
Chapter 13

EVENTS AND RESPONDERS

296 Chapter 13: EVENTS AND RESPONDERS

CHAPTER 13 EVENTS AND RESPONDERS

Goal

To understand how user events reach application objects through the responder
chain and utilize the features of the first responder.

Prerequisites

A solid understanding of delegation and a good sense of how a user interacts with
graphical user interfaces.

Objectives

At the end of this section, you will be able to:

» Describe how user events result in messages to responders and enumerate the
objects in the responder chain

» Explain the utility of the key window and first responder for messaging the
currently active user interface element

» Implement multi-document menu actions that target a document controller using
first responder

Reading
Developer Tutorial

NSResponder class in the Application Kit.

297

User actions generate event messages

Graphical interfaces are driven by user events—mouse clicks and key strokes. A
user event is a request for action from the application. In an object-oriented
world, actions generally mean sending a message to an object.

NSApplication is, in a sense, the master controller for your application. At the
core of its responsibilities is the event loop. One by one, it picks an event from
those queued by the underlying platform and decides which object is responsible
for handling the event. Then it sends a message, passing an NSEvent object
describing the particulars. The event message passes from NSApplication to the
right window to a view, commonly a control, within the window and eventually
to your target object.

This is how a button knows that it has been pressed. This is how your custom
objects gain control—through target/action, delegation or, in the case of custom
views or controls, directly.

When your application objects are finished responding to the message, control
unwinds and returns to NSApplication where it loops again, ready to process the
next queued event. Many interesting things happen during the course of an event
cycle. You will learn more details later on and will see how this basic clockwork
drives the entire application.

298 Chapter 13: EVENTS AND RESPONDERS

Who can respond? NSResponder subclasses

NSApplication

NSWindow
 NSPanel

NSView
 NSControl
 NSButton
 NSTextField
 NSMatrix
 NSTextView

Who can respond? NSResponder subclasses

What kinds of objects are sent these event-based messages? Any subclass of
NSResponder—NSApplication, NSWindow, NSView including NSControl.
Each of these classes serve an important role in responding to specific events.
Each class inherits the generic attributes and behaviors of NSResponder,
extending and overriding them to achieve further specialized behavior. For your
custom objects, NSView and its subclasses are the most important since
NSApplication and NSWindow will rarely be subclassed by you.

299

Mouse event messages: they go where it points

Where does a mouse event message go? A mouse click points to a spot on the
screen which can be precisely mapped to a window and a view within that
window. Click on a button and that is the object that gets the message.

Through target/action, your controller object gets a message and your code
is activated.

300 Chapter 13: EVENTS AND RESPONDERS

Keyboard events: don’t “point” but imply

Key strokes from the user’s keyboard do not point anywhere on the screen. It is
necessary to designate a default object that gets the first crack at those event
messages and it is called the first responder. Every NSWindow instance has
an outlet to its first responder. At any point in time, only one of these windows is
the active. The application-wide first responder is precisely the first responder on
the key window.

The key window is the active window. You can think of the first responder as the
user interface object that is currently “in focus”. It is where the user’s attention is.
This object is often visually apparent—it shows some highlighting or outlining.

A text editor provides a clear illustration. You click on a text view and start
typing. The text view is in focus, it has your primary attention. It is natural that
any keystrokes should be passed to that text view object. The text view is the first
responder.

The interesting part is that this is all very dynamic. As time passes, the key
window changes. Within the window, as the user iteracts, the first responder
changes as well. It is worth considering how and when this happens.

301

Moving targets: key window and first responder

How the key window changes
• set when application launches
• when a new window or panel is presented
• mouse click on a different window
• close key window, revealing another

How first responder changes
• set when window or panel is presented: initialFirstResponder
• mouse click on a different view
• keyboard navigation like the tab key

Moving target: key window and first responder

In multi-windowed desktop environments, there are many open windows on
your screen. You use the mouse to precisely select a window. It’s active and
you’re ready to type. The window has just become the key window and that
window has a first responder.

Using your mouse or perhaps a navigation keystroke like Tab, you precisely
select another control on the same window. You have now changed the
first responder.

If no object has been selected, or if the window has no controls, the window is
its own first responder. You can configure the initialFirstResponder so that,
when a window appears, the first logical control capable of using keystrokes is
brought into focus as the first responder. The default object selected by the
window, when initialFirstResponder is nil, is typically quite reasonable.

A first responder is usually one that handles keystrokes. Not all user interface
objects do so—a slider or a color well for example. Not all objects become the
first responder when you point and click on them. Alternatively, once the first
responder, an object may not be wiling to give it up. Consider a text field that
performs validation. You type something invalid. It won’t let you Tab away or
press OK. The first responder may not be willing to give up its privileged spot to
another responder object.

302 Chapter 13: EVENTS AND RESPONDERS

Negotiating for a new first responder

NSView

NSView

NSView

NSView

NSView

NSView

1

2

3

firstResponder

firstResponder

firstResponder

(BOOL)resignFirstResponder

(BOOL)becomeFirstResponder

(BOOL)acceptsFirstResponder

Negotiating for a new first responder

Whenever a user action attempts to change the first responder, a negotiation
ensues to verify that this is acceptable. It is important to ask the objects that will
be affected.

The new view (remember, NSControls are NSViews) is asked to see if it will
accept first responder status. By default, buttons say YES. A disabled button will
say NO. A button can be configured to always say NO. Any NSControl that is
configured to be non-selectable will also answer NO. Changes to the first
responder are affected by state changes even within a single object.

If at any time in the negotiation, an object returns NO, the dialog terminates and
the old responder remains in control.

Assuming the new view will accept first responder status, ask the old first
responder if it is willing to relinquish its position. Various kinds of text editing
cells may likely enforce validation by refusing to give up first responder status
unless the user’s entry is acceptable. There might be other reasons.

Once the old responder is willing resign, the new responder is assigned first
responder status and informed of state change with a message. Many controls
need to do a little setup at this point. A text cell gets ready for editing, another
control may want to change its appearance. Most controls indicate this status with
some kind of highlighting or outlining.

303

Messaging first responder: target/action

How about connecting a button to message first responder? While many
target/action connections are hard-wired to specific object instances, it is very
useful to be able to message this dynamically changing target. Consider the
traditional editing menu selections cut, copy and paste. Which object actually gets
the cut: message when you press the button? The message is sent to the first
responder. Since many objects support the notion of “cutting”, the menu item can
store the cut: selector as its action and send it to the first responder, if it
responds. Whoever knows how to cut: is able to respond to a user’s mouse click
on the menu. This is a practical example of the power of polymorphism.

But what is stored as the target? You can connect any NSControl to the first
responder icon in Interface Builder and get the desired behavior. The value of the
target outlet in the NSControl is quite simply nil. You can programmatically set
the target outlet using

[control setTarget: nil]

and get the same result. Notice that this is different than simply sending a
message to nil. Using logic built-in to NSControl and its subclasses, a control
interprets a nil target to mean the current first responder. For this reason, this
special situation is called a nil-targeted action.

Nil-targeted actions start by messaging your application’s first responder.

304 Chapter 13: EVENTS AND RESPONDERS

If there is a "first", is there a "next" responder?

NSTextField

nextResponder

NSButton

nextResponder

NSBox

NSView

nextResponder

nextResponder

NSWindow

contentView
nextResponder
firstResponder

nil

If there is a “first”, is there a “next” responder?

First responder, as its name implies, is actually just a starting point. All the views
on a window are linked together into a hierarchy that leads from any one view
upward until it stops at the window. This hierarchy should look familiar—it’s the
same as the one that connects super and sub views. Recursive display messages
flow down the hierarchy but the responder links flow upward. If one view can’t
or doesn’t want to respond, the opportunity moves on to the nextResponder
until someone is willing to take control. The buck stops there. The message
initiates the desired action and no other objects in the chain of responders notices
the message.

Key event messages will proceed up this chain until they reach the window. If
unclaimed, the event is effectively discarded and processing resumes with the
next event.

A nil-targeted action sent by an NSControl object also uses this chain. It searches
up from first responder until it reaches the first object in the chain that responds to
the selector. And if unclaimed, it does not stop at the window but continues on a
more extensive journey.

305

Nil-targeted actions and the responder chain

Key window
• first responder
• up the view hierarchy via next responder
• window
• window delegate (e.g. your DocController)

Main window (if different from key)
• same sequence as key window above

NSApplication
• NSApp, global NSApplication instance
• NSApplication delegate (e.g. your AppController)

Nil-targeted actions and the responder chain

For nil-targeted actions, the responder chain extends beyond just the key
window. Once it reaches the window it conveniently checks with its delegate.
This is typically your controller and it might well respond to the message at hand.
If not, the search moves on. If the main window is different than the key
window, it gets the next shot, following a similar chain beginning with its first
responder. Once again, your controller may enter the picture as a window
delegate. Finally, your application’s NSApplication instance is queried, followed
by its delegate. Your application controller object is the last stop in the responder
chain for nil-targeted action messages. If the message was not intended for your
object, it goes unclaimed.

It is interesting to note that all the objects in the responder chain are subclasses of
NSResponder except for your custom delegates, application and document
ontrollers. They are typically subclasses of NSObject. In these two cases, your
controllers can participate in responding, regardless of their class type.

It is possible to have a menu but no open windows at all. In this case, the
responder chain is quite short—first NSApplication, then its delegate object,
typically your AppController.

306 Chapter 13: EVENTS AND RESPONDERS

Messaging the key window's delegate

delegate

NSWindow
nil-targeted
 action
 messages window

DocController

- (void)save:(id)sender;
- (void)saveAs:(id)sender;
- (void)saveTo:(id)sender;
- (void)revertToSaved:(id)sender;
- (void)close:(id)sender;

Messaging the key window’s delegate

Consider a “Save” menu item. Its action selector is save: and its target is nil.
When pressed, a search for a responder begins with the key window’s first
responder. moving up the responder chain until it reaches the window. If no
object responds so far, your delegate now gets involved. If your controller
responds to save:, it gets the message and performs the job of saving the
document.

A multi-window application has a dynamically changing key window and each
window has a delegate—your document controller. You can design a main menu
with items that apply to the key window and, using nil-targeted actions, ensure
that they always apply to the relevent document controller whenever they are
pressed.

307

Adding actions to first responder in Interface Builder

If you use this approach to message your delegate objects, or you add new
methods to custom controls or views in the manner of cut:, you will want to
graphically make first responder connections in Interface Builder. Your methods
are likely to have unique names. Although first responder is not a real object or
class, it is located in the Interface Builder classes browser for this reason. It has a
list of default actions commonly used by Application Kit objects. You can add
your own actions here and they will be available choices in the Interface Builder
inspector when you connect NSControl subclasses to the first responder icon.

308 Chapter 13: EVENTS AND RESPONDERS

Nil-targeted action message caveats

The first object in the chain that respondsToSelector:wins

For custom action messages (e.g. DocController), use unique
 selectors

No object responds to misspelled selectors!

The responder chain is specific to NSControl and target/Action

 vs.

simply messaging nil such as [nil someSelector:sender];

Nil-targeted action messages caveats

Nil-targeted actions are powerful and useful. These are a some points to bear in
mind when using this technique. If your custom object it not getting the message
you expect, you might check your application against these points.

309

Event loop details
Allocate autorelease pool

Release autorelease pool

Update windows and menus

Take event from queue

Process event - send a message

Event loop details

The event loop is the heartbeat that drives graphical applications. Here is the
sequence of steps carried out with each iteration of the event loop:

» Allocate as autorelease pool

» Take an event from queue

» Process the event—send a message

» Update the windows—including menus

» Release the autorelease pool

310 Chapter 13: EVENTS AND RESPONDERS

Important ideas from this section

» User events are transmitted to your application objects as messages. There are
two types of user events:

mouse

keyboard

» Keyboard event messages are sent to the first responder on the key window.

» The key window and first responder change frequently. First responders
negotiate before switching—some views can’t become first responder and some
are not always in a state to give it up. Many views need preparation to become
first responder.

» An NSControl with a nil target outlet is said to have a nil-targeted action. The
actual target will be dynamically located using the responder chain when the
NSControl is activated

» Nil-targeted actions start with first responder and move through the responder
chain until an object that responds is found. The responder chain includes views,
the key and main windows, their delegates, NSApp and its delegate. The
delegates are your custom objects that can participate in servicing nil-targeted
actions.

» The event loop is the heartbeat of your application. It is useful to understand each
step in one iteration of the event loop, especially in terms of autorelease pools and
event updating.

Classes featured in this section
» NSResponder

» NSView

» NSWindow

311

REVIEW EVENTS AND RESPONDERS

1 . What’s the use of the key window?

2 . Explain the role of the first responder.

3 . Why would you use a nil-targeted action?

4 . Name the places in the responder chain where your custom objects
might participate.

5 . Is this an example of a nil-targted action: [nil doSomething: self] ?

312 Chapter 13: EVENTS AND RESPONDERS

EXERCISE 13.1 EXPENSE REPORT—ADDING THOSE MISSING MENU ITEMS

Returning to the expense report application you built earlier, you may recall that
certain menu actions were left disabled. In this exercise, you will extend the
Expense Report application by enabling these important menu items and
implementing the corresponding methods. You use first responder and the
responder chain to get the message to the right object. As a window delegate,
your DocController is in the responder chain. Messages sent to first responder—
nil-targeted action messages—can target the DocController for the key or main
window.

Objectives

After completing this exercise, you’ll be able to:

» Use the First Responder to process menu actions

» Exploit the Responder Chain to simplify interface design

313

Exercise—Stage 1

1 . As before, make a backup copy of the previous version of your application.

2 . Open the Main nib file, and select the First Responder. Switch to the class
browser view and add save: and openDocument: to the First Responder list
of actions.

» Connect the relevant menu items in the Document or File submenu to the First
Responder icon.

» Add the openDocument: method to the AppController class. Have it simply
log a message that it was called using NSLog(). Do the same for the save:
method in the DocController class.

Note: When the user clicks on the Open command in the menu, the top
document in the application will be asked if it understands openDocument:.
Since DocController has no openDocument: method, the answer is no. The
menu cell will then try the next candidate in the responder chain, which in this
case is NSApplication, and then the application delegate. AppController does
have an openDocument: method, so it will be called.

3 . Build the project and try it out. Are your new methods being called? Which of
the methods you connected isn’t being called? Do you understand why not?

314 Chapter 13: EVENTS AND RESPONDERS

Stage 2

1 . The DocController will implement the reading and writing of files. It will need to
know about the table view data source, in order to set and archive the information
it holds—its array of expense items.

» Add a dataSource outlet to DocController.h

» Open the document nib and read DocController.h back into Interface Builder to
update the outlet list

» Connect the dataSource outlet to the ExpenseDataSource in the nib

2 . Now you can flesh out DocController’s save: method:

» Save the document to a file. Most applications save whether or not the document
has actually been modified. Obtain the array from the data source, with the array
accessor method, and archive it using document’s filename. If the document is
new and has never been saved, you will need to use an NSSavePanel to obtain
the filename. NSArray and the Expense object can archive and unarchive
themselves. To archive the array object, use the following method:

[NSArchiver archiveRootObject:array toFile:filename];

» Once a document has been saved, the window’s representedFilename attribute
is set. If the document being saved is not new, you can save it using the
representedFilename attribute as provided by the window (see below).
Remember, after saving, to update the document’s modification status.

Hint: To maintain the correspondence between a document and a filename, you
will want to use NSWindow’s representedFilename and
setTitleWithRepresentedFilename: methods. The representedFilename
and the title need not be the same. By default, a window’s
representedFilename is @””. New unsaved document windows can have a
title but will have an empty string for their filenames. You can use this as a flag to
determine if the document is new:

if ([[window representedFilename] isEqual: @””])

3 . Add an initFromFile: method to DocController so that you can create a new
array directly from an archive file and pass it to the data source. A document
initialized from a file is not new. It has a valid filename. You may want to modify
the init method to invoke initFromFile:, with a nil filename, so that
initFromFile: becomes the designated initializer. The code in the data source’s
init method that generates a default set of data may now be deleted so that a new
document is indeed empty. To unarchive an array, use the following method:

array = [NSUnarchiver unarchiveObjectWithFile:file];

315

4 . Now you can extend the AppController class with its two methods:

» openDocument: This should use NSOpenPanel to obtain a filename and then
create a new document using DocController’s initFromFile: method. In
ExerciseMaterials, you will find a test expense report file named
sample.expense.

» saveAll: You should enumerate over the array of documents, or the window list
to obtain the delegate, and send each one a save: message.

Enhancements

» If you haven’t already done so, add the name of the relevant document to the
alert panel displayed when a modified document is being closed, so that the user
can tell which document it is referring to. This is primarily useful when the user
quits the application with lots of windows open. Typically, the corresponding
window should also become key and ordered to the front of the screen.

» Currently the user can open the same document twice. See if you can enforce
some sort of document uniquing policy.

» Unarchiving from a file can fail so that unarchiveObjectWithFile: returns
nil. This might be due to the simple fact that the file does not exist or is
unreadable by the current user. Test for this common error and report the
problem to the use—using an alert panel. See NSFileManager in the Foundation
framework for a way to check for the existence and readability of files. What
problems might you check for in the archiving case?

316 Chapter 13: EVENTS AND RESPONDERS

