
Chapter 8

ARCHIVING

CHAPTER 8 ARCHIVING

Files and bits coming across a cable are linear. They demand that the data be put in
a neat stream of bits. The stream has a beginning and an end. Objects, on the other
hand, live in a very complex network of pointers. There is no sense of the
beginning or end of a network of pointers.

To put objects in a file or send them across the network to another machine, you
need to put then into a linear representation.

Putting objects into a linear representation is known as archiving. Restoring objects
from a linear representation is known as unarchiving.

Goal

To understand the archiving mechanism.

Prerequisites

An understanding of how objects can be related to each other in a
complex network.

Objectives

At the end of this chapter, you’ll be able to:

» Write classes with initWithCoder: and encodeWithCoder: methods

» Use open and save panels

» Save and load files of objects using NSArchiver and NSUnarchiver

Reading

/System/Library/Frameworks/Foundation.framework/Resources/
English.lproj/Documentation/Reference/ObjC_classic/...(Protocols-
NSCoding)

/System/Library/Frameworks/Foundation.framework/Resources/
English.lproj/Documentation/Reference//ObjC_classic/... (Classes-
NSCoder, NSArchiver, NSUnarchiver)

/System/Library/Frameworks/AppKit.framework/Resources/
English.lproj/Documentation/Reference//ObjC_classic/... (Classes-
NSOpenPanel, NSSavePanel)

181

Archiving and unarchiving

 Archiving a network of objects is saving them in a linear
representation.

 Unarchiving is reading the linear representation and
restoring the network of objects.

There are many reasons to archive objects:
 • InterfaceBuilder
 • Objects as documents
 • Objects moving across the network

Archiving and unarchiving

Earlier in the course, you used Interface Builder to create and edit objects. When
you were done, you saved them into a nib file. At the time, the nib file was
describe as “freeze-dried” objects. Archiving is how they were freeze-dried.

Unarchiving is what happens when the application loads a nib file and brings the
objects back to life. This chapter discusses how you can add methods to your
objects so they can be archived and unarchived.

Interface Builder is not the only application that uses archiving. When an object is
copied from one application to another, perhaps with copy and paste, archiving is
typically used.

When objects are moved from one computer to another, archiving is used.

182 Chapeter 8: ARCHIVING

NSCoder

NSCoder is the abstract superclass for all archivers and
unarchivers.

NSArchiver and NSUnarchiver are commonly used subclasses of
NSCoder.

For an object to be archivable, it must implement two methods:

 (id)initWithCoder:(NSCoder *)coder;

 (void)encodeWithCoder:(NSCoder *)coder;

NSCoder

A coder is an object that represents the linear media you are archiving to or
unarchiving from. It has methods like (void)encodeRect:(NSRect)aRect. An
NSRect is a data structure representing a rectangle. When you send a coder the
message encodeRect:, you are saying, “Here is a rectangle, please put it in the
data stream.” If the coder represents a file, the data in the rectangle goes into the
file.

NSCoder also has the method - (NSRect)decodeRect:. Sending this message is
like saying “The next thing in the stream of data is a rectangle, please return a
new rectangle containing that data.”

An object archives itself by encoding its instance variables with a coder. An
object unarchives itself by decoding its instance variables from a coder.

If an instance variable points to another object, the object being archived uses
NSCoder’s encodeObject: method. The coder then tells the other object to
archive itself, also.

You can imagine how archiving works—tell one object to archive itself. It tells
several of its helper objects to archive themselves. They each tell several of their
helper objects to archive themselves. Pretty soon an entire network of objects is
archived. NSCoder makes sure each object in the network is only archived once.

183

initWithCoder: and encodeWithCoder:

For your objects to be able to unarchive and archive themselves, they must
implement initWithCoder: and encodeWithCoder:. initWithCoder: is
used for unarchiving and encodeWithCoder: for archiving.

In initWithCoder:, the object asks the coder to decode data on the stream and then
sets its instance variables to those values.

- (id)initWithCoder:(NSCoder *)coder
{

[super initWithCoder:coder];
[self setCompany:[coder decodeObject]];
[coder decodeValuesOfObjCTypes: “if”, &shares, &price];
return self;

}

Again, you’re only responsible for instance variables you declare. Call the
superclass’s initWithCoder: to archive its instance variables. The only
exception is for direct subclasses of NSObject. Unlike init, NSObject has no
implementation of initWithCoder:.

Notice that this implementation calls an accessor method to set the instance
variable company. Objects returned from the decodeObject method of a coder
are autoreleased. Calling the accessor method to set company takes care of
retaining the new company and releasing the old one. Also notice the
decodeValuesOfObjCTypes message takes a format string, in a similar
manner as a printf statement. In the example “if” stand for integer and float. The
codes are similar to those for printf.

In encodeWithCoder:, the object tells the coder to encode data from its
instance variables.

- (void)encodeWithCoder:(NSCoder *)coder
{

[super encodeWithCoder:coder];
[coder encodeObject:company];
[coder encodeValuesOfObjCTypes: “if”, &shares, &price];

}

Because you’re encoding onto a linear stream of bits, you must encode and
decode instance variables in the same order. It’s a good idea to write
initWithCoder: and encodeWithCoder: at the same time.

Together, initWithCoder: and encodeWithCoder: make up the NSCoding
protocol. Instead of declaring these methods, you can simply implement them and
adopt the protocol in your class’s interface.

184 Chapeter 8: ARCHIVING

@encode

To archive Objective-C types, use encoding codes.

[coder encodeValueOfObjCType:"c" at:&myChar];

To make the compiler look them up for you, use @encode().

[coder encodeValueOfObjCType:@encode(char) at:&myChar];

@encode

Part of the goal of using NSCoder is to be able to represent data types in a
machine-independent format. This means the coder must know what data type
you’re asking it to encode or decode.

To support this, each Objective-C type has a code that represents it. These type
codes tell the coder what type of data you want it to encode. You can look up the
type codes in the documentation, or the Objective-C compiler can look them up
for you. Simply use the @encode() compiler directive and the compiler takes
care of providing the correct type code.Saving and loading with coders.

185

Saving and Loading with Coders

NSCoder is an abstract class. You never create an instance of NSCoder. Instead,
you create instances of its concrete subclasses. Typically, you use NSArchiver
for archiving to a file and NSUnarchiver for unarchiving from a file.

Because an entire network of objects can be archived by archiving a single object,
to save a network of objects, you simply tell NSArchiver to archive a root object
into a file. For example:

- (void)saveToFile:(NSString *)filename
{

[NSArchiver archiveRootObject:myObject
toFile:filename];
}

Similarly, an entire network of objects can be unarchived by unarchiving a single
root object. So you just tell NSUnarchiver to unarchive a root object from a file.

- (void)loadFromFile:(NSString *)filename
{

[myObject release];
myObject = [NSUnarchiver

unarchiveObjectWithFile:filename];
[myObject retain];

}

Using save and open panels

Save and open panels are the standard way for users to indicate where they want
data written to or read from. You generally don’t create instances of save and
open panels. Instead, you use a shared instance. Here is some sample code that
gets a filename from a save or open panel.

NSSavePanel *sp = [NSSavePanel savePanel];
NSString *filename;

if ([sp runModalForDirectory:@”” file:@””]) {
[self setFilename:[sp filename]];

}

NSOpenPanel *op = [NSOpenPanel openPanel];
NSString *filename;

if ([op runModalForDirectory:@”” file:@””]) {
[self setFilename:[op filename]];

}

See the NSSavePanel and NSOpenPanel class documentation for more details.

186 Chapeter 8: ARCHIVING

Important ideas from this lesson

» To put objects in a file or on a wire, use archiving.

» For an object to be archivable, it must conform to the NSCoding protocol.

» NSCoding declares two methods: initWithCoder: and encodeWithCoder:.

» Subclasses of classes that conform to NSCoding should call their parent class’s
implementation of initWithCoder: and encodeWithCoder: first.

» NSObject does not conform to NSCoding.

» To save a network of objects to a file, you archive a root object.

» Use open and save panels to allow the user to choose the file they want data read
from or written to.

187

REVIEW ARCHIVING

1 . Give an example of archiving at work.

2 . Class Person, a subclass of NSObject, has two instance variables: name is an
NSString *, and points is an int. In the space below write an initWithCoder:
and an encodeWithCoder: method for Person.

188 Chapeter 8: ARCHIVING

EXERCISE 8.1 ARCHIVER: SAVING DATA

PortfolioManager suffers from one significant flaw. As soon as you quit
PortfolioManager, all the data you've entered goes away.

In this exercise you will add support for encoding to the objects in your object
model. To save their data when an application is not running, or to transmit data
to another application running on a different computer, objects need to be able to
encode the data in their instance variables. You’ll write encodeWithCoder: and
initWithCoder: methods to support encoding using NSCoder objects supplied
with Foundation Framework.

Objectives

After completing this exercise, you’ll be able to:

» Write an encodeWithCoder: method to encode instance variables

» Write an initWithCoder: method to decode instance variables and properly
initialize a new object with those values

» Use NSOpenPanel to choose a file to unarchive

» Use NSSavePanel to choose a file for archiving

189

Exercise

1 . In order to support archiving to a file, an application needs to implement two
action methods: open: and save:. Add the following method declarations to
PortfolioController.h:

(void)open:(id)sender;
(void)save:(id)sender;

2 . Open the PortfolioManager.nib file of the Portfolio Manager project.

3 . Drag the PortfolioController.h icon from ProjectBuilder onto
InterfaceBuilder's window. InterfaceBuilder will parse the file, adding the new
action methods.

4 . Drag a File menu from the Interface Builder's Menus palette onto
PortfolioMabnager's main menu.

\

Interface Builder’s Menus palette contains a number of standard submenus. One
of these is the File menu. It provides a number of menu items often used for
managing files. By using the supplied File menu, you ensure that your
application has a consistent look and feel with other applications. By default,
most menu items are disabled.

5 . Connect the Open menu item to the instance of PortfolioController. Set the action
to open:.

6 . Connect the Save menu item to the instance of PortfolioController. Set the action
to save:.

The user interface for archiving is now complete! There’s no need to create a
custom open or save panel since these are provided as part of the Application Kit.
The remainder of the exercise consists of teaching your model classes how to
archive themselves, and implementing the open: and save: methods you’ve
declared in PortfolioController.

190 Chapeter 8: ARCHIVING

7 . NSArchiver can archive a root object and all its objects to a file using the
archiveRootObject:toFile: method. Below is a diagram of Portfolio
Manager’s objects. Identify the root object, as well as the classes you need to
make conform to the NSCoding protocol.

PortfolioController

Portfolio

interface

portfolio

assets

objects
User

Interface

StockHolding

StockHolding

StockHolding

StockHoldingNSMutableArray

0

1

2

3

8 . Add encodeWithCoder: methods to the classes you’ve identified. Note that the
Asset class already implements an encodeWithCoder: method -- make sure
any subclasses of Asset call the superclass’s implementation first.

9 . Write initWithCoder: methods for the model classes you've identified. These
methods should mirror the encodeWithCoder: methods. Again, if the class's
superclass implements initWithCoder: be sure to call the superclass's
implementation first.

10.Now that the model objects know how to encode and decode themselves, it’s
time to add support for writing those objects to a file. Implement the save:
method in PortfolioController. save: needs to get a file name from the user using
NSSavePanel, and save the root object to the file using NSArchiver’s
archiveRootObject:toFile: method. Check the diagram from Step 7 if you’re
not sure which is the root object.

11. Implement the open: method in PortfolioController. open: must also do two
things: get a file name from NSOpenPanel, and set the root object to the object it
gets from NSUnarchiver. Use NSUnarchiver’s unarchiveObjectWithFile:
method to unarchive the root object. Use PortfolioController’s setPortfolio:
accessor method to set the newly unarchived object.

Remember that objects returned from methods other than alloc or copy should
be considered autoreleased. That’s why it’s important to use the setPortfolio:
method. setPortfolio: takes care of getting rid of the old portfolio, retaining the
new portfolio object, and coordinating the user interface.

12.The open method also has to update the user interface to display the new data.
Call PortfolioController’s fillFields method to display the selected stock
holding from the newly loaded portfolio.

191

13.Build and test your application. You should be able to save a portfolio to a file
and later read in the saved information.

Enhancements
» Implement a new: method that clears the current portfolio and user interface and

allows the user to start over with a new portfolio

» Add support for Save As. Factor out common code from save: and saveAs: into
a saveToFile: method declared like this:

(void)saveToFile:(NSString *)filename;

» Add support for Revert to Saved. Factor out common code from open: and
revertToSaved: into an readFromFile: method declared like this:

(void)readFromFile:(NSString *)filename;

192 Chapeter 8: ARCHIVING

