset. You need to release any
objects used by StockHolding—any objects instances of StockHolding refer to
via an instance variable.

7 . Asset declares a value method that subclasses are supposed to implement.
Override value and make it calculate the value of the stock holding based on the
price of the stock and the number of shares.

8 . Build the project to make sure you don’t get any compiler errors. Building a
project after completing work on a class means you don’t have to try to fix code
in two different classes at once.

9 . Run Portfolio Manager. Try to set the price and number of shares for some stock
holdings. What happens when you switch to a different stock holding and then
come back?

10.Portfolio Manager doesn’t save the changes you make in the user interface to the
selected StockHolding instance. To fix this, you need to make some changes to
PortfolioController. Add code to saveChangesToSelection and fillFields
that coordinates the new instance variables in StockHolding with the user
interface.

158 Chapter 6: INHERITANCE

11.Build and run Portfolio Manager. Test to make sure you can save the stock price,
number of shares, and ticker ID for stock holdings. Does Portfolio Manager
update the value field immediately when you change the number of shares or
stock price? Does it correctly display the value after you switch to a different
stock and come back? Speculate on why the user interface works this way.

Enhancements
» Modify PortfolioController to disable the Next and Previous buttons when they

won’t do anything. Make sure you enable the appropriate button when a new stock
is created, and disable the appropriate button or buttons when a stock is deleted.

» Create an awakeFromNib method in PortfolioController where you blank out
the fields. Why does this code have to go here instead of in PortfolioController’s
init method?

» Read the documentation on NSTextFieldCell to see what notifications it posts. Set
up PortfolioController as an observer of notifications from the stock price and
shares text fields so you can update the value fields on the fly, instead of just when
the fields get filled after a next, previous, new, or delete command.

» Add an insertStock: method to PortfolioController that inserts the new stock at
the current location in the list of stocks, instead of at the end. Watch out for edge
cases! Make sure your method works when the currently selected stock holding is
the last one, as well as when there are no stock holdings in the portfolio.

159

160 Chapter 6: INHERITANCE

