
Chapter 10

MULTIPLE NIB FILES

222 Chapter 10: MULTIPLE NIB FILES

CHAPTER 10 MULTIPLE NIB FILES

Goal

To use multiple nib files for implementing applications with multiple, possibly
reusable, components.

Prerequisites

Ability to build a basic single nib file application using Interface Builder.

Objectives

At the end of this section, you will be able to:

» Enumerate the advantages of using multiple nib files

» Dynamically load a nib file to instantiate a component

» Explain the role of File’s Owner

» Describe the differences between single and multiple instance components with
respect to nib loading

Reading
» Developer Tutorial

» Development: Tools and Techniques

» NSBundle class reference in the Foundation

223

Applications use multiple complex components

A single sophisticated application is likely to incorporate a number of
modular components:

» About Panel

» Replicated Document or Window component

» Inspectors

» Preferences

» Find panels and other auxiliary views

Good software design has traditionally advocated modular design in an effort to
encapsulate detail and streamline interfaces between components. Among the
many benefits is the possibility that a well designed component can be easily
moved from one context to another—it will be reusable. Object-oriented
programming aids tremendously in the packaging of such components. A natural
way of packaging user interfaces elements into a component is to use a separate
nib file.

224 Chapter 10: MULTIPLE NIB FILES

They are typically implemented with multiple nibs

Components: modular design and implementation

Efficiency
• Lazy instantiations and file I/O - may never need it
• Faster startup time

Reuse

Replication

Dynamic replacement, e.g., updating without
 re-compile/re-link

They are typically implemented with multiple nibs

These are some of the advantages in using a separate nib file for each
separate component:

» Modularity

» Efficiency

» Reusability

» Replicability

» Modifiability

225

Connecting to nib objects from the outside: how?

window

MyController

window

MyController NSWindow

NSWindow

nib

nib 1 nib 2

alloc/init outside of IB

?

?

Connecting to nib objects from the outside: how?

Each nib file contains a number of object instances. Interface Builder makes it
easy to connect objects within a single nib file. But it is likely, with multiple nib
files in a single application, that objects from one nib will need outlets to objects
in a second nib file. Since loading a nib means instantiating a set of objects, it is
essential that you obtain some handle outside the nib to control these objects once
available.

Consider a component that brings up a window announcing the version of the
application. A user would activate the component by pressing a menu command.
Here is a clear case where a menu item in the main nib needs to message the
window or possibly a controller object stored in a second nib.

How is it possible to make these connections?

226 Chapter 10: MULTIPLE NIB FILES

Every nib file has a File’s Owner

For every nib file, Interface Builder provides a placeholder (a proxy) that
represents exactly one object instance that lives outside of the nib file. It is called
the File’s Owner. By definition, it must be instantiated by some other means than
loading this particular nib. Indeed, it must exist before this nib is ever loaded. It
is the “owner” of this nib file in that it serves as the sole bridge the life outside of
the nib, or alternatively, a way for the outside world to get inside the nib.

With the inspector, you can configure the class of object that File’s Owner will
be. It will usually be a custom class that you have created and read into Interface
Builder. Since Interface Builder knows the classes interface—its methods and
instance variables—it is knowledgeable about the of connections you can make
between the File’s Owner and other objects within the nib.

If the File’s Owner represents an instance of MyController, you can now connect
its window outlet to the NSWindow instance within the nib. When it’s time to
load the nib, this connection will be established. Objects within one nib can be
automatically connected to exactly one object outside the nib, the File’s Owner.

227

NSWindow

File's Owner loads its nib using NSBundle
NSBundle

window

File's Owner

1

filename.nib

MyController

window
nil

+ (BOOL)loadNibNamed:@"filename"
 owner:

NSWindow

MyController

window

2

File’s Owner loads its nib using NSBundle

The File’s Owner proxy in every nib file is a promise: when it’s time to load the
nib file, an object instance will be provided that:

» Is an instance of the same class as that shown in the inspector for
File’s Owner

» Needs to be connected to objects within the nib

The NSBundle class loads a nib file with the loadNibNamed:owner: method.
It takes the real File’s Owner object instance as an argument. Once the nib has
been loaded and the method returns, File’s Owner outlets connected to objects in
the nib are now properly set and ready to go. Any objects in the nib pointing back
at File’s Owner now point to the real object instance, in this case MyController.

What about awakeFromNib? As usual, all objects inside the nib that responded
were sent awakeFromNib. MyController, though intimately associated with the
nib, was not archived within the nib. While it does receive awakeFromNib as
File’s Owner, it is not typically used here. Upon returning from
loadNibNamed:owner:, you are assured that all nib objects have been
instantiated and connected. There is no need for an explicit message. Any nib
finalizing can be performed by MyController at this point.

228 Chapter 10: MULTIPLE NIB FILES

Code example: loading a nib file

- (void)show:(id)sender
{
 NSString *file = @"MyNib";

 if (!window) {
 if (![NSBundle loadNibNamed:file owner:self] {
 NSLog (@"Unable to load nib '%@' ", file);
 return;
 }
 }
 [window makeKeyAndOrderFront:nil];
}

Code example: loading a nib file

As soon as a client wants your component to show itself, it’s time to load the
appropriate nib file.

The component controller implements the show: method with
two assumptions:

» This controller is the nib File’s Owner

» It has a window outlet that is connected to the NSWindow instance inside the
nib once the nib has been loaded

Until the nib is loaded, the NSWindow instantiated and the outlets connected, the
controller’s window outlet is nil. The outlet is used as a flag to determine
whether or not the nib has been loaded. If it is nil, load the nib. If it is non-nil,
the nib has already been loaded and the window instance is available. It would be
incorrect to load the nib multiple times from the same controller instance.

If we fail to load the nib successfully, we do the courtesy of logging an error with
NSLog() and return. Whether we just loaded the nib or did so several calls to
show: earlier, we must now make the window visible and active. It may be that
the window was simply ordered off screen as the result of a close. In this case,
show: orders it back on screen.

229

Applications often dynamically load resources

Nib files

Images

Sounds

Localized character strings

Executable code-class implementations

Applications often dynamically load resources

Most applications contain a large number of resources that are only needed under
certain circumstances. For efficiency and maximum flexibility, an application can
dynamically load a wide variety of resources:

» Nib files—modular user interface components used by your application.

» Images—applications often use a fixed set of images in the user interface but
perhaps only conditionally. Apps don’t need them until it is necessary.

» Sounds—same idea.

» Character strings—applications localized to multiple languages need only speak
one at a time.

» Code—you can even dynamically load class implementations.

All of the reasons for using multiple nib files apply to each of these resources as
well. Until they are loaded, your application uses less memory. If a resource is
dynamically loaded, it can just as easily be dynamically replaced, modified, updated
or extended. It is even possible to allow some measure of open-ended extensibility
to an application. In the future, you may dynamically load and interact with a
component that you never planned on, nor even care too much what it does or how
it does it!

230 Chapter 10: MULTIPLE NIB FILES

NSBundle—access to resources

You can think of an application not so much as a fixed, static thing but as a loose
collection of resources and components stored together somewhere in the file
system. An application built in this way is really a bundle of resources available
for dynamic loading.

NSBundle is a Foundation object that represents a file system location that
bundles these resources together. You can ask an NSBundle instance for the
pathname to a resource or you can simply ask that it load the resource now,
incorporating it into the world of your active application.

While your application is itself a bundle, you are not restricted to it alone. It is
possible to have multiple bundles either contained within your application bundle
or located elsewhere in the filesystem. It is possible to imagine a bundle of
resources shared by many applications. It might be useful to have one bundle of
quickly changing resources dynamically accessed by a separate application bundle
that changes infrequently or not at all. Bundles, with their ability to dynamically
load resources, support the implementation highly dynamic applications.

231

NSBundle methods

+ (NSBundle *)mainBundle;

+ (NSBundle *)bundleWithPath:(NSString *)path;

+ (BOOL)loadNibNamed:(NSString *)name owner:(id)owner;

- (NSString *)pathForResource:(NSString *)name
 ofType:(NSString *)ext;

- (NSString *)localizedStringForKey:(NSString *)key
 value:(NSString *)value
 table:(NSString *)tableName;

- (Class)classNamed:(NSString *)className;

NSBundle methods

These NSBundle methods address the full list of potentially loadable resources.
Be careful to note that some are factory methods while others instance methods.

Every application is itself a bundle. It is where your application’s executable
image lives as well as the main nib loaded automatically at launch time. You can
obtain a bundle instance bound to this path with mainBundle. Alternatively,
you can instantiate a bundle with an arbitrary file system path using
bundleWithPath:.

You load a nib file using a factory method and no specification of a path, i.e.
without explicit reference to a bundle instance. Which bundle is used? It uses the
bundle that supplied the class implementation for the File’s Owner object which is
passed as the second argument. This might be a separate bundle you have created
or more commonly the main bundle itself.

While a bundle can automatically load a nib file, a localized string, or even a
chunk of class implementation code, it can’t know everything you do with your
resources. Often, you simply need a full pathname for a resource. What you do
with it is your business. NSBundle will locate named files of a
specified type—in other words, with the specified file extension—returning its
full pathname to you. This automatically includes locating one of several different
versions of the file, each for a specific language in the case of a localized
application.

232 Chapter 10: MULTIPLE NIB FILES

Using NSBundle, it is possible to dynamically load not only the nib file but the
class implementation, the compiled code, of the File’s Owner controller as well.
A complete component, the controller and its nib, can be a loosely coupled
application resource packaged separately in a bundle. The bundle
can even be replaced independently of the application itself. Through dynamic
loading, changes, and updates will be incorporated into the application the next
time it runs. Here is a sample method for dynamically loading an entire
component:

- (void)showComponent:(id)sender
{
 id component; // likely to be an ivar, shown here for clarity

Class componentClass;

// find the bundle in the mainBundle
NSBundle *bundle =

[NSBundle bundleWithPath:[[NSBundle mainBundle]
pathForResource:@"Component" ofType:@"bundle"]];

// alloc/init and show:
if (componentClass = [bundle principalClass]) {

component = [[bundleClass alloc] init];
[component show: nil];

}
}

233

The main nib: who loads it, who owns it?

The main nib file of your application is transparently loaded by your project’s
main() function which is generated by Project Builder—it calls the Application
Kit NSApplicationMain() function. The name of this nib file is listed under
“Project Attributes” on the Project inspector and is configurable. This is all
automatically established for you when you first create a project.

What object does the File’s Owner icon represent in the main nib file? Every
application is born with one and only one instance of NSApplication. The
Interface Builder inspector confirms File’s Owner’s type to be just that. When
you discover the reasons for doing so, you can easily make connections between
the NSApplication instance and the objects within the main nib. The most
common example is connecting your application controller as the delegate of
NSApplication.

You should generally never reassign the File’s Owner of your main nib.

234 Chapter 10: MULTIPLE NIB FILES

Main application component

NSBundle

NSApplication

NSMenu
AppController

File's Owner

NSApp Main Bundle Main nib

Main application component

Each application has a main component comprised of the global NSApplication
instance, the main nib and the main bundle enclosing them. The main nib includes
the File’s Owner proxy for NSApplication, the main menu instance and any
number of additional custom object instances. Your application controller
customizes the behavior of the main component by providing menu item
target/action, and serving as a delegate to NSApplication. It is useful to view this
as a modular component in itself, usually only one of several that comprise a
sophisticated application.

235

Encapsulated design for separate nib file components

Here is a simple design pattern that applies well to most separate nib file
components such as find panels, inspectors, preferences, and the like. The design
incorporates two pieces:

» The Controller—an object outside the nib that serves as the File’s Owner

» The user interface—the nib file

When is the nib file actually loaded? When the controller needs it to be there.
Other application objects request the services of the component via the controller.
Typically, this might be as simple as sending the show: message. Until the user
actually needs to use the interface, there is no need to load the nib and instantiate
the objects it contains.

Where and how does the controller itself get instantiated? Remember, it is always
outside the component nib. It may be instantiated in another nib, commonly the
main nib. Or, it might be dynamically instantiated with alloc and init in which
case it does not live within any nib file at all.

If it is instantiated in the main nib file, there are some implications to consider:

» The target/action menu item can connect directly to the controller

» Nib loading should happen in show:, not init

» The controller implementation cannot be dynamically loaded
(e.g. via NSBundle)

236 Chapter 10: MULTIPLE NIB FILES

Encapsulated design for separate nib file components

This second design is used for replicated components such as document
windows. It is also well suited to single instance components and provides more
flexibility than the previous arrangement. Menu actions or component requests go
through the application controller which in turn passes them to the component
controller through an outlet. The controller is not instantiated in any nib, but is
dynamically allocated once, the first time the application controller needs it. The
first time, AppController’s component outlet is nil:

- (void)showComponent:(id)sender
{

if (!component)
component = [[MyComponent alloc] init];

[component show: nil];
}

For replicated components—there may be multiple instances of the controller—
AppController would need a collection outlet such as NSArray to store the
multiple outlets.

Even for single instance components this design has advantages:

» The component controller is not even allocated until it is needed.

» The controller implementation—the compiled class code—can now be
dynamically loaded (via NSBundle) as well as the nib it owns.

237

Shared single instance components

Panels, Inspectors, etc.

Load the nib file once only

Single instance of Controller (File's Owner) can be
• instantiated in Main nib file
• dynamically alloc/init once

Resources typically never deallocated

Shared single instance components

Most components are single instances shared throughout the appliction: you have
one main menu, one preferences panel, one find panel. Since every time you load
a nib file it instantiates everything in the nib, you only need do so once in the
entire life of the application. This is based on the assumption that you will never
dynamically free such a component once it has been created.

It is likely in this case that the component controller, the File’s Owner outside of
the nib, will be instantiated within the main nib. This allows you to make
connections between menu items and the controller, or give your application
controller an outlet to it. For completely lazy instantiation and the possibility of
bundle-loading the controller implementation itself, File’s Owner is not
instantiated in the main nib but dynamically allocated once.

The component nib is not loaded, however, until someone really needs it. The
controller is present, ready to go. But it needn’t actually load the nib until
someone asks it to show:.

238 Chapter 10: MULTIPLE NIB FILES

Multiple instance components - replication

Multi-window applications

Load the nib file many times, once per open "document"

Multiple instances of Controller (File's Owner) instantiated
• one per nib load
• not in any nib file: dynamic alloc/init

Resources deallocated when
• document/window closed
• controller released

Multiple instance components—replication

Consider your favorite editor. It probably permits you to have several different
documents open at the same time. Each one appears in its own window. If there
are controls on that window, they are probably duplicated faithfully on each open
window you have. While the contents your are editing is unique within each
window—the file you are editing—the user interface components are the same,
cloned for each open file.

Once you have implemented a nib file and controller pair, it is easy to replicate
several instances of the component:

» Instantiate a new controller via alloc and init

» Message the controller, asking that it show: itself

Since new controllers are dynamically instantiated at run time, no single instance
is likely to live statically within in the main nib. And unlike a single instance
component that lives for the life of the application, this kind of component is most
likely going to be freed when its no longer useful. This might happen when you
are done editing the file and you close its window.

You can configure a window to free itself and all the user interface objects it
contains when the user closes the window. Your component controller will find
out about the close and can take care of freeing itself. Some nib objects need
special consideration and will be addressed later.

239

Multiple nib files—the big picture

Let’s return to the picture at the beginning of the chapter but this time include some
object diagrams and suggest how it might be divided into multiple nib files. There
are three different nib files in the picture:

» Main nib—contains NSMenu and AppController instances. NSApplication (not
shown) is the File’s Owner.

» Find Panel nib—contains the Find Panel instance. File’s Owner is the Finder
object. It may be instantiated in the main nib or, as implied here, dynamically
allocated (once, lazily) the first time it is needed.

» Document nib—loaded multiple times. It contains the document Window
instance. File’s Owner is a dynamically allocated
DocController instance.

This suggests a general design template applicable to many different applications
assembled from separate nib-based components.

240 Chapter 10: MULTIPLE NIB FILES

Important ideas from this section

» Applications are typically assembled from multiple components. These are best
implemented as separate nib files.

» File’s Owner is the single object instantiated outside of a nib file. It typically
loads the nib file and serves as a bridge for connections to objects within the nib
file.

» NSBundle provides API for dynamically loading application resources,
including nib files.

» The nib file for single instance components, such as an About Panel, is loaded
once. Its File’s Owner is usually instantiated in the main nib.

» The nib file for multiple instance components, such as a DocController in a
multi-window application, is loaded many times. Its File’s Owner object is
dynamically created each time a new component instance is needed. It loads its
own nib.

» Every application has a main nib which is automatically loaded at application
launch time. The single instance of NSApplication is its
File’s Owner.

Class featured in this section

NSBundle

241

REVIEW MULTIPLE NIB FILES

1 . Why would you want to have an application with multiple nib files?

2 . How can you connect an object in one nib file to an object in a different nib file?

3 . What’s the role of the File’s Owner in a nib file?

4 . Describe the relationship between a nib file and a bundle.

5 . In the case of a single instance component like a Find panel, how does the
File’s Owner know if the nib file has already been loaded?

6 . How can File’s Owner tell if the nib file failed to load? What are some reasons
why this might happen? What should File’s Owner do about it?

242 Chapter 10: MULTIPLE NIB FILES

EXERCISE 10.1 MULTIPLE NIB FILES—ADDING AN ABOUT PANEL

Virtually every application has a facility which provides some information about
the application, such as title, version number and author. This is commonly called
an About or Info panel. In this exercise you extend the application from the
previous exercise to include an About panel using a second nib file. The panel is
accessible from the application’s main menu.

Objectives

After completing this exercise, you will be able to:

» Build a separate panel with controller component using Interface Builder

» Understand and use File’s Owner in Interface Builder

» Connect menu actions directly to other controller objects

Exercise

1 . Make a copy of the previous project to preserve the original. Open the new
project and change the project name—with the Project Attributes Inspector—to
AboutPanel, to distinguish it from earlier versions. Save it.

2 . Create a new Component subproject called AboutPanel. A subproject
contains its own separate suitcases for classes, header, interfaces and so on. It
organizes your project into separate modules. When you build the project, each
subproject is built and incorporated into the final application.

3 . From Interface Builder, create a new nib file of type “About Panel” using the
New Module menu item on the File menu. Customize the appearance of the
panel as you like. Save the nib file in the folder for the AboutPanel subproject.
When prompted, insert it into the project.

243

4 . This nib will need its own custom controller object. Subclass NSObject and call
the class AboutPanel. Include an outlet for the panel. You also need an action
to display the panel upon request, so add a method called show:.

5 . Using the Attributes inspector, make the File’s Owner class your AboutPanel
class. You can then make a connection from the File’s Owner to your panel.
Note: do NOT instantiate a controller object in the AboutPanel nib itself.

6 . From the classes window in Interface Builder, create the files for your
controller object and add them to the project. Save the interface in the
AboutPanel component, and switch back to Project Builder.

7 . Implement the show: method in AboutPanel.m. It should check the panel
outlet and if nil, load the nib file with self as owner. This makes the File’s
Owner object the same class as it was defined in the AboutPanel nib file and
will connect the panel outlet to the NSPanel instance. In all cases, show:
should display the panel using makeKeyAndOrderFront:.

8 . Configure a menu item to display the panel. Your application already has an
About menu item—under the Apple menu—so it’s only necessary to make the
target/action connection.

» Read AboutPanel.h into your main nib file by dragging it into the
Interface Builder instances window for Strings.nib, and instantiate an
AboutPanel.

» Connect the About menu item to the AboutPanel instance’s
show: action.

9 . Make sure everything is saved and then build the project. Check that the About
panel appears when you choose the About menu item. Close and redisplay the
panel to verify that it works. Press the About menu item more than once, even
after the panel is visible. Make sure you do not see multiple panels.

Enhancements

Try an alternative design for the About Panel. This design forwards main menu
messages to the AboutPanel controller via the main AppController, rather than
making the connection directly.

» Add an aboutPanel outlet to AppController.

» Add a showAboutPanel: action to AppController.

» Remove the AboutPanel instance from the main nib and connect the About menu
item to the AppController’s showAboutPanel: action.

» Using Project Builder’s file attributes inspector, make the AboutPanel.h
header file a Project Header file. This means the header file is available project-
wide—it can be imported by other files in the project even if they are in different
subprojects. You can now add an import statement for the class to your
AppController.m file.

244 Chapter 10: MULTIPLE NIB FILES

» Now write AppController’s showAboutPanel: method. If the aboutPanel
outlet is nil, create an instance of your AboutPanel class and then send it the
show: message.

- (void)showAboutPanel:(id)sender
{

if (!aboutPanel)
{

// first time through alloc/init AboutPanel instance
 aboutPanel = [[AboutPanel alloc] init];

}
[aboutPanel show: nil];

}

» Save all the modified files and build the project. Test the application—check that
the info panel still appears.

Once you have finished the previous enhancement, it is reasonably straightforward
to make the AboutPanel a loadable bundle subproject. This design makes the whole
Info panel component lazy, including the loading of the code and the nib, which
will keep the application as small as possible. You will have to create a new Bundle
subproject and copy all the files into it.Then delete the old AboutPanel subproject.
Use the following method implementation in AppController:

- (void)showAboutPanel:(id)sender
{

if (!aboutPanel) {
// first time through
Class class;

// find the bundle in the mainBundle
NSBundle *bundle =

[NSBundle bundleWithPath:[[NSBundle mainBundle]
pathForResource:@"AboutPanel" ofType:@"bundle"]];

// alloc/init AboutPanel instance
 if (class = [bundle principalClass]) {

 aboutPanel = [[class alloc] init];
}

}
// show it
[aboutPanel show: nil];

}

245

246 Chapter 10: MULTIPLE NIB FILES

