
Chapter 16

PASTEBOARDS

374 Chapter 16: PASTEBOARDS

CHAPTER 16 PASTEBOARDS

Goal

To understand pasteboard mechanics and appreciate their widespread use in a
variety of contexts.

Prerequisites

Familiarity with end-user pasteboard usage for tasks like cut, copy and paste.

Objectives

At the end of this section, you will be able to:

» Implement pasteboard owner and reader objects and outline each step of the
data transfer cycle

» List features that use pasteboard

Reading

NSPasteboard class reference in the Applicaton Kit

375

Users transfer data between applications

A typical user runs a variety of applications simultaneously, each specialized for a
certain task or domain—word processors, mail readers, database applications,
spreadsheets, Web browsers and so on. Since most applications manage
information in one form or another, the desire to share data between them is
natural and useful. The ability to easily transfer data between applications is the
mark of a well-integrated software environment.

Most graphical environments provide a service for this, a holding place where
one application can deposit data and another application pick it up. Called a
pasteboard or clipboard, it facilitates data transfer not only between applications
but between two objects within the same application. A TextView in one
document can read data which has been copied from another TextView in another
document in the same application. With an object-oriented interface in an
environment that supports the general ability to objectify arbitrary data,
pasteboards offer an open-ended, extensible technique for information sharing.

376 Chapter 16: PASTEBOARDS

NSPasteboard - shared repository for data transfers

NSPasteboard

DocController DocController

NSPasteboard

Pasteboard Server

@"learn"

Owner Reader

NSPasteboard—shared repository for data transfers

Whether the data is transferred between objects in the same application or two
diverse applications, the interface is the same—the NSPasteboard object accesses
a shared repository where writers and readers meet to exchange data. The writer,
referred to as the pasteboard owner, deposits data on a pasteboard instance and
moves on. The reader then accesses the pasteboard asynchronously, at some
unspecified point in the future. By that time, the writer object may not even exist
anymore. A user may likely have closed the source document or terminated the
application. The case of moving data between two different applications and
therefore two different address spaces requires that a third memory space get
involved so the data persists in the mean time.

NSPasteboard provides access to a third address space—a pasteboard server
process that is always running in the background. And it maintains an arbitrary
number of individual pasteboards to distinguish among several concurrent on-
going data transfers.

377

NSPasteboard

Pasteboards have names

DocController NSPasteboard

MyPboard

NSPasteboard

NSPasteboard

NSPasteboard

NSDragPboard

NSFontPboard

NSGeneralPboard

NSPasteboard

NSRulerPboard

NSPasteboard

NSFindPboard

+ (id)generalPasteboard;
+ (id)pasteboardWithName:
 (NSString *)name;
+ (id)pasteboardWithUniqueName;

pasteboardWithName:
 @"NSFindPboard"

Pasteboards have names

The first step in any communication is to agree upon the meeting place. Pasteboard
instances have names. Two objects begin an exchange with a common pasteboard
by agreeing on its name. There are several standard pasteboards provided for well
defined operations system-wide:

» NSGeneralPboard—for cut, copy and paste

» NSRulerPboard—for cut, copy and paste of rulers

» NSFontPboard—for cut, copy and paste of NSFont objects

» NSFindPboard—application-specific find panels can share a sought after text
value. Find panels initialize from the pasteboard and update it with new user
input

» NSDragPboard—for graphical drag and drop operations

You have the option of creating a special purpose pasteboard for exchanges that
fall outside the standard set using pasteboardWithName:. In the manner of
generating a guaranteed unique temporary filename, you can avoid contention by
asking the pasteboard server for a unique name using
pasteboardWithUniqueName.

378 Chapter 16: PASTEBOARDS

Pasteboard data is typed

NSPasteboard

MyType

data

@"learn"
NSStringPboardType

NSFileContentsPboardType

NSTIFFPboardType

MyPboardType

Pasteboard data is typed

Once a reader obtains the agreed upon named pasteboard instance, it must
understand what type of data is available. The owner has to advertize what type
of data it will write. Pasteboard data is generally an object instance whether a
string, an arbitrarily complex object graph such as a dictionary of arrays or an
instance of NSData, or an object wrapper for an arbitrary block of data. You can
define your own special purpose data type. Any object written to and read from
an NSPasteboard must conform to the NSCoding protocol. It must be able to
archive and unarchive itself. Generally, pasteboard data consists of one or more
value and/or collection classes.

Like the standard named pasteboards used for common operations, there are
several commonly used standard system-defined data types:

» NSStringPboardType, NSTabularTextPboardType

» NSFilenamesPboardType, NSFileContentsPboardType

» NSPostScriptPboardType

» NSTIFFPboardType

» NSRTFPboardType, NSRTFDPboardType

» NSFontPboardType

» NSRulerPboardType

» NSColorPboardType

379

Pasteboards hold multiple representations

NSArray

types

NSRTFDPboardType

NSRTFPboardType

NSStringPboardType

NSPasteboard

Pasteboards hold multiple representations

Pasteboard operations are generally carried out between two anonymous and
loosely-coupled applications. An editor, capable of handling rich text format,
permits a user to select a region of text and copy it to the general pasteboard.
Another application provides a simple NSTextView instance configured to only
allow ASCII text. It permits the user to paste from the general pasteboard.
Neither application has knowledge about the other and the kinds of data it can
handle. It is impossible for the owner to determine which of several applications
might show up as the next reader.

To maximize the potential for sharing, a pasteboard can hold multiple
representations of the same data, each identified by a different pasteboard type
string. Pasteboard owners should provide as many different representations as
possible. In our example, the rich text editor might provide RTFD, RTF and
NSString representations of the copied data. A reader, on the other hand, must
search through the set of multiple representations to find the data type that best
suits it capabilities. Generally, this means selecting the richest type available.

380 Chapter 16: PASTEBOARDS

Pasteboard data transfer cycle

NSPasteboard

Owner

Reader

Declare types

Write data

Request types

Read data

1

2

3

4

Pasteboard data transfer cycle

These are the objects that participate:

» Pasteboard instance

» Pasteboard typed data, generally multiple types at one time

» Owner

» Reader

These are the steps in the pasteboard data transfer cycle:

1 . Owner—declares a set of data types it promises to write

2 . Owner—writes each promised data type, one at a time

3 . Reader—requests the set of data types provided by the owner

4 . Reader—selects the most suitable type and reads from the pasteboard

What drives the cycle? User events. Through user interface controls such as menu
items or keyboard equivalents, the user selects the object and triggers a write—
commands like cut and copy. Asynchronously, at some indeterminate point in the
future, the user selects a destination object and triggers a pasteboard read—
commands like paste or link.

Drag and Drop always implies a pasteboard write and read, triggered by user
generated mouse events and represented graphically.

381

Writing data to the pasteboard

Declare types

Write the data

- (int)declareTypes:(NSArray *)types owner:(id)owner;

- (BOOL)setData:(NSData *)data forType:(NSString *)type;
- (BOOL)setPropertyList:(id)plist forType:(NSString *)type;
- (BOOL)setString:(NSString *)string forType:(NSString *)type;

Writing data to the pasteboard

The pasteboard writer, the owner, performs a write in two steps. First, the owner
declares an array of pasteboard data types to be provided using
declareTypes:owner:. Multiple types should be arranged in the array from
richest to poorest since readers will enumerate through the array starting with
index 0. The owner parameter may be nil and is only meaningful for lazy
pasteboard owners covered later. Regardless, the pasteboard has a new owner
and all previous data is cleared.

Next, the owner writes the data. Depending on the data type, the owner can use
one of several messages. The owner sends one write message for each of the
pasteboard data types it declared. setPropertyList: should be used for property
list collections such as arrays and dictionaries.

382 Chapter 16: PASTEBOARDS

Reading data from the pasteboard

Request types

Read the data

- (NSArray *)types;
- (NSString *)availableTypesFromArray:(NSArray *)types;

- (NSData *)dataForType:(NSString *)type;
- (id)propertyListForType:(NSString *)type;
- (NSString *)stringForType:(NSString *)type;

Reading data from the pasteboard

Like writing, reading involves two steps. The reader first requests the available
types. Pasteboards can return an array of types for the reader to process, or can
take a reader provided array of possible types and return the first that matches a
type on the pasteboard. Because the reader wants to choose the richest possible
type, both owners and readers should order their types array from richest to
poorest. Where a set of types is completely diverse, none more rich that the other,
the reader should simply order its array by preference. Sometimes the reader may
require a more elaborate search algorithm in which case it can get the array and
search itself.

Given a suitable type, the reader then reads the corresponding data, provided with
methods matching the three writing methods used by the owner.

Objects instantiated by pasteboard reads are autoreleased much like unarchived
objects.

383

A pasteboard can have a lazy owner

NSPasteboard

Owner

Reader

Declare types

Request types

Read data

1

2

3

Provide data4

Write data5

A pasteboard can have a lazy owner

Owners capable of writing multiple representations can choose to be lazy—to
wait until one representation is specifically requested by the reader. This enables
the owner to defer the potentially time consuming and data intensive task of
generating and writing each type. With only a single read operation, all but one of
the representations will be ignored, the owner’s efforts wasted.

This adds one new step at the end of the data transfer cycle. The pasteboard
messages the owner, asking for the type the reader is now attempting to read. To
qualify, the owner object must implement and respond to an
additional message.

384 Chapter 16: PASTEBOARDS

Lazy owner methods

Servicing a request to provide data

Relinquishing owner status (optional)

- (void)pasteboard:(NSPasteboard *)sender
 provideDataForType:(NSString *)type;

- (void)pasteboardChangedOwner:(NSPasteboard *)sender;

Lazy owner methods

Lazy owners must implement a method for the pasteboard to use when the reader
attempts to read one of the promised data types. The parameters specify which
pasteboard instance is active and which type is needed. If the owner deals with
multiple pasteboards in a lazy fashion, it will have to map a pasteboard instance to
the particular data instance selected in the past during the original pasteboard
write. Once the owner provides the data, it can relinquish any data that was
needed in support of the pending write.

A lazy owner object must not be released before this message unless the
pasteboard owner changes.

Since laziness requires the owner object to maintain state for remembering the
selected data—the user may select different data in the owner before performing
the read, expecting the read to return the previously selected data—owners can
implement a second method informing them that they need no longer be
concerned. If and when it arrives, the owner can relinquish any saved state. The
owner gets one or the other of these messages. A pasteboard’s owner changes as
soon as a new declareTypes:owner: message is sent to the same named
pasteboard instance.

385

Pasteboards

Cut, copy and paste using NSGeneralPboard

Find panels using NSFindPboard

Interface Builder Palettes

Drag and Drop

Services

Pasteboard operations in other object
 • NSTextView
 • NSImage

Pasteboards

Pasteboard mechanics underlie many features. Some objects, such as
NSTextView and NSImage, can write their contents to and read from a
pasteboards directly.

386 Chapter 16: PASTEBOARDS

Important ideas from this section

» Pasteboards provide a shared data repository through which two objects can
transfer data.

» Pasteboard operations involve named pasteboards, typed data, often with
multiple representations and two participating objects: the owner, also known as
the writer, and the reader.

» Both owner and reader must inform the pasteboard the data types they support
before writing or reading. The owner declares, the reader requests. The owner
must write all the types it declares whereas the reader selects the most
appropriate single type to read.

» Pasteboard owners can be lazy, deferring the write of any particular type until
the reader requests it with a typed read operation.

Class featured in this section

NSPasteboard

387

REVIEW PASTEBOARDS

1 . Why is pasteboard data typed?

2 . Please describe the pasteboard data transfer cycle.

3 . What does it mean to have a lazy pasteboard owner?

4 . Assume you are currently a lazy pasteboard owner of a given pasteboard. You
get the dealloc message. What, if any, are the implications?

388 Chapter 16: PASTEBOARDS

EXERCISE 16.1 EXTENSIBLE, REUSABLE FIND PANEL

Most applications provide a find panel that supports string searching within a
view. The frameworks do not include a generic reusable find panel component
because the implementation and even the meaning of searching is specific to the
first responder view. It is possible, however, to consider the problem generically
and devise an approach that is reusable and extensible to a variety of contexts.
The easiest place to start is with text view.

In this exercise, you study a simple find panel implementation. It incorporates a
number of important aspects you have been covering—separate nib file
component with File’s Owner controller, first responder, target/action and string
handling. Enhance the find panel to use the find pasteboard.

Objectives

After completing this exercise, you will be able to:

» Use pasteboards and types to transfer data between applications

» Describe a useful approach for implementing a reusable find
panel component

389

Exercise

1 . Make your own copy of the Find Panel project found in
ExerciseMaterials/Exercises/Provided.

2 . Build and run it. It is an editable text view with a find panel. Get a feel for how it
works. The find panel options are found under the Edit menu.

3 . Study and understand how the project is implemented. The project contains the
main nib and a FindPanel subproject. Focus on the FindPanel object,
FindPanel.m, the FindPanel.nib file and the StringFinder.h protocol.
You can ignore the additional support pieces for now, such as StringStringFinder
and TextViewStringFinder.
Here is a simple description of the FindPanel’s job:

» FindPanel shows itself when asked

» The user types in a string and presses Return or the “Next” button.

» FindPanel examines the first responder. It asks, “is this object capable of
searching?” If the object conforms to the StringFinder protocol, it is
capable. The FindPanel uses the search message in the protocol to ask the
object to find the user’s string.

» If found, the string is selected in the first responder object. If not,
FindPanel displays the message, “Not Found”.

4 . Once you understand the basic construction of the FindPanel, consider how
pasteboards fit in. The frameworks provide a global Find pasteboard. It allows a
search string entered in one application to be seen by other applications. It is
commonly the case that a user will want to search for the same thing in multiple
places. Here is a simple description of how the Find pasteboard might be
included in your FindPanel:

» When FindPanel shows itself, it should fill in the search string text field
with the string from the system-wide Find pasteboard—NSFindPboard.
This requires a pasteboard read.

» When the user enters a new string in the text field, FindPanel should
propagate the string to the system-wide Find pasteboard. This requires a
pasteboard write.

5 . Implement pasteboard functionality in your FindPanel. Since a full-featured find
panel might perform these reads and writes in multiple places, they should be
implemented as separate methods. Encapsulate the pasteboard read and write
operations in to separate methods and call them from the appropriate places in the
code:

- (void)setTextFromPasteboard; (read)

- (void)setPasteboardFromText; (write)

6 . Build and run your application. Run the Edit application concurrently. Verify that
text entered in your find panel shows up in Edit’s find panel. (To get each of the
panel’s to refresh themselves you may need to close and re-open them). Verify
that text entered in Edit’s find panel shows up in yours.

390 Chapter 16: PASTEBOARDS

Enhancements
» Look at the find panel in Edit. It includes a “Previous” button and its menu items

include “Previous” and “Enter selection”. Enhance your find panel to include these
features.

» With a neatly packaged subproject and the StringFinder protocol, it is possible to
add the FindPanel component to your Expense Report project. Exercise Materials
provides a category on NSTableView that enhances it to conform to the
StringFinder protocol. This enables a user to search for a string in a table view,
row by row. In order to incorporate this in the Expense Report application, do the
following:

Drag your FindPanel subproject into the your Expenses application.

Instantiate a FindPanel in the main nib and connect it to the Find submenu
options. These are normally found under the Edit menu. Your Edit menu
may not include these being a more simple default Edit menu provided
when you created the nib file. You can delete the old Edit menu and add the
full featured Edit menu from Interface Builder’s menu palette.

Copy TableViewStringFinder.h and TableViewStringFinder.m
from Provided into your FindPanel subproject.

Build the application and test it.

» The FindPanel design assumes that the find controls—the text field and the push
buttons—are on a panel which is loaded as a separate nib. Consider the Logger
panel from an earlier exercise. What if you wanted to incorporate find controls on
the same panel? This way, the Logger is self-sufficient, providing search
capabilities whether or not the application provides a separate find panel. How
could you adjust the design of the FindPanel object to deal with this case—
hooking to controls on a pre-existing panel which is managed by another File’s
Owner controller? The capability to do both would make the FindPanel object
superior; it would be even more reusable.

391

392 Chapter 16: PASTEBOARDS

