Chapter 7

FOUNDATION

162 Chapter 7: FOUNDATION

CHAPTER 7

FOUNDATION

The Foundation Framework defines a base layer of Objective-C classes. In addition
to providing a set of useful primitive object classes, it introduces several paradigms
that define functionality not covered by the Objective-C language.

—Foundation, Introduction

Goal

To be ableto effectively use fundamental classes and concepts from the
Foundation Framework.

Prerequisites

Working knowledge of objects and pointers.

Objectives
At the end of this chapter, you'll be ableto:

» Distinguish between simple attributes and rel ationships
» Usethe NSArray and NSMutableArray collection classes

» Properly use autorel ease when returning objects from methods

Reading

The following reference contains more information about the
Foundation Framework:

/System/Library/Framewor ks/Foundation.framewor k/Resour ces/
English.lproj/Documentation/Reference/ObjC_classic/
IntroFoundation.html

163

Objects as instance variables

4) 4)\

name |@"Harold" name | @"Maude"
yearOfBirth| 1968 yearOfBirth| 1975
points :II_Z/ \pOinQ 2

spouse spouse
p) | spouse [T])

Objects as instance variables

Objects can serve two different roles when used as an instance variable of another
object. Objects that store values, like NSString and NSCalendarDate, are used for
instance variables that represent ssmple attributes of the object. A simple attribute
is an attribute that resolves to a value—for example aname, number, or date.

Instance variables that point to business objects generally represent relationships.
A relationship isapointer to arelated object. The related object doesn't store data
for you, it'ssimply arelated object.

In the example of a Person object, name is asimple attribute. Even though the
instance variable points to an object, an instance of NSString, conceptually name
resolvesto avalue. spouse isareationship. It points to another

Person object.

The Foundation Framework introduces a number of classesthat are very useful
for storing simple attributes. NSString and NSCalendarDate are two that you will
use frequently.

164 Chapter 7: FOUNDATION

Accessor methods revisited

The accessor methods for instance variables that represent smple attributes and
those that represent relationships are different. Because simple attributes are part
of an object, it’s necessary to get a clean copy of the objects used to store smple
attributes when you set the instance variable. If someone calls setName: on a
Person and passes in a string, you want to be sure that string will never change.
For this reason, accessor methods for simple attributes should copy the passed in
object. For example:

(void)setName: (NSString *)aName

{
if (name '= aName) {
[name release];
name = [aName copy];
}
}

When creating a relationship to another object, you don’t want to copy the related
object. Imagine two Person objects, per sonA and per sonB. You wish to create
arelationship between them, indicating that per sonB isper sonA’ s spouse:

[personA setSpouse:personB];

When you send per sonA the set Spouse: method, you expect per sonA to
store areference to per sonB, but not to create a new, private copy of per sonB.
Therefore, Person’s set Spouse: method should look like this:

(void)setSpouse: (Person *)aPerson

{
if (spouse != aPerson) {
[spouse release];
spouse = [aPerson retain];
}
}

Accessor methods for instance variables that embody relationships should keep a
reference to the passed in object, but not create a copy.

165

NSCopying protocol
(NSString h
- (id)copy
- (id)copyWithZone:(NSZone *)aZone
. J
NSCopying protocol

To makeit easier to copy them, al classes in the Foundation Framework that are
used to store values conform to the NSCopying protocol. The NSCopying
protocol saysthat any object that conformsto it must implement the method
copyWithZone:. Asaconvenience, the NSObject class defines the method
copy which simply invokes copyWithZone: with a default zone. When you send
an object acopy message, you get back aretained object whose datais an exact
copy of the original object’s data.

Other objects may implement the NSCopying protocol. However, for objects
with data that is more complex than asingle value, it can be difficult to know
what to do when copying them. For example, should the Person object return a
copy of itself with a copy of its spouse, or just another reference to its spouse?
Always check the documentation before using copy on an object that stores
complex information.

166 Chapter 7: FOUNDATION

NSArray

e N
. | Y,
NSArray \/V()
A — \- | J
4 N\
~ >
. | Y,
e N
. | J

NSArray

In many situations, it’s desirable to keep an ordered list of objects. The
Foundation Framework provides the NSArray classto keep such alist. When an
object needs to return an ordered collection of objects, it generally uses an
NSArray. NSArray isacollection class.

Normally, instances of NSArray cannot be modified. Thisis doneto preserve
encapsulation. When an NSApplication returnsits list of NSWindows, the
NSApplication is exposing some of itsinstance variables. If you could change the
windows in an application by modifying the array, it would break encapsulation.
Therefore, NSArray is not modifiable. Foundation refers to objects that can not
be changed as immutable objects.

Passing around immutable objectsis easier than passing around mutabl e objects,
because they’ re guaranteed to never change. This can eliminate excess copying.

167

Accessing objectsin an NSArray

4 N\
(0]
. | J
~N 4 N\
(NSArray /
1 T\NGK
—= L |) numerator \
() t:urrentObject\El J
N Y, ’
2
- | J - (id)nextObject
- (id)ObjectAtindex: (" A
(int)index 3
- (NSEnumerator *) . | J

objectEnumerator

Accessing Objects in an NSArray

Objectsin an NSArray are ordered by index. To access the objectsin an
NSATrray, you can simply ask the array for the object at a given index.
For example:

id firstObject;
NSArray *theArray;

firstObject = [theArray objectAtlndex:0];

Index numbers start at 0.

If you need to traverse the contents of the entire array, you could smply create a
for loop to do so. However, NSArray provides an object to do the job for you—
an instance of NSEnumerator. Y ou use NSEnumerator like this:

NSEnumerator *theEnumerator;
id theObject;

theEnumerator = [theArray objectEnumerator];
while (theObject = [theEnumerator nextObject]) {
// do operations using theObject here

}

168 Chapter 7: FOUNDATION

NSMutableArray

4 N\
0
\. | J
~N 4 N\
(NSArray
1 | ¢
1 — . J
4 N\
L ~. >
2 . | J
- (id)ObjectAtindex: (")
(int)index 3
- (NSEnumerator *) . | J

objectEnumerator

NSMutableArray

Sometimesit’s desirable to modify an array incrementally, instead of creating an
immutable array. The Foundation Framework provides NSMutableArray to meet
this need. NSMutableArray provides al the methods of NSArray, plusit adds
method for adding and removing objects from the array. Objects can be inserted
at aparticular index, or smply added to the end of the array. NSMutableArray
dynamically allocates storage to hold references to as many objects as you add to
it.

When you add an object to an NSMutableArray, the array sends your object a
retain message. Thisis because objectsin an array are retained by the array. This
istrue regardless of whether the array is a mutable or immutable array. When you
remove an object from an array, the array sendsit ar el ease message. An array
also releases its objects when the array itself is deallocated.

NSMutableArray allows you to get an NSEnumerator to enumerate the array’s
objects. Because NSEnumerator peeks into the innards of an array for efficiency
reasons, you should never modify an array while simultaneoudly using an
NSEnumerator to step through its member objects. Not following thisrule can
lead to unpredictable results.

169

A simple data bearing object

4 N\
0

\\§ | J

~N 4 N\

[Portfolio (NSArray / |

lassets [+ -1 7] > <
— S Ny A

2 \\§ | J

4 N\

3 \\§ | 4

A simple data bearing object

NSMutableArray provides an easy way to implement a simple data bearing
object. Create an object that uses an instance of NSMutableArray to manage its
data. Y ou add value by providing additional methods that perform operations on
the objectsin the array.

In some cases, it' sdesirableto give aclient alist of al the objectsin the
NSMutableArray. For example, a Portfolio object might manage alist of Assets.
A client might want to take thislist of Assets and add them to another Portfolio
object, or perform some other operation on them. The question is, what should
the Portfolio return? If it returns the NSMutableArray itself, it’s broken
encapsulation. If it sends the NSMutableArray acopy message, not only isthe
array itself copied, but so are al the objectsin the array.

170 Chapter 7: FOUNDATION

Copying an array

| Portfolio (NSArray

L—’L 1

N

G

Copying an array

NSMutableArray and NSArray make assumptions about what you want to do
when you send them a copy message. Specifically, NSMutableArray assumes
that you want not only a copy of the pointers to the objects, but also a copy of the
objects themselves. So NSMutableArray performs adeep copy. NSArray
assumes you just want to retain the array one more time, so it smply increments
its retain count.

In the example of Portfolio returning an array of the objectsin its
NSMutableArray, the right thing to do isto copy the array itself—the pointers to
the objects. Thisis cleanly accomplished using NSArray’sinitWithArray:
method. Portfolio’ s assets method might look like this:

- (NSArray *)assets

{
NSArray *returnedArray;
returnedArray = [[NSArray alloc]

initWithArray:assets];
[returnedArray autorelease];
return returnedArray;

}

171

Autorelease revisited

Portfolio’ sassets method created a completely new object that it then used asits
return value. Asfar as Portfolio is concerned, returnedArray isssmply areturn
value and should go away. Portfolio claims no ownership of the object, even
though it created it. Following the rules from Chapter 4, Portfolio is responsible
for releasing retur nedArray, because Portfolio created it using alloc.

If Portfolio simply sendsreturnedArray ar el ease message, returnedArray
will dedllocate itself immediately. Thiswould make it rather useless asareturn
value. However, once Portfolio returnsr etur nedArray, there' s no place in the
code for Portfolio to release it. The method call is over.

To get around the problem, Portfolio uses autor elease. Thisway, Portfolio has
doneitsjob—returnedArray has been marked for release. However, it’s been
marked for futur e release, so it’s till useful asareturn value.

Hereisthe rule to follow when creating a new object to use as areturn value:

Send autorel ease to any object you create using alloc or copy for useas a
return vaue.

172 Chapter 7: FOUNDATION

Protocols

A protocol isaset of methods that can be implemented by any class. For
example, the NSCopying protocol defines the method that any class needsto
implement to support copying. It's possible to test whether a particular object
conforms to a given protocol, and to do type checking based on adopted
protocols. This allows many objects throughout the class hierarchy to respond to
the same set of messagesin aformal way, without having to inherit them al from
the same superclass.

Protocols are defined using a syntax very similar to the method declarationsin a
header file. For example:

@protocol NSCopying
- (id)copyWithzZone: (NSZone *)aZone;
@end

Classes can adopt protocols using the following syntax:

@interface Portfolio:NSObject <NSCopying>

Multiple protocols are separated using commas.

Type checking for protocolsis done using asimilar syntax. The following
variable declaration declares a variable that refers to any class that adopts the
NSCopying protocol:

id <NSCopying> copyableObject;

Foundation defines a number of protocols, listed in the documentation. Other
frameworks may also define protocols. Check the documentation for each
framework to see what protocols it defines.

173

Important ideas from this section

» Instance variablesthat point to objects can represent simple attributes
or relationships.

» Simple attributes resolve to avalue. NSString and NSCalendarDate are two
classestypically used to hold ssimple attributes.

» Relationships are pointers to other business objects.

» Accessor methods that set simple attributes should copy the
passed-in object.

» Accessor methods that set relationships should retain the object.

» NSArray stores an ordered list of objects.

» Objectsin an NSArray can be accessed by index.

» Objectsin an NSArray can be enumerated using NSEnumerator.
» NSMutableArray isan array that can be modified.

» Arraysretain the objects they contain.

» To copy the pointers of an array, use alloc and initWithArray:.

» Protocols provide aformal way for many classes to implement the
same methods.

174 Chapter 7: FOUNDATION

REVIEW FOUNDATION

1. If Asset hasanameinstance variable that pointsto an NSString, isname a
simple attribute or arelationship?

2. Write an implementation for Asset’s setName: accessor method.

3. Giventhat assetArray isaninstance of NSArray, write amessage call that

returns the object in assetArray at index 3.

4. Write acode fragment that sends the val ue message to each object in
assetArray:.

5. What isthe difference between NSArray and NSMutableArray?

6. What are protocols used for?

175

EXERCISE 7.1 IMPLEMENTING PORTFOLIO

Portfolio

Stock 1/1

Ticker 1D;

Name:

Price/Share:;

Shares:

Value:

‘F’reuic:-u5| ‘ MNext |

Portfolio
Value

For the previous exercises, the Portfolio class was provided to you. In this
exercise, you get a chance to use what you’ ve learned about the Foundation
Framework, and specifically NSArray, to implement Portfolio yourself.

Objectives

After completing this exercise, you'll be ableto:

» Useaninstance of NSMutableArray to manage data storage of objects

» Use an NSEnumerator to iterate over the contents of an NSArray

» Copy the pointersin an array without copying the contents of the array

176 Chapter 7: FOUNDATION

Exercise
1. RemovePortfolio.h and Portfolio.m from your PortfolioManager project:
1. Makeanew Portfolio.h filein your PortfolioManager project:

#import <Foundation/NSObject.h>

#import “Asset.h”
#import <Foundation/Foundation.h>

@interface Portfolio : NSObject
{

NSMutableArray *assets;

}

- (id)init;
- (void)dealloc;

- (void)addAsset: (Asset *)anAsset;

- (void)removeAssetAtlindex: (int)index;
- (Asset *)assetAtlndex:(int)index;

- (int)numberOfAssets;

- (NSArray *)assets;

- (double)value;

@end

Portfolio uses an NSMutableArray to store a number of Assets. Accessto this
array is granted using methods with names very similar to those of
NSMutableArray itself. Don’'t worry about adopting the NSCoding protocol for
this exercise.

2. Createanew Portfolio.m filein your project.

3. Implement theinit and dealloc methods. Y ou need to create an
NSMutableArray ininit and releaseit in dealloc.

4. Implement methods for accessing the array. These methods all have functional
equivalentsin NSArray or NSMutableArray. Y our methods should simply pass
the arguments along.

5. Writean assets method. assets returnsalist of al Assets currently managed by
the Portfolio. Make sure you return an NSArray, not the NSMutableArray. Be
sure to properly autorel ease any objects you create for use as areturn value.

6. Writeavalue method that computes the Portfolio’ s value by adding up the value
of each Asset in the Portfolio. Y our value method should iterate over each Asset,
calling each ones value method in turn and adding up the return val ues.

7. Build your project and run PortfolioManager. Check to make sure everything till
works as expected.

177

178 Chapter 7: FOUNDATION

