
Chapter 11

MULTIPLE DOCUMENT APPLICATIONS

248 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

CHAPTER 11 MULTIPLE DOCUMENT APPLICATIONS

Goal

To understand the nib files, the objects and their connections used to implement
a template for a multi-window application.

Prerequisites
» The ability to use multiple nib files within a single application

» A practical understanding of delegation and notification

Objectives

At the end of this section, you will be able to:

» Control the primary attributes of NSApplication and NSWindow

» Utilize delegation and notification to track state changes in the application

» Implement a functional template for a multi-document application

» Use an Alert panel as a control for the user to direct the flow of your
application’s behavior

Reading
NSApplication class reference in the Application Kit

NSWindow class reference in the Application Kit

NSNotification class reference in the Foundation

249

NSApplication encapsulates your application

NSApplication

OS Platform

Custom Components

Main.nib

NSApplication encapsulates your application

Every application contains exactly one instance of NSApplication. It encapsulates
your entire application and serves as a kind of bridge to the outside world.To
equip your application with all the proper behavior, you should study some of
NSApplication’s important attributes and understand how it works with a
delegate.

250 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

Important NSApplication attributes
» appIcon—the NSImage for the on-screen application icon

» mainMenu—the application main menu, e.g. from the main nib

» windows—the list of on-screen windows

» keyWindow—the window that receives keyboard input

» mainWindow—different than keyWindow if an auxiliary panel is
currently keyWindow

» delegate—like many Application Kit objects, NSApplication can use a helper
object called a delegate

251

Useful NSApplication delegate methods/notification

Delegate methods

- (BOOL)applicationShouldTerminate:(id)sender;
- (BOOL)application:(NSApplication *)app
 openFile:(NSString *)file;

Notifications
- (void)applicationDidFinishLaunching:
 (NSNotification *)notification;
- (void)applicationWillTerminate:
 (NSNotification *)notification;

Useful NSApplication delegate methods and notifications

applicationShouldTerminate: is sent when NSApplication receives the
terminate: message. This is typically from a Quit or Exit menu item. By returning
NO, your delegate can suppress this allowing the application to continue running
as if nothing happened.

application:openFile: is sent when NSApplication receives a request for your
application to open a file. This is the result of a user opening a file in the file
viewer which, because of its type, is bound to your application for processing.

applicationDidFinishLaunching: is sent after your application has loaded
the main nib, presented the user interface on the screen, but before NSApplication
starts the event loop.

applicationWillTerminate: is sent just before the application finally
terminates. As a notification, you cannot stop this. If you need to intervene, use
applicationShouldTerminate: instead.

The complete set of NSApplication notifications can be summarized by these
general classifications:

» Launching, terminating

» Becoming Active, Resigning Active

» Hiding, Unhiding

» Updating

252 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

A window provides a context for user interaction

A window is the place where a user interacts with your application.

Some applications use a single main window. Many allow a user to open multiple
windows, typically for editing several documents concurrently.

A window features its own built-in controls around the window frame such as
buttons for resizing, moving, closing, minimizing or maximizing the window.
Within the frame is a blank slate which you can fill with controls and other
objects to implement a custom user interface suitable to your application needs.

Several basic attributes allow you to control the appearance and behavior of the
window, and to keep your custom objects abreast of important state changes.

253

Important NSWindow attributes
» title—the text in the title bar. Often, this specifically represents a file name with

an icon and full pathname. See representedFileName.

» menu—an outlet to the window’s menu. Typically, this is connected to the main
menu, but windows can have their own unique menu objects.

» documentEdited—a window can keep track of whether its contents have been
edited or not and reflects this in the user interface. You must tell the window
when document associated with the window becomes edited (e.g. through user
interface changes) and when not (e.g. when the document is first loaded or after it
is saved).

» frame—the location and size of the window on-screen. This is easily set in
Interface Builder.

» minSize, maxSize—limits that a window will enforce. These can easily be set
in Interface Builder.

» contentView—the topmost view in the view hierarchy of this window.

» backgroundColor—what color shows through the contentView.

» delegate—NSWindow can use a helper object, a delegate. This would typically
be an instance of your custom controller.

» miniWindow—you can access the title and icon of the mini window, the on-
screen representation of a miniaturized window.

254 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

NSWindow contains a hierarchy of NSViews

Any NSControl is a subclass of NSView—among other things, a control is a
visual component. To enjoy life on a window, an object must be some sort of
NSView. A view lives within a window in a hierarchical arrangement that ties it
to other related views—its super view and its subviews. A simple and vivid
illustration is a Box which in turn contains a TextField and a Button.

The hierarchy allows a window to recursively display everything within it by
telling the topmost view to display and relying on it to pass the message down the
line. Each view contains an array of all its subViews and a pointer back up to its
superView. The hierarchy is also used for another chain of command—to pass
events from a particular view up the hierarchy until it reaches someone who
cares. More about this later.

The topmost view is called the contentView. Its main purpose is to provide a
background and to completely contain all the subviews that make up the window
content. It is possible to dynamically swap the window’s content view with
another, and then back to the original when asked. This provides a tool for
implementing components such as preference panels and tab views creating a sort
of multi-window environment all within the boundries of one physical window.

255

Useful NSWindow delegate methods/notifications

Delegate methods
- (BOOL)windowShouldClose:(id)sender;

Notifications
- (void)windowWillClose:(NSNotification *)notification;
- (void)windowDidUpdate:(NSNotification *)notification;

Useful NSWindow delegate methods and notifications

windowShouldClose: is sent when a window wants to close, usually as a
result of the user pressing the close button on the window frame. Your delegate
can return NO to suppress this. The window will remain open as if nothing
happened.

windowWillClose: is sent to notify others that it is about to close. As a
notification you can no longer stop this from happening. This is a good place to
clean up resources associated with the document, perhaps releasing the document
controller itself. If you are going to release the window delegate, be sure to set
the window’s delegate outlet to nil first.

windowDidUpdate: is sent whenever the window receives an update message.
This will be covered in greater detail later. It is useful for implementing inspectors
that potentially need to update themselves after every event.

The complete set of NSWindow notifications can be summarized by the
following general classifications:

» Key window status (Become, Resign)

» Main window status (Become, Resign)

» Move, Resize

» Miniaturize, Deminiaturize

» Close

256 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

Ordering windows on and off screen

NSWindow

NSWindow

NSWindow

NSWindow

NSWindow

On screen Off screen

Minaturized

Ordering windows on and off screen

Multiple window applications need to control the ordering and visibility of their
windows. An NSWindow instance can either be on-screen—visible—or off-
screen—invisible. In addition, on-screen windows can be miniaturized when not in
use.

Of the on-screen, non-miniaturized windows, only one can be active—the key
window. This is the window currently receiving the user’s attention, mouse clicks
and keystrokes. In the event that an auxiliary panel takes key window status, the
window becomes the main window.

There are several window messages that control all these aspects of a window’s
status. Most do not need to be called manually—they are automatically invoked by
the user’s actions. A few that may come in handy:

» makeKeyAndOrderFront:—bring the window to the front of the window list
and make it the key window. This is typically used after loading a nib or when a
component is asked to show its window

» orderOut:—this makes the window disappear by moving it off-screen, out of
the window list. If a window is not configured to be released when closed, it is
sent orderOut: where it remains until a subsequent
makeKeyAndOrderFront: message. You can configure whether or not a
window or panel should be released when closed in Interface Builder.

257

Tracking modifications within a window

Pressing a button
• target/action method

Typing in a text field
• target/action method
• delegate/notification

- (void)textDidChange:(NSNotification *)notification;

Setting the window to reflect modifications
[window setDocumentEdited:YES];

Asking the window if there were modifications
[window isDocumentEdited];

Tracking modifications within a window

An NSWindow will remember the state of the document it contains and reflect that
state in the user interface. A user needs to know if a document has been edited since
the last save. NSWindow does not automatically know when the document is saved
nor does it have any idea of what actions result in a modification. You have to tell
it. And you have to keep it up to date.

A user edits a document by changing the state of its controls—pressing a button,
typing in a text field or text view, modifying a field in a table. Each control or UI
component will have its own way of detecting such a change:

» Button—the target/action method knows it was pressed. For 2-state buttons,
check to see if the state changed

» Text field—the target/action method knows when <RETURN> is pressed. Text
fields post notifications for which a delegate is automatically registered

» Other objects—most other objects such as TextViews and TableViews use
notification and delegates like a TextField. Consult the documentation for details.

Once your controller or delegate is informed of a change, it can message the
window to report that the document has been edited. When your controller saves
the document, all edits are cleared and the window should be messaged to that
effect.

258 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

Setting a delegate

To configure your object as the delegate of NSApplication, NSWindow,
NSTextField or any other object that works with a delegate, you can use Interface
Builder to simply connect its outlet. Connect from the object that delegates to the
object that is the delegate.

You can also make and break this connection programmatically. To connect
a delegate:

[object setDelegate: myDelegate];

To remove a delegate:

[object setDelegate: nil]

Note, delegates are not retained by the objects that use them. If you are about to
release your delegate object, you must first inform the client object that it no
longer has a delegate. Otherwise, future delegate messages and notifications will
be sent to an object that has been freed. In a similar fashion, notification centers
do not retain their observers.

259

Registering for notifications

- (void)awakeFromNib
{
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(textDidChange:)
 name:NSControlTextDidChangeNitification
 object:tableView];
}

- (void)textDidChange:(NSNotification *)notification
{
 // process notification here
}

Registering for notifications

Notifications are posted to a NotificationCenter which messages all the
registered observers that meet the proper criteria. You can add yourself as
an observer, supplying the following details:

» selector: the message the notification should send to your object.

» name: the name of the notification you want. If nil, you will get all
notifications from the specified object.

» object: the object that will post the notification. This may be a specific
object instance or nil in which case you will receive notifications from
any object that posts the specified notification names.

Many objects will automatically add their delegates for a set of typical
notifications. This may not include all possible notifications that the client
object posts. Consult the documentation on a per class basis.

260 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

Posting a notification: removing an observer

- (void)myMethod
{
 NSNotificationCenter *center =
 [NSNotificationCenter defaultCenter];

 [center postNotificationName:@"name"
 object:self];
}

- (void)dealloc
{
 NSNotificationCenter *center =
 [NSNotificationCenter defaultCenter];
 [center removeObserver:self];
 // other class specific dealloc code
 [super dealloc];
}

Posting a notification; removing an observer

An object posts a notification using the notification center. The
postNotificatonName:object: method will generate an NSNotification
instance with the specified attributes values and post it to all relevent registered
objects.

Removing an Observer

When no longer interested, you can remove your observer object using
removeObserver: or removeObserver:name:object: Notification centers do
not retain their observers. If you are going to release an object that is registered for
notification, you must first remove it from the center. Otherwise, a future
notification will be sent to an object that has already been freed. A good place to do
this is in the object’s own dealloc message.

261

Main application component design

applicationDidFinishLaunching:

NSNotification

NSNotificationCenter

postNotification:

applicationDidFinishLaunching:

applicationShouldTerminate:

AppController
delegate

NSApplication

applicationShouldTerminate:
NSApp

Main application component design

The main application component involves NSApplication and its delegate—your
AppController. Your AppController does not need an outlet back to
NSApplication—it can use the global variable NSApp. This is useful for getting
at NSApplication attributes such as the keyWindow or the appIcon.

As the delegate, your AppController will receive delegate messages directly from
NSApplication, such as applicationShouldTerminate:. It will indirectly
receive notifications such as applicationDidFinishLaunching: from the
default notification center.

262 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

Main application component design

windowDidUpdate:

NSNotification

NSNotificationCenter

postNotification:

windowDidUpdate:

windowShouldClose:

AppController
delegate

NSWindow

windowShouldClose:

Replicated document component design

A typical document component involves NSWindow and its delegate—your
document controller. Your controller will need an outlet back to the window so that
it can manipulate window attributes such as the title and the documentEdited
status.

As the delegate, your document controller will receive delegate messages directly
from NSWindow, such as windowShouldClose:. It will indirectly receive
notifications such as windowDidUpdate: via the default
notification center.

263

NSRunAlertPanel before closing or quitting

What happens if a user tries to close a window whose document has been edited
without being saved? What about quitting the entire application under these
circumstances? As a delegate of either NSWindow or NSApplication, you will be
informed. You can warn and solicit further input from the user.

NSRunAlertPanel does just this. It presents a modal panel, a dialog, which
forces the user to make a choice before interacting with the application in any other
way. Using arguments, you can customize the panel for different scenarios:

» Title—defaults to “Alert”.

» Message—takes a printf style format string with optional arguments passed
after the three button labels.

» Buttons and their labels—up to three, referred to as Default, Alternate, and
Other. These appear from right to left on the panel and are passed as arguments
from left to right. If you need only 1 or 2 buttons, pass nil for those not
needed.

The return value from NSRunAlertPanel indicates which button was pressed.
You check it against the constants defined by the Application Kit:
NSAlertDefaultButton, NSAlertAlternateButton, etc.

264 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

Important ideas from this section

» Every application has one instance of NSApplication which serves as a bridge to
the OS platform

» Your custom AppController should be a delegate of NSApplication to track and
service important state changes in the application

» Your custom document controller should be a delegate of NSWindow to track
and service important state changes in the window

» Windows are easily ordered on and off screen

» Delegates are automatically registered for related notifications if they respond to
them

» NSAlertPanel is a common and customizable UI component for messaging the
user or providing the user with control over the course
of action

Classes featured in this section
» NSApplication

» NSWindow

» NSNotificationCenter, NSNotification

» NSRunAlertPanel (function)

265

REVIEW MULTIPLE DOCUMENT APPLICATIONS

1 . What is the fundamental difference between an NSApplication notification
message and a delegate message?

2 . You intend for your AppController to get the applicationWillTerminate:
message but it does not. Name some of the possible reasons why.

3 . Your document controller is the delegate of its associated window. It is time to
release the controller. Are there any concerns given its relationship to the
window object?

4 . Why might the concept of a document be abstracted from the reality of a
window object? Why might your AppController use its own collection of
document objects rather than simply the NSApplication’s window list?

266 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

EXERCISE 11.1 A MULTIPLE DOCUMENT APPLICATION TEMPLATE

A common application model involves the concept of a document. The application
can open several documents at one time, allow modifications to them in any
arbitrary sequence, and save the new versions to permanent storage. Usually,
each document will have a separate window.

In this exercise you evolve the previous application to supporting multiple
documents. The AppController is extended to manage the list of documents, and
a new class, DocController, is introduced to manage each individual document.
The AppController will be the delegate of NSApplication. The DocController will
be the delegate of each document window. It responds to certain window delegate
messages in order to catch certain actions, such as the window closing, in order
to intervene appropriately.

Objectives

After completing this exercise, you will be able to:

» Build a multiple-window application

» Use delegation to control the behavior of document windows

267

Exercise—Stage 1

1 . Make a copy of the previous project to keep a reference copy. Open the new
project and change the project name to MultiDoc, in order to distinguish it
from earlier versions. Save it.

2 . Create a new Component subproject called Documents. The document code
and interface go into this subproject to keep it distinct from your main
application files. DocController.h and DocController.m are provided for
you in the Exercise Materials area. Drag these files into the Classes suitcase
of the Documents subproject.

3 . Using Interface Builder, design the document interface—for now it will simply
be an empty window:

» Create a new—empty—nib file. Select New Empty under New Module
from the File menu.

» Drag and drop a window from Interface Builder’s Windows palette into
the instances window.

» Using the inspector, make sure the “Release when closed flag” is set.
When a document window is closed, the NSWindow instance should be
released.

4 . Incorporate the DocController class into the nib file:

» Drag your copy of DocController.h into the classes window

» Make the File’s Owner class the DocController class

» Connect the File’s Owner window outlet to the document window

» Connect the window’s delegate outlet to File’s Owner—DocController
is the delegate of its window

» Save the nib file as Document.nib in the Document subproject folder

5 . Open DocController.m using using Project Builder. You will see it is a
template and you need to complete the methods in the file. Don’t worry about
finishing all the methods at once—they will be finished in later parts of the
exercise, or as enhancements.

» Complete the init and dealloc methods. In init you need to load the nib
file so that for every new document, a new window is created.

» Implement the show: method. It displays the window by making it key
and ordering it to the front of the screen.

6 . Use Project Builder’s File Attributes Inspector and make DocController.h
and AppController.h Project Header files. This makes them visible to the
rest of the project. You can now add an import statement for the DocController
class to your AppController.m file, so that the methods for the
DocController class are declared. Notice AppController.h is already included
in DocController.m.

268 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

7 . Next you need to modify the AppController so that it can create new documents
upon request:

» Add the newDocument: target/action method to the AppController
class .h and .m files. It should create a new DocController instance, and
then send it show: to make the new document window appear on the
screen.

8 . Now you can set up the connections in Main.nib to the AppController for the
desired behavior.

» Open the Main.nib in Interface Builder if it’s not open already.

» Read the new AppController.h into Interface Builder by dragging it
into the instances window.

» If the menu does not already have one, add the File submenu to your
application’s main menu from Interface Builder’s menu palette.

» Connect the New menu item in the File menu to the AppController’s
newDocument: action.

» Connect your AppController as NSApplication’s delegate. The
NSApplication instance is the File’s Owner of the main nib. This will
enable it to receive NSApplication delegate and notification messages.

9 . Add an applicationDidFinishLaunching: method to AppController which
opens a new document when the application starts up.

10.Delete the main window from the Main.nib since it isn’t needed any more. You
can also delete any methods and instance variables from the Strings application.

11.Make sure everything is saved and then build the project.

At this point, the application should start and present a new empty document. Your
New menu item should create new documents. Run the program and see if you can
create several documents.

269

Stage 2

1 . Now, you can extend the application to understand modification of documents.
This involves the document interface and the DocController.

» Implement the isDocumentEdited: and setDocumentEdited:
methods which indicate if the document is modified or not. To keep track
of the document’s state, use the NSWindow methods
(isDocumentEdited:, setDocumentEdited:). The window provides
visual feedback that it has been modified. The controller can query the
window when it needs to determine the current state.

» Implement the modify: target/action method. This should change the
state of the document to edited using the setDocumentEdited: method.
You may want to include a log message—using NSLog()—to indicate it
has been invoked.

» Position a button on the document window. Change its label to Modify,
as in the picture. This provides a simple user interface
to test the behavior of the DocController in terms of tracking document
modifications.

2 . Update the list of actions for File’s Owner in Interface Builder by re-reading the
DocController header file.

3 . Connect the Modify button File’s Owner’s modify: action.

4 . Re-build the application and create a few new documents. Change one and
check that it is modified. You will find you can close a modified without
warning. Normally, an application should warn and prompt the user to save
changes. The next stage of the exercise adds this capability.

270 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

Stage 3

1 . Return to the DocController class and implement a windowShouldClose:
window delegate method. The method should check if the document is
modified and, if so, display an alert panel requesting the user to confirm that
changes should be saved, or not, or to cancel the operation. Ensure you have
set up the delegate connection correctly. Use NSRunAlertPanel.

2 . Rebuild the application and check that a new window comes up,
that you can modify it and that when you try to close it, you get an alert panel
warning.

Enhancements
» Currently each new window appears on top of the previous one. Exercise

Materials contains a code snippet called staggerWindow.m. Add this code
to your DocController and use it to position the window after nib loading.

» You may notice in the pictures that each window has a different title. Modify
DocController’s init method so that each new document window has a unique
title.

» The AppController is managing a group of documents. Currently the only way
for it to access each individual document is via the application’s window list, by
reference to each window’s delegate. This works in the simple case of one
window per document, but not for others. To track each document directly,
modify the AppController so it holds an array of documents. Add two methods
registerDocument: and unregisterDocument: to add to and remove
documents from the AppController’s array. New documents should be
registered and documents should unregister themselves before they disappear.

Note: Up until this point, each new document has probably been leaking away
when closed. Think carefully how you now deal with keeping the retain count
correct and about how you might avoid leaks even without the above registration.
This might, for example, involve getting the DocController to release itself in the
windowShouldClose: method. Be careful in this case to inform the window that
you are no longer its delegate.

» Although your DocController will catch attempts to close a modified window,
what happens when you try to quit the entire application in this state? Implement
an applicationWillTerminate: method in your AppController to catch the
event and fix this problem. You can use DocController’s close: method to
request documents to close. If you want to be very sophisticated, you can go
through the document list first to see if any documents are modified, and then
only display an alert panel if there are modified documents.

271

272 Chapter 11: MULTIPLE DOCUMENT APPLICATIONS

