Chapter 4

Creation and Destruction of Objects

82 Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

CHAPTER 4

CREATION AND DESTRUCTION OF OBJECTS

Goal
To understand how objects are created and destroyed.

Prerequisites

A basic understanding of C’'s malloc function.

Objectives

After completing this chapter, you'll be able to:
» Write an application that programmatically creates and destroys objects

» Properly useretain, release, and autor elease

Reading

These references contain more information about creation and destruction
of objects.

/System/Documentation/Developer/ReleaseNotes/Foundation

/System/Documentation/Developer/TasksAndConcepts/ ObjectiveC

(The Objective-C Language.)

83

84

Class methods

[NSCalendarDate h

isa |___|
dayOfWeek
>
\ J
NSCalendarDate .
+ version
version > - dayOfWeek

Class methods

A classisnot an instance itself. It has no instance variables of its own and it can’'t
perform methods intended for instances of the class. However, a class definition
can include methods intended specifically for the class object—class methods
as opposed to instance methods. A class object inherits class methods from the
classes above it in the hierarchy, just asinstances inherit instance methods.

In source code, the class object is represented by the class name. In the example,
the NSCalendarDate class returns the class version number using a method
inherited from NSODbject:

int versionNumber = [NSCalendarDate version];

Declarations of instance methods begin with “-”. Class methods have declarations
beginning with “+”. Because classes are sometimes referred to as factories, class
methods are sometimes called “factory methods.”

+(int)version // this is a class method

-(int)dayOfWeek // this is an instance method

Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

aloc and init

Employee *theEmployee;
id purchaseDate;
NSArray *employees;

theEmployee = [[Employee alloc]

o]
r+
el

purchaseDate = [[NSCalendarDate alloc] init];

employees = [[NSArray alloc]
initWithObject:theEmployee];

alloc and init

A principal function of aclass object isto create new instances. This code tells the
NSCalendarDate class to create a new NSCalendarDate instance and assign it to
thepurchaseDate variable:

NSCalendarDate *purchaseDate;
purchaseDate = [NSCalendarDate alloc];

Thealloc method dynamically alocates memory for the new object’ sinstance
variables. Thisis much like the C function malloc.

alloc asoinitializes al the instance variablesto 0. All, that is, except theisa
variable that connects the new instance to its class. For an object to be useful, it
generaly needs to be more completely initialized. That’s the function of aninit
method. Initiaization typically followsimmediately after allocation:

purchaseDate = [[NSCalendarDate alloc] init];

Thisline of code, or one like it, would be necessary before pur chaseDate could
receive any of the messagesillustrated in previous examples. The alloc method
returns a new instance and that instance performs an init method to set itsinitial
State.

Initialization methods often take arguments to allow particular values to be passed
and have keywordsto label the arguments, but they all begin with “init.”
initWithY ear:month:day: hour:minute:second:timeZone:, for example,
isamethod that initializes a new NSCalendarDate instance.

85

Releasing

id myObject;
myObject = [[MyClass alloc] init];
// use myObject until 1t Is not needed

[myObject release];

Releasing

In C, whenever you malloc some memory, it’simportant to free that memory
when you no longer need it. This increases the performance of your system over
the long run. If you forget to free memory allocated with malloc, your program is
said to be “leaking.”

The sameistruefor alloc. If you create an object using alloc, it iscrucial to
release the object when you no longer need it. For example:

id myObject;
myObject = [[MyClass alloc] init];
// use myObject until it is not needed

[myObject release];

86 Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

Objects can be shared

. N
InsurancePolicy

NSA
rray v premium | 19.99 Client \
— L holder E)_> name | @"Smith
age 21 "

A\(InsurancePoIicy\ photo |_T_|
_ v

premium | 19.99 *
holder

\\§

< NSImage w

Objects can be shared

Objects can be shared. For example, if one client buys two life insurance policies,
each policy will have areference to the same Client object. If one Insurance
policy is deleted, the Client should remain. If the second policy is deleted, the
Client should be deleted.

This poses a problem: Who' s responsible for keeping track of a shared object?

87

88

retainCount

InsurancePolicy h e ~N
N Client
rra
Y premium | 19.99 NG i e
B name @"Smith
—— holder | (F——> e | 21
retainCount| 1

_) photo
DN retainCount| 2
e N \- J

InsurancePolicy /v +

premium | 19.9
holder NSimage w

\retainCount 1) retainCount| 1

retainCount

To deal with this problem, each object keeps track of how many other objects are
“retaining” it. For example, aretain count of 2 for a Client object indicates that 2
different objects areretaining it.

When the retain count becomes zero, no oneis retaining the object. The object
can then be deallocated. This answers the question of who is responsible for
deleting objects. The retain count mechanism keeps track of how many objects
care about each object in an application. When no one cares about an object, it is
removed from memory.

Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

retain and release

retain and release modify the retain count

* retain increments the retain count

» rel ease decrements the retain count
dealloc deallocates the memory of an object

» when the retain count reaches 0, the object is sent a
dealloc message

retain and release

To make sure an object’ s retain count reflects how many objects are using it, your
objects must retain objects they use.

To retain an object, send it the r etain message. r etain increments the retain
count. Objects that you create using alloc or copy are automatically retained, so
you don’'t have to retain them a second time.

To release an object you previoudly retained, send it ar el ease message. r el ease
decrements the retain count. Only release objects you previoudly retained, either
explicitly by sending them ar etain message, or implicitly by creating them using
alloc or copy.

When an object’ sretain count reaches zero, the object is sent adeal loc message.
This deall ocates the memory used by the object. Y ou should never call dealloc
yourself—only call r el ease.

89

90

Pitfalls using release

One of the problems of using r el ease is that when an object’ s retain count
becomes O, the object is deallocated. This causes problemsif you' re not careful.

For example, consider NSCalendarDate' s descr iption method. Internaly,
NSCalendarDate keeps track of the date and time using some large number, or
potentially several numbers. NSCalendarDate’' s description method returns a
nicely formatted string that describes the date. NSCalendarDate probably doesn’t
have an NSString as an instance variable—rather, it generates one on the fly,
when someone requests the description.

Here' s one possible implementation of description:

- (NSString *)description

{
NSString *desc;

desc = [[NSMutableString alloc] init];

// somehow change the description string to
// a text description of the current date
return desc;

}

Unfortunately, this method leaks an NSString—it allocates an NSString, but
doesn't releaseit.

What about this;

- (NSString *)description

{
NSString *desc;

desc = [[NSMutableString alloc] init];

// somehow change the description string to
// a text description of the current date
[desc release];

return desc;

}

This doesn’t work either, because as soon as you call release, the string goes
away. desc isnow a pointer to afreed object, and therefore invalid. There must
be some other way of telling an object to go away without having it go away
immediately.

Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

autorel ease

autorel ease marks an object to be sent release sometime in the
future

- (NSString *)description

{
NSString *desc;
desc = [[NSMutableString alloc] init];
// somehow change the description string to
// a text descripttion of the current date
[desc autorelease];
return desc;

}

autorelease

The problem on the previous page is corrected by using autor el ease. Sending
autor el ease to an object means that object will be sent release sometimein the
future. The object stays around until the end of the event loop.

Often you ask one object for another. For example, you might ask atext field for
its string. It creates an instance of NSString and returnsiit to you. Y ou should
assume the string is autoreleased. 1t will disappear unlessyou retain it.

The following messages are the only exceptions:
» alloc

» copy

Objects created using alloc and copy have aretain count of one and have not
been autoreleased. Objects returned by any other method are autorel eased, and
should be retained if you want them to stay around.

Thisincludes “convenience methods’ that return newly created objects.

For example, NSCalendarDate has a date method that returns a new
NSCalendarDate initialized to the current date. Even though this method creates a
new instance of NSCalendarDate, the return value does not come from alloc or
copy. Therefore the object should be considered autorel eased.

91

92

Accessor methods

It isimportant that accessor methods autorel ease and retain objects correctly.
When someone sets an instance variable for your object, you must autorel ease the
old object and retain or copy the new one. Here is the set method for the instance
variable photo, used to refer to an NSImage object:

- (void)setPhoto: (NSImage *)anlmage

{
if (photo = anlmage) {
[photo release];
photo = [anlmage retain];
3
3

Noticetheif clause. What would happen if someone had a pointer to photo and
sent it as the argument to set Photo: ? Without the if clause, setPhoto: would
send ar el ease message to photo—its retain count would go to 0, and photo
would be deall ocated. There would be no new image to retain, because photo
and anl mage pointed to the same object. Theif clause prevents this problem.

Assuming the new image is different, the old image isreleased. The new imageis
retained. The instance variable photo is assigned the address of the new image.
In thisway, memory used by the old image is reclaimed, and the new image stays
around until you no longer need it.

Y ou have a choice when you write an accessor method. Y ou can choose to retain
the object sent in as the argument, or you can create a copy of that object.
Generally, you should copy objects that can be considered simple data-bearing or
value objects. Y ou should retain business objects, or other objects that your
object has arelationship to.

Examples of value objects are NSString and NSCa endarDate. Strings and dates
are treated as objects for convenience, but their only behavior isto modify their
data. They’re not business objects. Y our object doesn’t have arelationship with a
string. Rather, your object uses a string to store one of its attributes.

With business objects, your object generally has a relationship with the business
object. For example, an employee has a manager. The employee doesn’t use the
manager object to store the name of its manager. Rather, the manager object is
another full-fledged employee object in its own right. In this case, you should
retain the object instead of copying it.

Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

When are autorel eased objects sent release?

Create an autorel ease pool

Load nib file Send autorel eased obj ects the rel ease message

Start app Handle an event Stop app

When are autoreleased objects sent release?

Before an event is fetched from the queue, an autorelease pool is created. An
event is then fetched from the queue. Some code gets executed as aresult. In the
code, whenever autor el ease is sent to an object, the object is added to the
autorelease pool. The autorelease pool isbasically alist of autoreleased objects.
When the event has been handled, every object in the pool is sent ar elease

message.

Noticethat all autoreleased objects are destroyed between events. Thereis
nothing going on between events, so none of the autoreleased objects are being
used

93

Rules for Managing Memory

Objects created by alloc or copy are automatically retained.

All other objects are considered autorel eased.

If you need to keep an autoreleased object, retain it.

When you no longer need an object, releaseit.

Objects are automatically retained when added to a collection.
Objectsin acollection are released when the collection is deall ocated.
Never send dealloc, it's called automatically.

Never release an object unlessyou retained it.

© 00 N o o b~ W N PP

Use autor elease for newly created objects used as return values.

94 Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

Convenience methods

Some objects are frequently initialized in the same way and/or created and used
for brief periods of time. For example, you frequently want an NSCalendarDate
object that represents the current date and time, and often you only want that
object for a single comparison.

To makeit easier to get objects of this sort, many classes provide convenience
methods for creating instances. A convenience method that creates an object isa
method that allocates and initializes the object for you according to some preset
parameters. Because you did not call alloc to create them, objects created by
convenience methods should be considered autorel eased.

For example, consider the following code:

NSArray *x, *y;
id z;

z
X

y

[[[Employee alloc] init] autorelease];
[[NSArray alloc] initWithObject:z];
[NSArray arrayWithObject:z];

Both the assignment to x and the assignment to y do the same basic operation.
Each creates an array with asingle member object, z. However, in the first case
the array is created using alloc. Therefore, the object x has not been autorel eased
and will not go away until sent ar elease or autor el ease message. y was
created using a convenience method. It has been autorel eased, and will go away
after the event loop is over unless someone retainsiit.

Notice how z was created. It’ s fairly common to allocate an object and then
immediately autoreleaseit if you plan to add the object to a collection class,
because collection classes retain the objects in them.

95

DEMONSTRATION 4.1 DOCUMENTATION

Class documentation is accessible through ProjectBuilder’ s Find panel. This
demonstration gives a brief introduction to using the Find panel and describes
some of the additional documentation resources available to you.

Objectives

After completing this demonstration, you'll be able to:
» Find framework reference materials using ProjectBuilder’ s Find panel.

» Read aclass specification sheet.

96 Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

Demonstration

1. Bring up ProjectBuilder’s Find panel by clicking on the Project Find button in the
project window (it has a magnifying glassicon).

Q

2. Type NSButton in the find text field and push return.

I test - Project Find

Find: [NSButton | Definitions | % | @k;, P
= |
!

Replace: J [Fravious

11 faund [lgnare Case [Whole Words [] Current File

Classes
@ @interface NS§Bettor: M3Control
@ @interface MSButlonCelf. NS ActionCell
Categories
NEButtorn NS BullonAllritniledSiringMeifiods) -
NEButtorn NS BullonBezefSihyies) -
NEButtorn NS BullonMixedSiale) - a]

NS Buiton NSKeyboardUy) -

|

3. TheProject Find panel searchesfor definitions and displays the search results.
Clicking on any of the book iconswill cause the class reference to be displayed.
Clicking on any of the text will cause the header file definition to be displayed.
Click on the book icon for NSButton.

4. All class documentation has a common format.

Thefirst thing listed is the class's superclass (in the Inherits From: section), what
protocols the class conforms to, and what header fileit’s declared in.

Next there’ s a class description, giving a general overview of the class and some
suggestions as to how to useit.

Next, al the methods declared in the class are listed; you can click on any of the
methods for an explanation of what the method does.

97

98

Important ideas from this lesson

»

»

»

»

»

»

»

»

»

Y ou can send messages to classes. The methods they invoke are
class methods.

alloc isaclass method that creates instances of the class.

init isan instance method that initializes the instance variables of
the object.

Each object keeps track of how many other objects are retaining it.

If the retain count of an object reaches zero, the object is sent dealloc.
dealloc freesthe object.

Accessor methods must release old values and retain new ones.
Autoreleased objects are sent the r el ease message between events.

Objects that inherit from NSObject conform to rules for memory management.
Keep these rules in mind when programming.

Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

REVIEW

CREATION AND DESTRUCTION

1. What isaclass method?

2. How would you invoke a class method?

3. What doesdloc do?

4. What doesinit do?

5. Circle the cases where the object should be considered autorel eased:
myEmployee = [[Employee alloc] init];
purchaseDate = [NSCalendarDate calendarDate];
name = [myTextField stringValue];
newName = [name copy];

newName = [[name copy] autorelease];

99

EXERCISE 4.1

STOPWATCH

O StopWatch

atart

Start time

stop titne

secaonds

The past two exercises have shown the basics of using Project Builder and
Interface Builder to create an application. So far, the applications have been heavy
on connectionsin Interface Builder, and light on source code.

In this exercise, you create an application that calls methods of some
ApplicationKit classes programmeatically. Just as Interface Builder can set the
action method of an NSButton, so can an object you write. Using the example of
a stop watch with a single button, this exercise explores some of NSButton’s
methods. It also introduces a class from Foundation—NSCalendarDate.

Objectives

After completing this demonstration, you' |l be able to:
» Programmatically set the action of a NSButton
» Use NSCalendarDate objects to record times

» Digplay timesin atext field

100 Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

Exercise

1. Create anew application project in Project Builder. Name your application

4.

StopWatch.

. Create the user interface. Use Interface Builder to set up a user interface with a

single button and three text fields, as shown in the illustration.

. Create a StopWatch controller object using Interface Builder. Switch to the

classes view. Select NSObject and choose Subclass from the Classes menu item.
Name the new subclass StopWatch.

Add appropriate outlets and action methods to the StopWatch class. Y ou add
outlets by selecting the small plug icon and typing return. Y ou add action
methods by selecting the small cross hairsicon and typing return.

O [StopWatch.nib — ...StopWatch/English.proj E1E

;(Instances }" Classes Y sounds "'{ Images \'t

e R B A
StupWatx:h B (T E‘:
Cheliels
secondsField
startField
stopField
Aclicis
start:
stop:

| (4])i

To decide what action methods the StopWatch needs, consider what its
functionality is going to be. This application models a stop watch with asingle
button. When a user presses the button once, the stop watch resets itself to zero
and starts running. When the user presses the button again, the stop watch stops
running and displays the elapsed time.

The user interface for the StopWatch application records the start, end, and
elapsed time. In order to display these values, the StopWatch will need access to
the appropriate text fields, in other words, outlets.

. Create an instance of StopWatch by choosing the Instantiate command in the

Classes menu.

. Connect the objects in your user interface to the StopWatch object. What objects

does the StopWatch know about? What action should the Start button send?

101

7. Create skeleton .m and .h filesfor the StopWatch class by selecting the
StopWatch object and switch back to the Class view. Choose Create Files from
the Classes menu.

8. Writethe code for StopWatch class. StopWatch has two main methods, start:
and stop: . Each method has a number of tasks to accomplish:

» Allocate an NSCalendarDate and store it for later use
» Changethetitle of the button from Start to Stop or viceversa

» Changethe action of the button to match thetitle

M

Update the user interface

Y ou can send messages to the button by messaging the sender variable passed in
as the argument of your action method. Look at the documentation of NSButton’'s
setAction: and setTarget: methods. You'll also want to check
NSCaendarDate' s documentation—you’ Il find the class method calendar Date
useful.

Hint: Y ou can get the selector for a method name using the @sel ector compiler
directive. Use the method timel nter valSinceDate: to determine the number of
seconds between two dates. This method is documented under NSDate, the
superclass of NSCalendarDate.

9. Build and test your application.

102 Chapter 4: CREATION AND DESTRUCTION OF OBJECTS

