
Chapter 7

FOUNDATION

162 Chapter 7: FOUNDATION

CHAPTER 7 FOUNDATION

The Foundation Framework defines a base layer of Objective-C classes. In addition
to providing a set of useful primitive object classes, it introduces several paradigms
that define functionality not covered by the Objective-C language.

—Foundation, Introduction

Goal

To be able to effectively use fundamental classes and concepts from the
Foundation Framework.

Prerequisites

Working knowledge of objects and pointers.

Objectives

At the end of this chapter, you’ll be able to:

» Distinguish between simple attributes and relationships

» Use the NSArray and NSMutableArray collection classes

» Properly use autorelease when returning objects from methods

Reading

The following reference contains more information about the
Foundation Framework:

/System/Library/Frameworks/Foundation.framework/Resources/
English.lproj/Documentation/Reference/ObjC_classic/
IntroFoundation.html

163

Objects as instance variables

name

yearOfBirth

points

spouse

@"Harold" @"Maude"
1968 1975

1 2

name

yearOfBirth

points

spouse

Objects as instance variables

Objects can serve two different roles when used as an instance variable of another
object. Objects that store values, like NSString and NSCalendarDate, are used for
instance variables that represent simple attributes of the object. A simple attribute
is an attribute that resolves to a value—for example a name, number, or date.

Instance variables that point to business objects generally represent relationships.
A relationship is a pointer to a related object. The related object doesn’t store data
for you, it’s simply a related object.

In the example of a Person object, name is a simple attribute. Even though the
instance variable points to an object, an instance of NSString, conceptually name
resolves to a value. spouse is a relationship. It points to another
Person object.

The Foundation Framework introduces a number of classes that are very useful
for storing simple attributes. NSString and NSCalendarDate are two that you will
use frequently.

164 Chapter 7: FOUNDATION

Accessor methods revisited

The accessor methods for instance variables that represent simple attributes and
those that represent relationships are different. Because simple attributes are part
of an object, it’s necessary to get a clean copy of the objects used to store simple
attributes when you set the instance variable. If someone calls setName: on a
Person and passes in a string, you want to be sure that string will never change.
For this reason, accessor methods for simple attributes should copy the passed in
object. For example:

(void)setName:(NSString *)aName
{

if (name != aName) {
[name release];
name = [aName copy];

}
}

When creating a relationship to another object, you don’t want to copy the related
object. Imagine two Person objects, personA and personB. You wish to create
a relationship between them, indicating that personB is personA’s spouse:

[personA setSpouse:personB];

When you send personA the setSpouse: method, you expect personA to
store a reference to personB, but not to create a new, private copy of personB.
Therefore, Person’s setSpouse: method should look like this:

(void)setSpouse:(Person *)aPerson
{

if (spouse != aPerson) {
[spouse release];
spouse = [aPerson retain];

}
}

Accessor methods for instance variables that embody relationships should keep a
reference to the passed in object, but not create a copy.

165

NSCopying protocol

- (id)copy
- (id)copyWithZone:(NSZone *)aZone

NSString

NSCopying protocol

To make it easier to copy them, all classes in the Foundation Framework that are
used to store values conform to the NSCopying protocol. The NSCopying
protocol says that any object that conforms to it must implement the method
copyWithZone:. As a convenience, the NSObject class defines the method
copy which simply invokes copyWithZone: with a default zone. When you send
an object a copy message, you get back a retained object whose data is an exact
copy of the original object’s data.

Other objects may implement the NSCopying protocol. However, for objects
with data that is more complex than a single value, it can be difficult to know
what to do when copying them. For example, should the Person object return a
copy of itself with a copy of its spouse, or just another reference to its spouse?
Always check the documentation before using copy on an object that stores
complex information.

166 Chapter 7: FOUNDATION

NSArray

NSArray

NSArray

In many situations, it’s desirable to keep an ordered list of objects. The
Foundation Framework provides the NSArray class to keep such a list. When an
object needs to return an ordered collection of objects, it generally uses an
NSArray. NSArray is a collection class.

Normally, instances of NSArray cannot be modified. This is done to preserve
encapsulation. When an NSApplication returns its list of NSWindows, the
NSApplication is exposing some of its instance variables. If you could change the
windows in an application by modifying the array, it would break encapsulation.
Therefore, NSArray is not modifiable. Foundation refers to objects that can not
be changed as immutable objects.

Passing around immutable objects is easier than passing around mutable objects,
because they’re guaranteed to never change. This can eliminate excess copying.

167

Accessing objects in an NSArray

NSArray

0

1

2

3

NSEnumerator

currentObject

- (id)nextObject

- (id)ObjectAtIndex:
 (int)index
- (NSEnumerator *)
 objectEnumerator

Accessing Objects in an NSArray

Objects in an NSArray are ordered by index. To access the objects in an
NSArray, you can simply ask the array for the object at a given index.
For example:

id firstObject;
NSArray *theArray;

firstObject = [theArray objectAtIndex:0];

Index numbers start at 0.

If you need to traverse the contents of the entire array, you could simply create a
for loop to do so. However, NSArray provides an object to do the job for you—
an instance of NSEnumerator. You use NSEnumerator like this:

NSEnumerator *theEnumerator;
id theObject;

theEnumerator = [theArray objectEnumerator];
while (theObject = [theEnumerator nextObject]) {

// do operations using theObject here
}

168 Chapter 7: FOUNDATION

NSMutableArray

NSArray

0

1

2

3

- (id)ObjectAtIndex:
 (int)index
- (NSEnumerator *)
 objectEnumerator

NSMutableArray

Sometimes it’s desirable to modify an array incrementally, instead of creating an
immutable array. The Foundation Framework provides NSMutableArray to meet
this need. NSMutableArray provides all the methods of NSArray, plus it adds
method for adding and removing objects from the array. Objects can be inserted
at a particular index, or simply added to the end of the array. NSMutableArray
dynamically allocates storage to hold references to as many objects as you add to
it.

When you add an object to an NSMutableArray, the array sends your object a
retain message. This is because objects in an array are retained by the array. This
is true regardless of whether the array is a mutable or immutable array. When you
remove an object from an array, the array sends it a release message. An array
also releases its objects when the array itself is deallocated.

NSMutableArray allows you to get an NSEnumerator to enumerate the array’s
objects. Because NSEnumerator peeks into the innards of an array for efficiency
reasons, you should never modify an array while simultaneously using an
NSEnumerator to step through its member objects. Not following this rule can
lead to unpredictable results.

169

A simple data bearing object

NSArray

0

1

2

3

Portfolio

assets

A simple data bearing object

NSMutableArray provides an easy way to implement a simple data bearing
object. Create an object that uses an instance of NSMutableArray to manage its
data. You add value by providing additional methods that perform operations on
the objects in the array.

In some cases, it’s desirable to give a client a list of all the objects in the
NSMutableArray. For example, a Portfolio object might manage a list of Assets.
A client might want to take this list of Assets and add them to another Portfolio
object, or perform some other operation on them. The question is, what should
the Portfolio return? If it returns the NSMutableArray itself, it’s broken
encapsulation. If it sends the NSMutableArray a copy message, not only is the
array itself copied, but so are all the objects in the array.

170 Chapter 7: FOUNDATION

Copying an array

NSArray

0

1

2

3

Portfolio

assets

NSArray

Copying an array

NSMutableArray and NSArray make assumptions about what you want to do
when you send them a copy message. Specifically, NSMutableArray assumes
that you want not only a copy of the pointers to the objects, but also a copy of the
objects themselves. So NSMutableArray performs a deep copy. NSArray
assumes you just want to retain the array one more time, so it simply increments
its retain count.

In the example of Portfolio returning an array of the objects in its
NSMutableArray, the right thing to do is to copy the array itself—the pointers to
the objects. This is cleanly accomplished using NSArray’s initWithArray:
method. Portfolio’s assets method might look like this:

- (NSArray *)assets
{

NSArray *returnedArray;
returnedArray = [[NSArray alloc]

initWithArray:assets];
[returnedArray autorelease];
return returnedArray;

}

171

Autorelease revisited

Portfolio’s assets method created a completely new object that it then used as its
return value. As far as Portfolio is concerned, returnedArray is simply a return
value and should go away. Portfolio claims no ownership of the object, even
though it created it. Following the rules from Chapter 4, Portfolio is responsible
for releasing returnedArray, because Portfolio created it using alloc.

If Portfolio simply sends returnedArray a release message, returnedArray
will deallocate itself immediately. This would make it rather useless as a return
value. However, once Portfolio returns returnedArray, there’s no place in the
code for Portfolio to release it. The method call is over.

To get around the problem, Portfolio uses autorelease. This way, Portfolio has
done its job—returnedArray has been marked for release. However, it’s been
marked for future release, so it’s still useful as a return value.

Here is the rule to follow when creating a new object to use as a return value:

Send autorelease to any object you create using alloc or copy for use as a
return value.

172 Chapter 7: FOUNDATION

Protocols

A protocol is a set of methods that can be implemented by any class. For
example, the NSCopying protocol defines the method that any class needs to
implement to support copying. It’s possible to test whether a particular object
conforms to a given protocol, and to do type checking based on adopted
protocols. This allows many objects throughout the class hierarchy to respond to
the same set of messages in a formal way, without having to inherit them all from
the same superclass.

Protocols are defined using a syntax very similar to the method declarations in a
header file. For example:

@protocol NSCopying

- (id)copyWithZone:(NSZone *)aZone;

@end

Classes can adopt protocols using the following syntax:

@interface Portfolio:NSObject <NSCopying>

Multiple protocols are separated using commas.

Type checking for protocols is done using a similar syntax. The following
variable declaration declares a variable that refers to any class that adopts the
NSCopying protocol:

id <NSCopying> copyableObject;

Foundation defines a number of protocols, listed in the documentation. Other
frameworks may also define protocols. Check the documentation for each
framework to see what protocols it defines.

173

Important ideas from this section

» Instance variables that point to objects can represent simple attributes
or relationships.

» Simple attributes resolve to a value. NSString and NSCalendarDate are two
classes typically used to hold simple attributes.

» Relationships are pointers to other business objects.

» Accessor methods that set simple attributes should copy the
passed-in object.

» Accessor methods that set relationships should retain the object.

» NSArray stores an ordered list of objects.

» Objects in an NSArray can be accessed by index.

» Objects in an NSArray can be enumerated using NSEnumerator.

» NSMutableArray is an array that can be modified.

» Arrays retain the objects they contain.

» To copy the pointers of an array, use alloc and initWithArray:.

» Protocols provide a formal way for many classes to implement the
same methods.

174 Chapter 7: FOUNDATION

REVIEW FOUNDATION

1 . If Asset has a name instance variable that points to an NSString, is name a
simple attribute or a relationship?

2 . Write an implementation for Asset’s setName: accessor method.

3 . Given that assetArray is an instance of NSArray, write a message call that
returns the object in assetArray at index 3.

4 . Write a code fragment that sends the value message to each object in
assetArray:.

5 . What is the difference between NSArray and NSMutableArray?

6 . What are protocols used for?

175

EXERCISE 7.1 IMPLEMENTING PORTFOLIO

For the previous exercises, the Portfolio class was provided to you. In this
exercise, you get a chance to use what you’ve learned about the Foundation
Framework, and specifically NSArray, to implement Portfolio yourself.

Objectives

After completing this exercise, you’ll be able to:

» Use an instance of NSMutableArray to manage data storage of objects

» Use an NSEnumerator to iterate over the contents of an NSArray

» Copy the pointers in an array without copying the contents of the array

176 Chapter 7: FOUNDATION

Exercise

1 . Remove Portfolio.h and Portfolio.m from your PortfolioManager project:

1 . Make a new Portfolio.h file in your PortfolioManager project:

#import <Foundation/NSObject.h>

#import “Asset.h”
#import <Foundation/Foundation.h>

@interface Portfolio : NSObject
{

NSMutableArray *assets;
}

- (id)init;
- (void)dealloc;

- (void)addAsset:(Asset *)anAsset;
- (void)removeAssetAtIndex:(int)index;
- (Asset *)assetAtIndex:(int)index;
- (int)numberOfAssets;
- (NSArray *)assets;
- (double)value;

@end

Portfolio uses an NSMutableArray to store a number of Assets. Access to this
array is granted using methods with names very similar to those of
NSMutableArray itself. Don’t worry about adopting the NSCoding protocol for
this exercise.

2 . Create a new Portfolio.m file in your project.

3 . Implement the init and dealloc methods. You need to create an
NSMutableArray in init and release it in dealloc.

4 . Implement methods for accessing the array. These methods all have functional
equivalents in NSArray or NSMutableArray. Your methods should simply pass
the arguments along.

5 . Write an assets method. assets returns a list of all Assets currently managed by
the Portfolio. Make sure you return an NSArray, not the NSMutableArray. Be
sure to properly autorelease any objects you create for use as a return value.

6 . Write a value method that computes the Portfolio’s value by adding up the value
of each Asset in the Portfolio. Your value method should iterate over each Asset,
calling each ones value method in turn and adding up the return values.

7 . Build your project and run PortfolioManager. Check to make sure everything still
works as expected.

177

178 Chapter 7: FOUNDATION

