Apple
Information Access Toolkit
v1.0

Programmer’s Guide

3/12/97
CONFIDENTIAL — DO NOT REDISTRIBUTE
© Apple Computer, Inc. 1996, 1997



Apple Computer, Inc.

© 1996, 1997 Apple Computer, Inc.

All rights reserved.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
mechanical, electronic, photocopying, recording, or otherwise,
without prior written permission of Apple Computer, Inc.
Printed in the United States of America.

No licenses, express or implied, are granted with respect to
any of the technology described in this book. Apple retains all
intellectual property rights associated with the technology
described in this book.

Every effort has been made to ensure that the information in
this manual is accurate. Apple is not responsible for printing
or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh, and Mac OS are
trademarks of Apple Computer, Inc., registered in the United
States and other countries.

Adobe Illustrator and PostScript are trademarks of Adobe
Systems Incorporated, which may be registered in certain
jurisdictions.

FrameMaker is a registered trademark of Frame Technology
Corporation.

Helvetica and Palatino are registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered trademark of International
Typeface Corporation.

LIMITED WARRANTY ON MEDIA AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL
RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD
“AS 1IS,” AND YOU, THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE
EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or
employee is authorized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so
the above limitation or exclusion may not apply to you. This
warranty gives you specific legal rights, and you may also have other
rights which vary from state to state.

The paper used in this book meets the EPA standards for
recycled fiber.

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Preface

Contents

Figures, Tables and Listings i

Overview of this Manual v

Chapter 1

Introduction to the
Apple Information Access Toolkit

1-1

Chapter 2

Some Possible Applications 1-3
RecipeSwap 1-3
How It Was Done 1-4
Indexing Facility 1-4
Search Facility ~ 1-6
Analysis and Filtering 1-8
Storage and Document Type 19
Construction with IAT ~ 1-10

Overview of IAT Content  2-1

Chapter 3

Facilities of IAT by Category 2-3
Index 2-4
Accessor 2-6
Analysis 2-8
Corpus 2-12
Storable 2-14
Storage 2-15

Designing an Application  3-1

Determining High Level Requirements 3-2
Determining the External Interfaces 3-2
Mapping to IAT Classes 3-3
Internal Task Design 3-5
Recipe Query 3-6
Submit Recipe 3-11
Duplicate Recipe 3-15
Stop Word Maintenance 3-16
Database Creation ~ 3-18

iii



Chapter 4

Common Practices in IAT 41

Chapter 5

Primitive Types 4-3
Globals  4-3
Exceptions 4-3
Exception codes 4-4
Throwing Exceptions ~ 4-4
Memory Allocation ~ 4-5
The Memory Functions ~ 4-6
Base Classes ~ 4-10
IAObject  4-10
IAStruct 4-11
Deletion of Allocated Memory 4-13
IADeleteOnUnwind 4-13
[ADeleteArrayOnUnwind 4-14
IADeletePointerArrayOnUnwind ~ 4-15

Index Category 51

iv

Choosing an Index Type ~ 5-3
Index Types Currently Available 5-4
Comparison of Searches Available 5-5
Index Size vs. Speed 5-7
Common Operations ~ 5-8
Creating an Index ~ 5-8
Establishing an Existing Index 5-11
Updating an Index 5-14
Iterating Through the Documents in an Index
Merging Indexes 5-20
Compacting an Index 5-22
Index Class Category Reference 5-23
Header Files in the Index Category 5-23
Class Specifications 5-25
DocInfo 5-25
FreqPosting 5-27
FreqPS 5-29
FreqTerm 5-31
IAIndex 5-31
IAIndexTypes 5-43
InVecIndex 5-45
InvertedIndex 5-46
TermIndex 5-49
TermInfo 5-59
TFComponent ~ 5-63
TFVector 5-63
VectorDocInfo 5-66

5-19



VectorIndex 5-67

Class Utilities 5-72

Typedefs 5-74

Extern Data 5-76

Constants 5-77

Index Exceptions and Error Handling 5-78

Chapter 6 Accessor Category 61

Choosing an Accessor Type 6-3
Query Logic 6-4
Query Analysis 6-5
Common Operations 6-6
Building an Accessor 6-6
Answering Queries 6-7
Answering a Simple Ranked Query  6-8
Answering a Query by Example 6-11
Answering a Boolean Query 6-14
Describing a Document 6-16
Finding Related Words 6-18
Accessor Class Category Reference 6-20
Header Files in the Accessor Category 6-20
Class Specifications 6-22
IAAccessor 6-22
IAHit  6-26
IAProgressReport 6-29
InVecAccessor 6-32
Inverted Accessor 6-33
RankedAccessor 6-36
RankedHit 6-43
RankedProgress 6-45
RankedQueryDoc 6-46
TWComponent 6-47
TWVector 6-48
VectorAccessor 6-51
Typedefs 6-53
Constants 6-53
Accessor Exceptions and Error Handling 6-54

Chapter 7 Analysis Category 71

Understanding Tokens and Terms 7-3
Understanding Tokenizers — 7-4
Understanding Filters 7-6



Existing Filters 7-6
Filter Sequence 7-8

Creating Analysis Subclasses 7-9
Creating a SimpleAnalysis Subclass 7-9
Creating a Subclass of IA Analysis 7-10
Creating a Subclass of IATokenFilter 7-12
Creating a Subclass of IATerm 7-13
Creating a Text Utility 7-13

Analysis Class Category Reference 7-15
Header Files in the Analysis Class Category 7-15
Class Specifications 7-17
AlphaTokenizer 7-17
DocTextCharStream — 7-21
DowncaseFilter 7-23
IA Analysis 7-24
IATerm 7-27
IAToken 7-31
IATokenFilter 7-33
IATokenStream 7-35
IACharStream  7-37
ShortWordFilter ~ 7-42
SimpleAnalysis 7-43
StringTerm 7-45
Constants 7-47
Exceptions 7-48

Chapter 8 Corpus Category 81

Introduction 8-3
The HFS Implementation ~ 8-4
HFS Corpus 8-4
HFSTextFolderCorpus 8-5
Common Procedures 8-5
Using a Corpus to Provide Documents 8-5
Creating a New Corpus 8-6
Establishing an Existing Corpus 8-7
Using an HFSCorpus to Locate a Document in HFS 8-7
Creating Corpus Subclasses ~ 8-7
Creating a Subclass of IACorpus ~ 8-8
Creating a Subclass of IADoc 8-9
Creating a Subclass of IADoclterator 8-10
Creating a Subclass of IADocText 8-11
Creating a Subclass of HFSIterator 8-13
Corpus Class Category Reference 8-16
Header Files in the Corpus Category ~ 8-16
Class Specifications 8-17

vi



Chapter 9

DirectoryInfo 8-17
HFSCorpus 8-17
HFSDoc 8-21
HFSDocText 8-25
HFSVolumelnfo 8-29
HFSIterator 8-32
HFSTextFolderCorpus 8-35
HFSTextFolderDoc 8-39
IACorpus 8-41

IADoc 8-47
IADoclterator 8-49
IADocText 8-50
Constants 8-51
Exceptions 8-51

Storage Category 91

General Storage Logic 9-3
HFS Implementation 9-5
Creating New Storage ~ 9-5
Sample Code to Create Storage ~ 9-5
Opening Existing Storage 9-6

Sample Code for Establishing Existing Storage 9-6

Allocating and Deallocating Blocks of Storage 9-6
Reading and Writing Storage 9-8
Reporting on Storage ~ 9-8
Compacting Storage 9-8
Using the Mutex Facility ~ 9-9
Cloning Store Streams 9-10
Creating Storage Subclasses 9-10
Creating a Storage Construction Utility 9-10
Creating a Subclass of IAStoreStream 9-11
Creating a Subclass of IAMutex 9-15
Storage Class Category Reference 9-17
Header Files in the Storage Class Category 9-17
Class Specifications 9-18
HFSStoreStream 9-18
[AInputBlock 9-22
IAOutputBlock ~ 9-25
IALock  9-28
IAMutex 9-28
IAStorage 9-30
IAStoreStream 9-39
Storage Class Utilities 9-45
Typedefs 9-48
Storage Exceptions and Error Handling 9-50

vii



Chapter 10 Storable Category 101
Understanding Storables and Ordered Storables 10-3
Creating Subclasses 10-4
Creating a Subclass of IAStorable 10-4
Creating a Subclass of IAOrderedStorable 10-6
Creating a subclass of IAOrderedStorableSet 10-7
Common Operations 10-7
Creating an Ordered Storable Set 10-7
Open an Existing Ordered Storable Set 10-8
Updating an Existing Ordered Storable Set 10-8
Sample Code for Updating an Ordered Storable Set 10-10
Searching and Iterating through an Ordered Storable Set ~ 10-11
Storable Class Category Reference 10-13
Header File 10-13
Class Specifications 10-14
IAOrderedStorable 10-14
IAOrderedStorablelterator 10-17
IAOrderedStorableSet 10-18
IAStorable 10-27
Class Utilities 10-32
Externs 10-33
Exceptions and Error Handling 10-33
Appendix A Alphabetical List of Functions a1

viii



Figures, Tables and Listings

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Table 2-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 3-1
Figure 3-2
Figure 3-3
Table 2-2
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Listing 4-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Table 4-1
Figure 5-5
Listing 5-1
Listing 5-2
Figure 5-6

An inverted index 1-5

A vector index 1-6

Sample output of a simple query 1-7

An example of output for a query-by-example. 1-8
The use of tokenizer and filters 1-9

The RecipeSwap corpus 1-10

The layers of an information access application 1-11
Class categories within IAT 2-3

Relationships of the index classes 2-5

Index inheritance 2-6

Accessor hierarchy 2-7

Relationships in a ranked search 2-8
Relationships between analysis and tokens 2-9
Provided tokenizer and filters 2-10

A SimpleAnalysis 2-11

Analysis subclasses created for RecipeSwap 2-12
Corpus abstract classes 2-13

The Macintosh HFS subclasses 2-14

The storable classes 2-15

Logical relationships between storage classes 2-16
The external interface of RecipeSwap 3-2
RecipeSwap persistent data 3-3

The related categories 3-4

Association with Classes 3-5

Subtasks of recipe query 3-7

Interaction diagram for establishing a recipe index 3-9

Interaction diagram for building an accessor 3-10
Interaction diagram for a simple query 3-11

The subtasks of submit recipe 3-12

Interaction diagram for add recipe 3-13

Interaction diagram for creating a RankedQueryDoc
Interaction diagram of query by example 3-15
Interaction diagram for deleting recipes from the index
An interaction diagram for a complete update 3-18
Interaction diagram for initializing an index 3-19
Defining and using your own memory allocator. 4-6
An overview of an index 5-3

Index inheritance tree 5-4

An inverted index 5-5

A vector index 5-6

Comparison of index types for time and space 5-7
Interaction diagram for index creation 5-9

Creating an index 5-9

Differences when creating an index with a named block
Interaction diagram for establishing an existing index

v1.0a100, Confidential. ©1997 Apple Computer, Inc. 3/12/97

3-14

3-16

5-11

5-12



Listing 5-3 Establish an existing index 5-13

Listing 5-4 Determining type of index 5-14

Figure 5-7 Interaction diagram of an update to match the corpus 5-16
Listing 5-5 An example of updating an index to match its corpus 5-16
Figure 5-8 Interaction diagram for individual update 5-17

Listing 5-6 Updating individual documents 5-17

Figure 5-9 Interaction diagram for iterating through an index 5-19
Listing 5-7 Iterating through an index 5-19

Figure 5-10 Interaction diagram for a merge 5-21

Listing 5-8 Merge a source index to a destination index 5-21
Listing 5-9 Compact an index 5-22

Figure 5-11 Index hierarchy 5-32

Figure 5-12 Overview of the index relationships 5-33

Figure 5-13 Inverted index overview 5-47

Figure 5-14 Vector index overview 5-69

Figure 6-1 Accessor inheritance tree 6-4

Figure 6-2 Query logic 6-5

Figure 6-3 Interaction diagram to build an accessor 6-6

Listing 6-1 Build an inverted vector accessor 6-6

Listing 6-2 Report search progress 6-7

Figure 6-4 Output from a simple ranked query 6-8

Figure 6-5 Interaction diagram for a simple ranked query 6-8
Listing 6-3 Answer a simple ranked query 6-9

Listing 6-4 Display search results 6-10

Listing 6-5 Get and print a document name 6-10

Figure 6-6 Sample output from a query by example 6-11

Figure 6-7 Interaction diagram for creating a RankedQueryDoc 6-12
Listing 6-6 Find documents matching example document 6-13
Figure 6-8 Sample output from a Boolean query 6-14

Listing 6-7 Find documents satisfying Boolean expression 6-15
Figure 6-9 Sample output from describing a document 6-16
Listing 6-8 Find the words that best describe a document 6-17
Figure 6-10 Sample output from finding related words 6-18
Listing 6-9 Find the words related to a given wordt 6-19

Figure 6-11 Accessor inheritance 6-22

Figure 6-12 IAHit relationships 6-27

Figure 6-13 IAProgressReport relationships 6-30

Figure 6-14 RankedAccessor relationships 6-37

Figure 7-1 Class diagram of tokens and terms 7-4

Figure 7-2 A tokenizer 7-5

Figure 7-3 Token and filter classes 7-6

Figure 7-4 lllustration of sequential filtering 7-8

Figure 7-5 Analysis subclass 7-10

Listing 7-1 SimpleAnalysis subclass header 7-10

Listing 7-2 SimpleAnalysis subclass body 7-10

Listing 7-3 IAAnalysis subclass header 7-11

Listing 7-4 IAAnalysis subclass body 7-11

Listing 7-5 StopWordFilter header 7-12

Listing 7-6 StopWordFilter implementation of GetNextToken 7-13
Listing 7-7 DocTextCharStream header 7-14

Listing 7-8 DocTextCharStream body 7-14

v1.0a100, Confidential. ©1997 Apple Computer, Inc. 3/12/97



Figure 7-6
Listing 7-9
Listing 7-10

Figure 8-1
Figure 8-2
Figure 8-3
Listing 8-1
Listing 8-2
Listing 8-3
Listing 8-4
Listing 8-5
Listing 8-6
Listing 8-7
Listing 8-8
Listing 8-9
Listing 8-10
Listing 8-11
Listing 8-12
Listing 8-13
Listing 8-14
Listing 8-15
Figure 8-4
Figure 9-1
Listing 9-1
Listing 9-2
Listing 9-3
Listing 9-4
Listing 9-5
Figure 9-2
Listing 9-6
Listing 9-7
Listing 9-8
Listing 9-9
Listing 9-10
Listing 9-11
Listing 9-12
Listing 9-13
Listing 9-14
Listing 9-15
Listing 9-16
Listing 9-17
Figure 9-3
Figure 10-1
Listing 10-1
Listing 10-2
Listing 10-3
Listing 10-4
Listing 10-5
Listing 10-6
Listing 10-7

AlphaTokenizer relationships 7-18

Sample implementation of filtered MakeTokenStream

Sample Implementation of GetNextToken for an
|ATokenFilter 7-35

Corpus relationships 8-3

HFS instantiation of corpus classes 8-4
Interaction diagram for iterating through a corpus
List text files 8-6

Establishing an existing corpus 8-7

Sample header file of an IACorpus subclass 8-8

Sample implementation of GetProtoDoc 8-9
Sample implementation of GetDocText 8-9
Sample header of an IADoc subclass 8-9
Sample Header for an IADoclterator subclass
Sample Implementation of GetNextDoc 8-11

Sample header of an IADocText subclass 8-12
Sample implementation of GetNextBuffer 8-12

Creating a custom corpus iterator—header file
IADoclterator subclass header 8-14
Corpus subclass body 8-14

IADoclterator subclass body 8-15

Using HFSlterator 8-34

IACorpus relationships 8-42

Logical storage classes 9-4

Constructing storage 9-5

Establish existing storage 9-6

Allocating a hamed block of storage 9-7
Opening a named block of storage 9-7
Report amount of space in storage 9-8

A sample result of compacting storage 9-9
A utility to construct storage 9-10

Sample header file of an IAStoreStream subclass
Sample implementation of Clone() 9-13
Sample implementation of IsWritable() 9-13
Sample implementation of IsOpen() 9-13
Sample implementation of Initialize() 9-13
Sample implementation of Open() 9-14
Sample implementation of GetEof() 9-14
Sample implementation of SetEof() 9-14
Sample implementation of Write() 9-14
Sample implementation of Read() 9-15
Current implementation of IAMutex 9-16
IAStorage relationships 9-31

Object storage structures 10-3

Sample header file for an IAStorable subclass
Sample Constructor 10-5

Sample Implementation of DeepCopy 10-5
Sample Implementation of Restore 10-5
Sample Implementation of StoreSize 10-6
Sample Implementation of Store 10-6
Sample Implementation of Equal 10-7

v1.0a100, Confidential. ©1997 Apple Computer, Inc. 3/12/97

7-27

8-6

8-11

8-13

9-11

10-4

iii



iv

Listing 10-8

Listing 10-9

Listing 10-10
Listing 10-11
Listing 10-12
Listing 10-13
Listing 10-14
Listing 10-15
Listing 10-16
Figure 10-2

Listing 10-17
Listing 10-18
Listing 10-19
Listing 10-20
Listing 10-21
Listing 10-22
Listing 10-23
Listing 10-24

Sample Implementation of Less Than 10-7
Creating an IAOrderedStorableSet 10-8
Open an existing Ordered Storable Set 10-8

Adding a storable to an OrderedStorableSet 10-10

Updating additional data for an existing storable
Removing a storable from an OrderedStorableSet
Get an object by key 10-11

Make a sequential iterator 10-12

Make a positioned iterator 10-12
IAOrderedStorable relationships 10-15
Sample Implementation of Equal 10-16
Sample Implementation of LessThan 10-17
Sample Implementation of DeepCopy 10-28
Sample Implementation of Restore 10-29
Sample Implementation of StoreSize 10-30
Sample Implementation of Store 10-30

10-10
10-11

Sample Implementation of Deep Copy and Deep Copying

Sample Implementation of Restore and Restoring

v1.0a100, Confidential. ©1997 Apple Computer, Inc. 3/12/97

10-32

10-31



Overview of this Manual

This manual is a combination of conceptual guide, programmer’s guide, and
reference for the Apple Information Access Toolkit.

As not all users will want all of this information, here is a guide to what is in
the chapters.

Chapter 1, “Introduction to the Apple Information Access Toolkit,” is a quick
introduction to the toolkit. It emphasizes information access in general, and
introduces an example application. This is the source for basic information
access definitions. Everyone should read this one; it is short, but basic.

Chapter 2, “Overview of IAT Content,” is the introduction to the tools of the
toolkit. This is key to the rest of the organization of the manual, and is the first
look inside the toolkit. Everyone should read this also.

Chapter 3, “Designing an Application,” is a overview of the design of the
application outlined in Chapter 1. It should be read by anyone doing
application development with IAT.

Chapter 4, “Common Practices in IAT,” documents those common classes
used by many others within IAT such as memory allocation or exceptions.

The remaining chapters are the programmer’s and reference guide to IAT. The
should be referred to as needed while doing application development.

Each of these chapters has some introductory material, common procedures
that are done with the classes, sample subclasses where they apply, and a
reference to the classes and their members.

This manual is still in draft format. Please forward all corrections and
comments to v-twin@apple.com.

©1996, 1997 Apple Computer, Inc. 3/12/97



vi

P REFACE

©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple
Information Access Toolkit

Some Possible Applications 3
RecipeSwap 3
How It Was Done 4
Indexing Facility =~ 4
Search Facility 6
Analysis and Filtering 8
Storage and Document Type 9
Construction with IAT 10

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



1-2

CHAPTER 1

Introduction to the Apple Information Access Toolkit

In this chapter we
= propose some sample applications that might be built using the IAT
» provide an overview of information access items required to do these tasks

» describe how IAT provides the features needed for strong information access
application development.

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple Information Access Toolkit

The Apple Information Access Toolkit (IAT) is an object-oriented information access
engine that provides required capabilities to index, search, and analyze large volumes of
documents. The IAT, formerly known by its code name “V-Twin,” is a collection of tools
which can be used separately or together to perform a variety of information access tasks.

Some Possible Applications

IAT is a flexible toolkit that may be used in many applications. This is one possible
scenario that we’ve chosen to present some of its features.

RecipeSwap

Chef Irina Suflay has a very successful cookbook business going. She provides an on-line
service to other gourmet cooks to distribute recipes. They must provide one new recipe
per week (and a small fee...) to receive full access to her impressive database. This access
allows them to search the database for certain recipes.

The application that allows Chef Suflay this success does these things:

» It automatically picks up e-mailed recipes, checks them against the database, files
ones that are unique, and produces a report of those that may be duplicates of ones
already on file.

» It allows a rapid search and delivery of recipes by natural language query. This search
delivers the “top ten” recipes that fit the query closest.

For example, if Ira Goodcook sends in his favorite recipe for prune confit, Irina’s system
receives the recipe, matches it against the stored e-mails to see if there might already be a
recipe for prune confit, and indexes it if it is not likely to be a duplicate. If it might be
(perhaps a recipe for prune loaf exists), a report is produced listing those likely
candidates for duplication for Irina’s information. Irina can manually cause the system
to accept the recipe if she decides it is not a duplicate.

When Ira inquires to find a recipe that has kumquats, cilantro, and avocado (those being
the best things located at the produce market that day), the system will list the top ten
recipes most likely to be a match, and show which of those ingredients are found in the
recipe. These recipes will be in priority order, that is, one containing all three ingredients
and very little else will be at the top of the list; one containing only one among many
other ingredients will be found at the bottom.

And, currently, this system does it all on a Macintosh sitting in Irina’s extra large pantry.

Some Possible Applications 1-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple Information Access Toolkit

How It Was Done

Indexing Facility

Applications of the RecipeSwap type require that indexes be made of a large set of
documents. A document is a collection of data containing some text. Documents may be
on different media, or in different formats. For example a word processing file, an e-mail
message, or a database record may be documents. An index is a representation of the
contents of a set of documents. Different types of indexes have different information
about the set so different operations may be run on the index.

Indexes generally contain terms. A term is the basic unit of text that gets indexed. A term
is typically a word, but may be a phrase or a modified form of a word.

There are different types of indexes. An inverted index is a table of all terms found in the
collection, with pointers to which documents contain the term. An inverted index is
similar to the index in the back of a book; rather than point to a page, it points the
document containing the term. Figure 1-1 shows an example of an inverted index.

How It Was Done
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple Information Access Toolkit

Figure 1-1 An inverted index

Inverted Index
Term #Docs Doc Names #times in Doc

butter 35 ...

Prune Confit —2—//

Prune Danish 2

confit 2 Duck Confit
Prune Confit

danish 7 Apple Danish
Cheese Danish
Prune Danish

prune 2 Prune Confit

(@ T S S

Prune Danish

1 batch Puff Pastry

lcing

Mash the prunes until a paste. Add
the butter and sugar. Place in a puff
pastry shell. Bake as directed for
pastry. Frost with icing Refrigerate
for 1 day before eating.

An inverted index makes it very easy to search for documents containing specific words.

However, Irina wants to be able to search for recipes similar to a given recipe. A vector

index can do this efficiently.

A vector index is a table of all documents stored in the collection which points to terms
that are contained in each document. In order to determine if a document exists that is
very similar, a vector index is used. Figure 1-2 shows an example of a vector index.

How It Was Done

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

1-5



CHAPTER 1

Introduction to the Apple Information Access Toolkit

Figure 1-2 A vector index

1-6

Vector Index

Terms
Document Total # terms butter confit danish prune
Prune Confit 5 2
Prune Danish 9 0 1
1 nes
2 Tb@/
e Pastry Confit

Icing
Mash the prunes until a paste. Add the

butter and sugar. Place in a puff pastry
shell. Bake as directed for pastry. Frost

Mash the prunes until a paste. Line a

loaf pan with butter. Mix the prune

paste with sugar, then toss in the pan.

Refrigerate for 1 day before eating.

To allow more efficiency of time and space, IAT supports a single inverted vector index
that combines the organizations found in both inverted and vector. As RecipeSwap has
may uses for its index, it uses an inverted vector index.

Search Facility

The RecipeSwap system requires a ranked search facility for its queries. It promises a list
of the top ten recipes, not just any recipes that match the query from the patron. This
means the system must weigh the results of the search and know which documents are
the best match for the query. A ranked search provides a score for the closeness of the
match, which allows the system to list the search results from best to worst.

RecipeSwap system requires a search to find matches to a simple query. A simple query
is a list of terms. The search provides a ranked list of hits, that is the document that
contains at least one those terms, its score, and the terms it has. The patron requesting
recipes would be prompted to put in a few terms. Then the top recipes matching those
terms could be found. A request for prunes, butter, sugar would find all recipes
containing any of these, but would only report those with the whose score were among
the top ten, as seen in Figure 1-3. Recipes containing more than one of these terms,

How It Was Done
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple Information Access Toolkit

containing these terms many times, or containing very few other terms than these terms,
would get the highest scores.

Figure 1-3 Sample output of a simple query

Recipes Containing Prune, Butter, Sugar

Score Document Name
1.0 Prune Confit (prune, butter, sugar)

.84 Prune Danish (prune, butter, sugar)

74 Amazing Prune Danish (prune, sugar)

A ranked search is more powerful than a Boolean search, found in older information
retrieval systems. A Boolean search requires the user to specify whether matches must
contain all the query words or only any of the query words. The result is often a “feast or
famine;” either a daunting unsorted list of too many items, or a sparse list of too few. A
query written with find prunes OR butter OR sugar would find every recipe made with
butter whether or not it had prunes. There would be an unranked long list. One written
as find prunes AND butter AND sugar would not find “Amazing Prune Danish” if it
used margarine rather than butter. (Note: The IAT does support Boolean search for those
applications that require it.)

There is another type of query in RecipeSwap. When a new recipe comes in, it is used as
the query with a request to find a similar recipe. That is, the recipe itself is used as a
source of terms, and the system is asked to locate the any documents that might be
duplicates. This is a query by example, which will start a ranked search using all of the
terms found in the sample document. These terms will be weighed by their frequency
both in this document and in all the documents within the index. This allows the search
to provide those documents which are most relevant, that is, most similar to the query
document. It would not be useful just to get a list of any document that contains any
term in the recipe, and nearly impossible to find a document containing exactly the same
terms as in the recipe. The search provides a list of the closest documents which are
scored for their closeness. This score provided is the relevance factor.

This search would produce output that lists just those documents scored sufficiently
high, as seen in Figure 1-4. Those which may have some hits, but are below a chosen
threshold, would not appear.

How It Was Done 1-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple Information Access Toolkit

Figure 1-4 An example of output for a query-by-example.

Possible Duplicates of Prune Danish

Score Document Name
1.0 Amazing Prune Danish

.90 Prune Puffs
.83 Apple-Prune Danish
.81 Prune Confit

Analysis and Filtering

A system must be able to identify the terms in a document to build an index from it. This
analysis of its content is done in several steps. First a document’s characters are grouped
into tokens. A token is a set of consecutive characters in a document which might be
considered a term upon further analysis. The tool which converts a text stream into
tokens is known as a tokenizer. An alphabetic tokenizer, for example, will take a text
stream and gathers consecutive alphabetic characters into tokens. When it finds a
number, space, or punctuation mark in the stream it ends the token it was building,
discards the intervening non-alphabetic characters, and starts the next token when it
finds an alphabetic character.

Indexes are more useful if the analysis filters tokens. A filter removes or alters tokens
based on certain rules. For example, the RecipeSwap index should not think that Prune,
with a leading upper-case character, and prune, all lower-case, are different terms. A
downcase filter will convert any upper-case character in a token to a lower case character.

IAT provides the ability for a developer to build and include specialized application
filters. This allows the facility for smarter queries. One of these might be a stop word
filter, which discards terms that are found in a stop list. Stop words are typically
common words that do not add to the meaning of a document such as “the,” but might
be terms that are not useful in a specific application. Few patrons would be interested in
locating recipes that contain the term “cup” in common. Irina needs the ability to
successively create a stop list, or those terms to be excluded by the stop word filter, of
words that should not be considered when comparing recipes. When the documents are
indexed, these words would not be taken into consideration.

Figure 1-5 shows the effects of the use of a tokenizer and successive filters on a phrase
from a recipe. The ShortWord Filter removes tokens that are under three characters. The
Downcase Filter turns all characters to lower case.

How It Was Done
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple Information Access Toolkit

Figure 1-5 The use of tokenizer and filters

)Add in 2 squares of Bakers[] Chocolate

AlphaTokenizer

ocolate
Bakers

square
[ ]
]

[ Chocolate ]
[Bakers]
Rl

2]

ShortWordFilter

ocolate
Bakers

quares

|~ Chocolate |
Baters

[ Squares |
]

DowncaseFilter

squares
a0

StopWordFilter

squares

Storage and Document Type

IAT uses the power of object-oriented design to keep the storage media and document

type separate from the indexing and analysis logic.

How It Was Done
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple Information Access Toolkit

Indexes must be maintained in persistent storage, such as a hard disk. IAT builds its own
tools, or classes, for the logical storage of indexes. Developers may create sub-classes of
these classes to work optimally on their media, including cross-platform support.

IAT allows the developer to build an interface from the actual document to the logical
document used to build the indexes. Each index maintains a separate corpus, or body of
documents. This corpus does not contain the actual documents, but maintains a
directory of them. It can then access these documents and locate the text within them
much as a directory points to the actual files in a file system. A facility within the corpus
accesses the document and provides text streams for analysis. Because of this, the
RecipeSwap corpus, seen in Figure 1-6, needs only to provide a means of locating the
e-mail messages and translating them to a text stream for analysis. IAT remains
independent of the document type from there on.

Figure 1-6 The RecipeSwap corpus

\_/ E-mail ID and ) Document ID
. Information E-Mail and text
. - Corpus - |AT Tools
E-Mail Classes
System

IAT is written in ANSI C++ for compatibility with a variety of development and target
environments.

Construction with IAT

1-10

The classes of the IAT toolkit constitute the core of an application. IAT contains base
classes to do the storage, analysis, etc. required for information access applications.
Many applications can be developed by adding little more than a GUI to the toolkit.

The power of object-oriented design, however, allows developers to modify the behavior
of the IAT classes by creating subclasses. For example, IAT provides a class to do a
simple analysis. RecipeSwap requires a slightly smarter analysis; it must not include
common terms that do not distinguish recipes in its index. The developer can create a

Construction with IAT
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 1

Introduction to the Apple Information Access Toolkit

subclass of the abstract filter class included in the toolkit, and just add the application
specific code. There is no need to “alter,” and possibly impair, the provided classes.
There is little need to duplicate logic already present in those classes.

A typical application will have three layers as seen in Figure 1-7. The core of the

application will be the classes provided by IAT. The developer will develop specialized
subclasses where required for his application in a second layer. The application itself will
provide the user interface to the system and add the procedural structure for using the
toolkit classes and functions.

Figure 1-7 The layers of an information access application

-

Application Interface

Application

DECITIC SuDCclasses

~

Construction with IAT

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

1-11



CHAPTER 1

Introduction to the Apple Information Access Toolkit

1-12 Construction with IAT
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Facilities of IAT by Category 3

Index 4
Accessor 6
Analysis 8
Corpus 12
Storable 14
Storage 15

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



2-2

CHAPTER 2

Overview of IAT Content

In this chapter we
» review the major categories, or related areas of tools, in IAT
= show the major relationships between classes in those categories

» discuss the possible subclasses that might be built for applications.

This chapter is an overview. Please see the later detailed chapters for more information
on each category.

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Facilities of IAT by Category

The tools within the IAT are organized by category. Each category contains related
classes for an area of Information Access.

Table 2-1 Class categories within IAT

Index Mapping between documents and terms. The
construction and maintenance of indexes.

Accessor Use (usually search) of indexes.

Analysis Transform input text to index terms.
Corpus Definition of the set of documents; the means

of obtaining text from the documents

Storage Management of persistent storage, the storage
of indexes.
Storable Organization of persistent data. The data

structure of stored data.

Each of the categories contains classes that provides base functionality. Many of the
classes can be used as a base class for subclasses which can provide additional,
application specific, functionality. The developer will generally have to add a control and
user interface framework to use the tools provided. This section describes each of the
class categories, some possible subclasses (many others not mentioned are possible), and

Facilities of IAT by Category 2-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

the specific subclasses required for to implement the sample applications described in

the previous chapter.

The Class Diagram Notation

The class diagrams used in this chapter and
throughout the chapter are based on a modified Object
Modeling Technique (OMT) notation as used in the
book Gamma, Erich et al. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley
Publishing Company, Inc. Reading, Massachusetts,
1995. More can be found on the OMT notation in
Rumbaugh, James, et al. Object-Oriented Modeling and
Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

The relationship is labeled from the perspective of
the client class at the source of the arrow. A diamond at
the base of the relationship indicates an aggregate
relationship. This means the client “contains” the class,
that is, the class is a part of the client. A dark circle at
the end means that more than one of the client type
may be instaniated by a single source object.

A triangle indicates inheritance.

The arrowhead represents a relationship between
the two classes. IACorpus
IACorpus
manages
HFSCorpus
IAD If the class name is in italics, such as IACorpus, it
oc is an abstract class and may not be instaniated. If it is
in regular font, such as HFSCorpus, it is an instantiable
subclass.
Index

The index category contains the classes required for the creation of an inverted index, a
vector index, and the combination of the two. This class locates the document text
through the corpus classes, extracts terms with the analysis classes, and builds the index.
This index is persistently stored using the storage classes.

Figure 2-1 shows the relationships between the major classes. An IAIndex points to one
IA Analysis, which it uses to extract terms, one IACorpus, which is used to locate

documents and get text, and one IAStorage, where any information that must persist
(this includes the index, its corpus and its analysis) resides.

2-4 Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Figure 2-1 Relationships of the index classes

IAAnalysis

extracts terms using

resides in
IAIndex

locates docs using

IACorpus

Possible Subclasses

IAStorage

Figure 2-2 shows the inheritance diagram for the index classes. Although TermIndex can
be instantiated, it is unlikely an application would want to. It is used as the base class for

InvertedIndex and VectorIndex.

Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Figure 2-2 Index inheritance
IAIndex
Termindex
Invertedindex Vectorindex
InVeclndex

Most applications, including the RecipeSwap example, will not need to subclass an index.

For more information about this category, please see Chapter 5, “Index Category.”

Accessor

The accessor classes allow for the search and comparison of indexes.

There is a parallel inheritance structure for accessor classes (shown in Figure 2-3).

2-6 Facilities of IAT by Category
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Figure 2-3 Accessor hierarchy
IAAccessor
RankedAccessor
InvertedAccessor VectorAccessor
InVecAccessor

The RankedAccessor provides a Ranked Hit for every document that contains terms
sought in a search. As seen in Figure 2-4, this RankedHit identifies the document, the
index containing the document, and a list of terms found in the document. It also
provides a score indicating how relevant this document is to the query.

Facilities of IAT by Category
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

2-8

Figure 2-4 Relationships in a ranked search
RankedAccessor [—22rhes g Termindex IADoc
found in
reports

indexed

RankedHit

IAIndex* index;

IADoc* doc;

IATerm** matchingTerms;
float score;

uint32 matchingTermsLen;

matching

IATerm

Possible Subclasses

Like the Index category, the Accessor category contains a class, Ranked Accessor, that is
the parent of the Inverted Accessor and VectorAccessor. Developers will only create an
accessor subclass if they create a different index.

No subclasses of accessor were required in the RecipeSwap examples above.

For more detail on this class category, please see Chapter 6, “Accessor Category.”

Analysis

The analysis category provides the tools for locating terms in a text stream. Figure 2-5
shows that the abstract class, IAAnalysis produces a token stream, IATokenStream. This
stream contains tokens, which are terms and the position of the term in the input text
stream.

Facilities of IAT by Category
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Figure 2-5 Relationships between analysis and tokens

IAAnalysis

makes
|

\

IATokenStream

O

I
| contains

! contains

IAToken IATerm

IATerm* term; byte* data;

const uint32 startPos; const uint32 dataLen;
const uint32 endPos;

One implementation of IATokenStream must be a tokenizer; that is, the tool that takes a
stream of characters and provides tokens. A specialized subtype of a IATokenStream is
an IATokenFilter; that is, a tool which takes in a token stream, alters the stream in some
fashion, and provides a new token stream.

IAT provides an example set of analysis subclasses. Figure 2-6 shows the tokenizer and
filters provided.

Facilities of IAT by Category 2-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

2-10

Figure 2-6 Provided tokenizer and filters
IATokenStream
IATokenFilter AlphaTokenizer
IATokenFilter(IATokenStream* source); AlphaTokenizer(DocTextCharStream* charStream);
DowncaseFilter ShortWordFilter

AlphaTokenizer removes all blanks, punctuation and other special characters, and
numbers from the input text stream. It provides StringTerms, which is a subclass of
IATerm that implements terms as characters. The short word filter eliminates tokens
shorter than a certain length and the downcase filter converts all tokens to lower case
letters.

This category provides SimpleAnalysis, a subclass of IAAnalysis, which uses
AlphaTokenizer, DowncaseFilter, and ShortWordFilter. Figure 2-7 shows the analysis
implementation provided with IAT.

Facilities of IAT by Category
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Figure 2-7 A SimpleAnalysis

StringTerm

1

extracts
1

AlphaTokenizer DocTextCharStream

A gets characters from

I gets token stream from
|

filters

SimpleAnalysis |—— | DowncaseFilter

filters

ShortWordFilter

DocTextCharStream is a utility which locates characters in an IADocText.

Possible Subclasses

The developer may wish to develop a specialized tokenizer that accepts a custom text
stream, or tokenizers for other languages requiring different logic for locating tokens.

The developer may wish to create a subclass of IATokenFilter to provide specialized
filters such as stemmers (those which shorten words to the root) or stop lists (lists of
terms not to be included in the index).

There are abstract classes IAToken and IATerm which may require creation of subclasses
if a non-textual language is chosen.

Facilities of IAT by Category 2-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

New analysis subclasses will be required whenever different filters or tokenizers are
used than the combination provided in SimpleAnalysis. RecipeSwap, for example, will
require a new filter, StopWordFilter, and a new analysis subclass, StopWord Analysis.

Figure 2-8 Analysis subclasses created for RecipeSwap
Simple Analysis IATokenFilter
IAT
Application
StopWordAnalysis StopWordFilter

For more information on the analysis category, please see Chapter 7, “Analysis
Category.”

Corpus

The IAT index is written to work with a set of logical documents. It is the job of the
corpus classes to keep track of this set as it exists physically, and provide the text from
the documents in a consistent logical format. The corpus is the interface between the IAT
index and the actual items being indexed. This allows those items to be in a variety of
formats, such as text files in a Macintosh HFS folder, e-mail messages in a database, or
even subsets of text from a single physical document.

The logical document, characterized by the class IADog, is similar to a directory entry: it
contains the location of the document and pertinent attributes, not the document itself.
When the document content is needed, it is obtained through the class IADocText. Figure
2-9 shows the relationships between the abstract classes.

2-12 Facilities of IAT by Category
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Figure 2-9 Corpus abstract classes

IADoclterator

A

obtains in order

1 constructs
1
IACorpus IADoc
—
IADocText* GetDocText(const IADoc* doc); GetName()

obtains from document file

IADocText

GetNextBuffer(byte* buffer, uint32 bufferLen);

The classes of the corpus category provide the facility to locate the documents, detect
which have changed, which are new, or which have been deleted. The corpus maintains
an iterator which can provide a list of the documents used for a particular index.

This category currently contains implementations for HFS text files, and an iterator to
locate all text files in an HFS Folder. These are shown in Figure 2-10.

Facilities of IAT by Category 2-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Figure 2-10 The Macintosh HFS subclasses

HFSDoc reads HFSCorpus HFSVolumeinfo
:Ez;@t;ndeiﬂé?ort VReflD HFSVolumelnfo** volumelnfos; short vRefNum;
StringPtr fileName;

extracts

A

HFSDocText

HFSDocText
(short vRefNum,
long dirID,

HFSTextFolderDoc reads HFSTextFolderCorpus StringPtr name);

long modDate; long rootDirld;

traverses folders

\

HFSlterator

HFSlterator(short vRefNum, long rootDirld=2)

CinfoPBRec* pb

Possible Subclasses

Any other type of document or storage medium besides Macintosh HFS will require a
subclass of IACorpus.

RecipeSwap, for example, would require an e-mail Corpus to locate the e-mail message
body within the e-mail mailboxes. This will include subclasses of IACorpus, IADoc, and
IADocText.

For more information, please see Chapter 8, “Corpus Category.”

Storable

The storable classes provide a data structure mechanism to allow the organization, and
access of very large sets of objects that must be quickly accessed from persistent storage.

2-14 Facilities of IAT by Category
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Figure 2-11 The storable classes

IAStorable

IAOrderedStorableSet K> P‘{ IAOrderedStorable

| 4

I constructs

| obtains in order

\

IAOrderedStorablelterator

An IAStorable is the supertype of any object that may be stored in persistent data. It
provides for the access of storage. An IAOrderedStorable is a storable that can be
uniquely identified; any subclass of IAOrderedStorable will contain one or more data
members that can be used as a key, or unique identifier, for the item.

An IAOrderedStorableSet is the structure of IAOrderedStorables. It allows for the update
of the collection, and creates an IAOrderedStorablelterator, which obtains the stored
objects in sequence.

Possible Subclasses

These classes are mainly used internally in IAT. For example, IATerm and IADoc are
both IAOrderedStorables. Applications may wish to use the facility, however, to create
their own stored objects. To do so, a subclass must be created of IAOrderedStorable.
IAOrderedStorableSet and IAOrderedStorablelterator do not require subclasses; they
will work with any IAOrderedStorable subclass.

For more information, please see Chapter 10, “Storable Category.”

Storage

Storage contains those classes which allow for the access and creation of persistent files
on storage media. IAT contains its own logical storage system that maintains blocks of

Facilities of IAT by Category 2-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

storage. Figure 2-12 shows the principal storage classes. IAStorage serves as the manager
of the blocks; it allocates and deallocates them and maintains a table of contents of the
blocks. IAStorage also creates the IAStoreStream. IAStoreStream does the actual I/O to

the storage medium.

Figure 2-12 Logical relationships between storage classes

2-16

IAOutputBlock

IAOutputBlock(lAStorage s,
IABlockID bID,
IABlockSize size);
WriteByte();

writes via (friend)

IAStorage

IABlockID Allocate()

Deallocate(IABlockID)

contains
P* IAStoreStream

addresses (friend)

IAInputBlock

reads via (friend)

IAInputBlock
(IAStorage* storage,
1ABlockID blockID);
ReadByte();

IAT provides an implementation of storage for Macintosh HFS. No HFSStorage class is
needed; a utility, MakeHFSStorage, creates an HFSStoreStream and invokes the
constructor for [AStorage with that HFSStoreStream. HFSStoreStream provides the

access to the Macintosh Tool Box to open, read, and write the files.

Facilities of IAT by Category

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

Possible Subclasses

The developer may wish to subclass [AStoreStream to allow for storage on other media
or platforms than Mac HFS.
For more information, please see Chapter 9, “Storage Category.”

Facilities of IAT by Category 2-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 2

Overview of IAT Content

2-18 Facilities of IAT by Category
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Determining High Level Requirements 2
Determining the External Interfaces 2
Mapping to IAT Classes 3
Internal Task Design 5
Recipe Query 6
Submit Recipe 11
Duplicate Recipe 15
Stop Word Maintenance 16
Database Creation 18

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

This chapter discusses the required application design for the RecipeSwap scenario
outlined in the introduction. The focus is on choosing subclasses and the design of the
controlling programs.

Determining High Level Requirements

Determining the External Interfaces

The application will provide the external interface of the system.

Figure 3-1 The external interface of RecipeSwap

3-2

N

< duplicate recipe

< submit recipe

< recipe query B

/

< database creation RecipeSwap

<stop word maintenance p

Each of the dialogs illustrated in Figure 3-1 will become tasks.

Duplicate recipe: if the recipe submitted by a patron seems to be too close to another
already on the database, Irina is notified. She can decide whether to delete the submitted
recipe, or to keep it.

Database creation: the database must be initially created and stored. Chef Irina will
decide upon its name and place.

Stop word maintenance: Chef Irina decides which terms to add to the stop word list to
prevent them being used in indexing the recipes.

Submit recipe: patrons must submit at least one recipe per week. These come in by
e-mail, and are added to the index. Those which are close to other recipes on the
database may be flagged as possible duplicates, initiating a duplicate recipe dialog with
Irina.

Recipe query: patrons may ask for the ten closest recipes containing the terms in the

query.

Determining High Level Requirements
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

The actual design of the dialogs is not directly connected with IAT, so we won't discuss it
further. Our work is inside the box: the interface with IAT.

Mapping to IAT Classes

One way to begin determining the IAT classes required is to examine the persistent data
required for the tasks. This data will most likely become stored objects.

Figure 3-2

email recipe

RecipeSwap persistent data

persists in

filtered by

stop word

indexed in

email recipe database

recipe index

Each of these can be assigned to the proper IAT category, then the category can be
researched to see the closest IAT match.

The index is clearly an Index; stop word is a part of Analysis. The remaining data types
are the storage of the recipes themselves. This is the corpus; the IAT classes will have to

interface with this stored object.

Mapping to IAT Classes

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

3-3



CHAPTER 3

Designing an Application

Figure 3-3

email recipe

The related categories

persists in

Corpus

filtered by

stop word

Analysis

Mapping to IAT Classes

indexed in

email recipe database

recipe index

I ndex

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Object
e-mail recipe

recipe index

stop word

Internal Task Design

Table 2-2

CHAPTER 3

Designing an Application

Association with Classes

Associated
Classes

TIADoc

IACorpus

TADocText

IADoclterator

InVecIndex

InVecAccessor

HFSStorage

IATokenFilter

IA Analysis

Modification Required

Specific subclass for e-mail body and
related fields to locate this within
folder. EmailDoc.

Specific subclass for the e-mail. Relates
the doc to the text. EmailCorpus

Specific subclass to implement the
location of text within an e-mail body.
EmailDocText.

Specific subclass to locate specific
e-mails within the e-mail corpus, and to
provide them in sequential order.
Emaillterator.

Most powerful index. Query speed
important and must have ability to do
similarity checking. No subclass
required.

The accessor for an InVecIndex. No
subclass required.

The required class to store the index;
the existing IAT implementation of
Macintosh storage is sufficient. No
modification required.

A filter to be used to eliminate terms.
Subclass required; IAT provides no
specific filter. StopWordFilter

An analysis that is able to apply the
stop word filter. Subclass required.
StopWord Analysis.

New Subclass
EmailDoc

EmailCorpus

EmailDocText

Emaillterator

(none required)

(none required)

(none required)

StopWordFilter

StopWord Analysis

For information on how to create the corpus subclasses, please see “Creating Corpus
Subclasses” beginning on page 8-7.

For information on how to create the analysis subclasses, please see “Creating Analysis
Subclasses” beginning on page 7-9.

Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Each of the dialogs listed above is associated with a task. This section will break down
each task into subtasks for clarity, and show the interaction with IAT objects.

3-5



3-6

CHAPTER 3

Designing an Application
The subtasks are likely to reside in the same program; the decomposition is for clarity.

Recipe Query

Z
< recipe query
N 7

Description

The patron will submit a query as a string of terms. The application will search the
recipes in the database, and provide those ten recipes that are the closest match to the
terms.

Subtasks

Recipe query is a simple query. The application must construct a dialog with the patron
to get a simple text query. Figure 3-4 shows the subtasks of this query.

Internal Task Design
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Figure 3-4 Subtasks of recipe query

1
Establish
Recipe
Index

14

recipelnVeclndex

2
Build Accessor

3 email recipe database

Query
Accessor

recipelnVecAccesspr

(matched)

query query

4
Report

aRankedHitArray
Recipes

matching recipe

Establish recipe index

The recipe index is presumed to be existing. It must be located in storage and opened. It
is opened as read only as no update is involved. See “Establishing an Existing Index”
beginning on page 5-11 for a generic reference and sample code.

The new index object must be created with the same corpus type and analysis type as
those with which the recipe index was originally created. The emRecipeDB is the e-mail
Recipe Database folder. Opening the index allows the existing index to be read from
storage. Figure 3-5 shows which objects and operations will be used to establish the
recipe index.

Internal Task Design 3-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

The Interaction Diagram Notation

Figure 3-5 and other similar diagrams used in this
manual are based on a modified interaction diagram
notation as used in the book Gamma, Erich et al.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts, 1995.

An interaction diagram shows the member
functions called over time during a specific task. Time
flows from top to bottom. A column shows an object
and its lifetime. Its vertical line is dashed before the
object exists. A rectangle lies on the line when the
object is active. A solid vertical line shows the object
exists, but is not active. Objects are generally named as
“aClassName.”

aninVecindex anlADoclterator anHFSDoc

GetDoclterator()

Arrows entering active objects are messages, or
calls to member functions. Those not coming from
another object are invoked by the task itself. Dashed
arrows construct an object.

This example shows the process of creating an
iterator and looping through documents. The task calls
GetDoclterator on an existing object, anInVecIndex.
This iterator will create the object anlADoclterator.
When the task invokes GetNextDoc(), it will create the
object anHFSDoc.

The code for this diagram would be as follows:

| ADocl terator* anl ADocl t er at or
anl nVecl ndex. Get Doclterator();

HFSDoc* anHFSDoc

whi | e(anHFSDoc=( H=SDoc*) anl ADocl t er at or - >
Get Next Doc()) {
}

3-8 Internal Task Design

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Figure 3-5 Interaction diagram for establishing a recipe index

recipeStorage anEmailCorpus aStopWordAnalysis recipelnVecindex

MakeHFSStorage
(vRefNum, dirID, name

Open(readOnly)

new !

L e e e =

_ new (recipeStorage, anEmailCorpus, aStopWordAnalysis)

Open()

Build Accessor

After it is established, the recipe index can be used to create an accessor. Accessors can be
built to handle more than one index; although we only have one, we must place the
recipe index into an array for construction. Figure 3-6 shows the objects and operations
required to build an accessor.

See “Building an Accessor” on page 6-6 for more general information on constructing
accessors.

Internal Task Design 3-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

3-10

Figure 3-6 Interaction diagram for building an accessor
recipelnVeclndex aninVeclndexArray
e .

aninVeclndexArray[0]=recipelnVecindex .

Query Accessor

This is a simple query. See “Answering Queries” on page 6-7 for more information on

queries in general.

The application may wish to establish a progress reporting function. AProgressFunction
is a function located within the application program whose address is passed to the
accessor. The accessor will invoke this function every frequencyOfProgress ticks. See

“Reporting Progress” on page 6-7.

Figure 3-7 shows the objects and operations required for doing the search.

Internal Task Design
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

recipelnVecAccessor

new(aninVeclndexArray, numberindexes))



CHAPTER 3

Designing an Application

Figure 3-7 Interaction diagram for a simple query

aProgressFunction aRankedHitArray recipelnVecAccessor

R ngw[_nun_wbe_ngcs]_»D

RankedSearch(query,queryLen, NULL, 0, numberTermsPerDoc,
aProgressFunction, frequency Of Progress)

.score

Report Recipes

Each RankedHit will contain the necessary information to locate the email doc in the
database. Report Recipes matches the hits to the database, and passes along the top
matching recipes to the patron. This is application code outside of the IAT interface, so
we won't show the internal design here.

Submit Recipe

< submit recipe
N 7

Description

The patron submits recipes to the system via e-mail. Each recipe is added to the index.
The task then uses the recipe as a query to find similar recipes. These might be
duplicates. If similar recipes are found, they are reported to the chef.

Subtasks
Figure 3-8 shows the subtasks used to add the recipe.

Internal Task Design 3-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Figure 3-8 The subtasks of submit recipe

1
Establish
Recipe
Index

4
Build Accessor

recipelnVeclndex

recipelnVecAccessor

2
Add Recipe

3
Build
RankedQuery
Doc

5

Query By
Example

anEmailDoc

aRankedQueryDoc

email recipe database aRankedHitArray

6
Report
Duplicates

duplicate recipe

Establish Recipe Index

The recipe index is already in storage and must be established. This is the same as recipe
query except that the storage must be opened “writable” to allow the index to be
updated. See “Establish recipe index” on page 3-7.

Add Recipe

The email recipe must be added to the corpus (which is done be adding it to the email
recipe database) and then added to the index. This is an individual update of the index;

3-12 Internal Task Design
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

for more information on doing this in general, see “Updating by Individual Document”
on page 5-16.

Figure 3-9 shows the objects and operations required to add a document to the index.

Figure 3-9 Interaction diagram for add recipe

anEmailDoc recipelnVeclndex recipeStorage

AddDoc(anEmailDoc)
-

Flush()

Commit() -

Build Ranked Query Doc

Locating possible duplicates requires a query by example. The recipe is used as an
example to an accessor built from the index. The accessor will locate recipes using
similar terms. Any recipe that is not the selected recipe but that scores above 0.8 is
considered to be a possible duplicate.

See “Answering a Query by Example” on page 6-11 for more information on doing a
query by example.

The first step in doing this query is to build the example document. This is a ranked
query dog; that is, a document that will be used for a ranked query on the index. Figure
3-10 shows the objects and operations for creating this example.

Internal Task Design 3-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Figure 3-10 Interaction diagram for creating a RankedQueryDoc
recipelnVecindex anInVeclndexArray anEmailDoc aRankedQueryDoc
! |
! |
new,

aninVeclndexArray[O]=recipelnVecIndex_

_ n_ew(_angmgilD_oc,_anllw\/gcln_de&Arr_ay)_>

Build Accessor

The accessor is built for the index just as it was in the recipe query. See “Build Accessor”
on page 3-9.

Query By Example

The query by example is similar to the simple query, only a RankedQueryDoc, rather
than a string of terms and its length, is provided to the RankedSearch function.

There may not be a progress function required if the application does not need to display
progress.

Figure 3-11 shows the objects and operations to do the search.

3-14 Internal Task Design
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Figure 3-11 Interaction diagram of query by example

aRankedQueryDoc aProgressFunction aRankedHitArray recipelnVecAccessor

RankedSearch(NULL, 0, aRankedQueryDoc,numberDocs,
numberTermsPerDoc, aProgressFunction, frequency Of Progress)

.score

Report Duplicates

Report duplicates uses the array of ranked hits provided by the query. The top document
in this array is the submitted recipe. Those following are the closest matches, in order.

Each ranked hit contains anEmailDoc for the recipe. This object has the necessary
information to locate the recipe on the database and report any possible duplicates to the

chef.

Duplicate Recipe

s
< duplicate recipe
N 7

Description

Recipes which might be duplicates are queued. The chef will initiate a review of these
recipes, and indicate which are to be deleted from the index.

Subtasks

This is also an individual update.

The recipe index must be established as above (see “Establish recipe index” on page 3-7).
The storage should be opened as “writable.” Each document will be deleted from the

Internal Task Design 3-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

index, then from the database. Storage is committed only after all deletions have been
done.

Figure 3-12 shows the objects and operations to delete recipes from the index.

Figure 3-12 Interaction diagram for deleting recipes from the index

anEmailDoc recipelnVeclndex recipeStorage

DeleteDoc(anEmailDoc)
o

Flush()

_
Compact()

-

Commit() -

This is another individual update. See “Updating by Individual Document” on page 5-16
for more general information.

Stop Word Maintenance

Z
<st0p word maintenance
N 7

3-16 Internal Task Design
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Description

The application will provide a means for the chef to review and update a list of stop
words, that is, words which should not be considered as content terms when found in a
recipe (such as cup).

When the stop list is updated, all recipes should be re-analyzed to reflect the new filter.
This is done by the Update() function, which will synchronize the index with its corpus
and re-analyze all documents.

Subtasks

This task is small enough that no subtasks are required.

Even though the storage already exists, the application should initialize the storage and
create the index as new for this update, as every document will be re-analyzed.

See “Synchronizing an Index to the Corpus” on page 5-15 for more information on this
function in general.

Figure 3-13 shows the objects and operations required to rebuild the index and reanalyze
all the documents.

Internal Task Design 3-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Figure 3-13 An interaction diagram for a complete update

recipeStorage anEmailCorpus aStopWordAnalysis recipelnVeclndex

MakeHFSStorage
(vRefNum, dirlD, name)_

Initialize()

|
o _ngw(gmaecipeQBLD ! !
| |

_new

new (recipeStorage, anEmailCorpus, aStopWordAnalysis)

Initialize()
—_—

Update()
—

Commit()

Database Creation

e N\
< database creation >
N 7

Description

The creation of a new database is a “one-time” task. It initializes an empty database and
recipe index. The database initialization is application specific, and must be done before
the index creation.

For more general information on creating indexes, see “Creating an Index” on page 5-8.

Figure 3-14 shows the objects and operations required to create a new index.

3-18 Internal Task Design
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 3

Designing an Application

Figure 3-14 Interaction diagram for initializing an index

recipeStorage anEmailCorpus aStopWordAnalysis

MakeHFSStorage

(vRefNum, dirlD, name) ! !

| |
Initialize() | I

Commit()

Internal Task Design
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

recipelnVeclndex

Initialize()
—_—

3-19



CHAPTER 3

Designing an Application

3-20 Internal Task Design
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

Primitive Types 3
Globals 3
Exceptions 3
Exception codes 4
Throwing Exceptions 4
Memory Allocation 5
Base Classes 10
Deletion of Allocated Memory 13

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



4-2

CHAPTER 4

Common Practices in IAT

There are certain classes and practices used throughout IAT and recommended for use
by applications. This chapter documents those practices including:

= the utility classes used throughout IAT
» general IAT error handling
= memory allocation

» copying without copy constructors

The header file IACommon.h contains these classes and utilities.

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

Primitive Types

There are certain types defined and used throughout all classes in IAT:
t ypedef unsi gned char byt e;

t ypedef | ong i nt32;

t ypedef unsigned | ong ui nt 32;

t ypedefi nt bool

Other types are more specific to a particular class or class category, and are documented
in the reference for that category.

Globals

IACommon defines this global, which is used to determine the default block size for
most I/0.

extern uint32 | ADi skBl ockSi ze

The default is 4096 bytes.

Exceptions

IAT uses exceptions for error handling. There is a class IAException that contains data
members for an exception code, a brief message, and a debugging hint regarding the
location where the exception was raised. The message is specified when the exception
object is constructed.

| AException(const char* nessage);
and can be accessed by the What method
const char* VWat () ;

The other two data members can be obtained and modified through these access
methods:

const char* Get Location();

Primitive Types 4-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

voi d Set Locat i on(const char* | ocation);
i nt 32 CGet Code() ;
voi d Set Code(i nt 32 code);

However, exceptions can be set up more easily by using the assertion macros described
below under “Throwing Exceptions.”

Exception codes

The type IAExceptionCode is provided to allow definition of integer exception codes. .
typedef const int32 | AExcept i onCode;

Several IAExceptionCodes are defined throughout the IAT classes, using 4-character
mnemonics. These are documented together with the classes that raise them. The
IAAssertion Failure is a general code used for error handling in classes.

| AExcept i onCode | AAssertionFailure =" VTWN

Throwing Exceptions

Several macros have been defined to facilitate use of IAT exceptions.

IAThrowException
Input
exception
the exception object to be thrown
Notes

The basic method for throwing an exception is IAThrowException(exception).

IA Assertion

Input

condi ti onal
A test to be made.

4-4 Exceptions
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Notes

Usage

CHAPTER 4

Common Practices in IAT

nmessage
A string describing the exception.

code
An integer exception code.

Takes any boolean expression as an argument. If the condition is not true, an exception
with the given code and message is thrown.

| DDoc* addl DDoc = (| DDoc*)i DDocs->Next ();
| AAssertion(addl DDoc, “No nore docunents”, ‘VIW)

In this example, addIDDoc is NULL if the iterator has reached the end of the set.
IAAssertion will cause an abort if addIDDoc does not exist.

Memory Allocation

IAT uses specialized versions of malloc() and free() for all of its memory allocation. This
is to improve performance; most provided malloc() functions perform poorly with large
numbers of small objects. This section lists the functions available.

At some level, IAT still must call an external allocator to be given memory. Developers
may register their own allocator to be called by setting the variables IA AllocationFunc
and [ADeAllocationFunc. If you register an allocator, you must also register a deallocator.

IA AllocationFunc is declared as a pointer to a function with the following prototype:
voi d* funcNane(size t size);

IADeAllocationFunc is declared as a pointer to function with the following prototype:
voi d* funcNane(voi d* object);

Listing 4-1 shows how you might define and register your own allocator.

Memory Allocation 4-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

Listing 4-1 Defining and using your own memory allocator.

voi d* M/Al | ocator(size_t size);

voi d* MyAl | ocat or (si ze_t size)

{
voi d* mem = (voi d*)mal | oc(si ze);
return mem

voi d* MyDeAl | ocat or (voi d* obj);
voi d* MyDeAl | ocat or (voi d* obj)

{
free(obj);

}

voi d main()

{
| AAl | ocationFunc = &WAIl |l ocator; // allocation call back
| ADeAl | ocati onFunc = &WDeAl | ocator; // deallocation call bac
/1 Now go ahead and call functions that will require nmenory...
StringPtr folder = “\pMcint oshHD: MyFol der: Docunent s”;
DenmoUpdat e(f ol der) ;

}

The Memory Functions

IAMalloc
Input
size t size
amount of memory required
Output
voi d*
4-6 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

IAFree
Input
voi d* obj ect
The item whose memory is to be freed.
IAMallocSized
Input
size t size
Output
voi d*
Notes
A sized version of IAMalloc. Use when you know the size at free time.
IAFreeSized
Input
voi d* obj ect
The object to be del eted
size t size
The size of the memory to be freed
IAMallocArray
Input
type
the type of the object in the array
[ ength
The number of objects in the array
Memory Allocation 4-7

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

Output
voi d*
Notes
This is a macro which will allocate the memory for sizeof(type) * length.
A WARNING
Do not use this function if the class contains virtual members, or if the
default constructors do anything.
Use IAFreeArray to free the memory.
Usage
byte* name = | AMal | ocArray(byte, len + 1);
IAFreeArray
Input
voi d* obj ect
the array to be freed
Notes
A macro that frees memory allocated by IAMallocArray.
IAMallocArraySized
Input
type
the type of the item in the array
[ ength
the number of items in the array
Output
voi d*
4-8 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

Notes
A sized version of IAMallocArray; use when you know the size at free time. See
IAMallocArray.
IAFreeArraySized
Input
voi d* obj ect
the array to be freed
Notes
See IAMallocSized and IAMallocArray.
IAMallocStruct
Input
structure
the structure to be allocated
Output
voi d*
Notes
This is a macro that does an IAMallocSized() allocation of a structure.
See TAMallocSized.
IAFreeStruct
Input

voi d* obj ect
the object to be freed

type
the type of the object

Memory Allocation
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

4-9



CHAPTER 4

Common Practices in IAT

Notes
This does an IAFreeSized of the structure. Used with IAMallocStruct

Base Classes

IAStruct and IAODbject are base classes that serve as the parent for almost every IAT class
or structure. They do this to allow:

» the use of [AMalloc and IAFree functions for new and delete functions

= the prevention of a copy constructor; IAT does not support copy constructor due to
problems with C++; the base class defines a nil constructor in private to prevent
creation.

Class IAObject

Header: IACommon.h

Hierarchy

A public subclass of IAStruct. See “IAStruct” on page 4-11.

The base class of almost every IAT class.

Description

A class created to ensure the use of [AMalloc and IAFree for the new and deletion
operators, ensure the presence of a virtual destructor, and ensure that no copy
constructor exists for any of its subclasses.

Public Member Functions

constructor
destructor
Virtual.
4-10 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

operator delete

Input
voi d* obj ect
the item to be deleted
size_t type
the type of the object to be deleted
Output
voi d*
Notes

Calls IAFreeSized(object, size).

operator new

Input
size_ t type
the type of the object to be created
Output
voi d*
the object
Notes
Calls IAMallocSized(size).
[AStruct
Header: IACommon.h
Hierarchy

The base class of almost every IAT class.

Memory Allocation
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

4-11

Class



CHAPTER 4

Common Practices in IAT

Description

A class created to ensure the use of IAMalloc and IAFree for the new and deletion
operators.

Functions

operator delete

Input
voi d* obj ect
the item to be deleted
Output
voi d*
Notes
Calls IAFree(object).

operator new

Input
size t size
the type of the object to be created
Output
voi d*
the object
Notes
Calls IAMalloc(size).
4-12 Memory Allocation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 4

Common Practices in IAT

Deletion of Allocated Memory

C++ does not ensure that memory is deleted when the stack is unwound, such as when
exceptions are thrown. IAT provides utility classes that can be used to ensure that any
IAODbject or other item allocated with the IAMalloc() functions is deleted when an
exception is thrown.

[ADeleteOnUnwind Class

Header: IACommon.h

Hierarchy

Base Class.

Description

A class that ensures the destruction of a pointer to an IAObject when an exception is
thrown. This should be constructed following the creation of a pointer.

Public Member Data

| ACbj ect* obj ect
The created object which is to be destroyed.

Public Member Functions

constructor

Input
| ACbj ect* obj ect

Usage

| ATokenStreant ts =
anal ysi s. MakeTokenSt r ean( cor pus. Get DocText ( &doc) ) ;
| ADel et eOnUnwi nd del Ts(ts);

Memory Allocation 4-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Class

destructor

CHAPTER 4

Common Practices in IAT

[ADeleteArrayOnUnwind

Header: IACommon.h

Hierarchy
Base Class.

Description
A class that ensures the destruction of an array allocated with JAMallocArray when an
exception is thrown. This should be constructed following the creation of an array. See
also IADeletePointerArrayOnUnwind, which should be used for an array of pointers to
IAObjects.

Public Member Data

voi d* array
The created array which is to be destroyed.

Public Member Functions

constructor

Input

Usage

4-14

voi d* array

Docl D* docl DBases = | AMal | ocArray(Docl D, indexCount);
| ADel et eArrayOnUnwi nd del Docl Dbases(docl DBases) ;

Memory Allocation
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



destructor

CHAPTER 4

Common Practices in IAT

IADeletePointerArrayOnUnwind

Hierarchy

Header: IACommon.h

Description

Base Class.

A class that ensures the destruction of a array of pointers to IAObjects when an
exception is thrown. This should be constructed following the creation of the array.

Public Member Data

| ACbj ect** array
The created array which is to be destroyed.

uint32 length
The number of items in the array

Public Member Functions

constructor

Input

Usage

| ACbj ect** array
The created array which is to be destroyed.

uint32 length
The number of items in the array

for (uint32 i = 0; i <= nDocs; i++) tfMaps[i] = N|;
| ADel et ePoi nt er ArrayOnUnwi nd del TFMaps( (1 ACbj ect **)t f Maps,
nDocs + 1);

Memory Allocation
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

4-15

Class



CHAPTER 4

Common Practices in IAT

destructor

4-16 Memory Allocation
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



(I

;

Il
)J

CHAPTER 5

Index Category

Choosing an Index Type 3
Index Types Currently Available 4
Comparison of Searches Available 5
Index Size vs. Speed 7
Common Operations 8
Creating an Index 8
Establishing an Existing Index 11
Updating an Index 14
Iterating Through the Documents in an Index
Merging Indexes 20
Compacting an Index 22
Index Class Category Reference 23
Header Files in the Index Category 23
Class Specifications 25
DocInfo 25
FreqPosting 27
FreqPS 29
FreqTerm 31
IAIndex 31
IAIndexTypes 43
InVecIndex 45
InvertedIndex 46
TermIndex 49

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

19



5-2

CHAPTER 5

Index Category

TermInfo 59

TFComponent 63

TFVector 63

VectorDocInfo 66

VectorIndex 67

Class Utilities 72

Typedefs 74

Extern Data 76

Constants 77

Index Exceptions and Error Handling 78

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

The index is the heart of the IAT classes. The index uses the corpus to locate documents

and extract their text, gives it to the analysis to extract terms, and builds and stores the

mappings of terms to documents.

Once an index is created it can be searched. Searches can be alone or with other indexes.

Figure 5-1 shows the abstract class, IAIndex, and its major relationships.

Figure 5-1 An overview of an index

IAAnalysis

extracts terms using

searches
IAAccessor 4’{

resides in
IAIndex

locates docs using

IACorpus

Choosing an Index Type

IAStorage

Designers optimize the content and organization of an index to allow it to perform select

functions efficiently. Different types of indexes exist to allow optimal performance of

different functions. You should choose the appropriate index to deliver the best
performance for the primary usage of the index.

Choosing an Index Type

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5-3



CHAPTER 5

Index Category

Figure 5-2 Index inheritance tree

IAIndex

Termindex

InvertedIindex

Vectorindex

InVeclndex

Index Types Currently Available

As shown in Figure 5-2, the current implementation of IAT has these types of indexes:

» term index (TermIndex), contains the primary structures and operations of any index
containing terms. While instantiable, it functions primarily as a base class

s inverted index(InvertedIndex), which indexes each term to the documents in which it

occurs

» vector index (VectorIndex), which maps each document to its terms

» inverted and vector index (InVecIndex), which stores a combination of the
information found in inverted and vector indexes

For most uses of an index for ranked searching, your choice is between an inverted index
or an inverted and vector index. The vector index, alone, is used primarily for measuring

similarity between sets of documents.

When you choose an index type you are making a trade-off between functionality, the

time it takes to build an index, and the space the indexes occupy.

Choosing an Index Type

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97




CHAPTER 5

Index Category

Comparison of Searches Available

Inverted Index

An inverted index allows a rapid search by a term; that is, given a term, it will have the
location of all documents in the index that contain the term (see Figure 5-3). An inverted
index also stores how many documents have a given term, the size of the document, and
how frequently the term appears in the document. This allows ordering of the
documents by how frequently the terms appear compared to the size of the document,
that is, it allows the use of a statistically-based ranking system.

Figure 5-3 An inverted index

Inverted Index
Term #Docs Doc Names #times in Doc
butter 35 ..
Prune Confit —2—//
Prune Danish | 2
confit 2 Duck Confit
Prune Confit
danish 7 Apple Danish 1
Cheese Danish 1 =
442-C. Sugar
Prune Danish 1 |lc:3r?;Ch Puff Pastry
prune 2 Prune Confit 4 Mash the prunes until a paste. Add
the butter and sugar. Place in a puff
Prune Danish 3 pastry shell. Bake as directed for
pastry. Frost with icing Refrigerate
for 1 day before eating.

These questions could be rapidly answered based on an inverted index of a recipe
collection:

» how many recipes contain cheddar cheese?

= list the recipes containing cheddar cheese

» which terms are used most often in this collection of recipes?

» which recipes uses some combination of cheddar cheese, mushrooms, and white wine?

» which recipe in this collection is closest to this example recipe?

Choosing an Index Type 5-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

The time it takes to search a collection with an inverted index is proportional to the
number of terms in the query, and, to a lesser extent, the total number of terms used by
all documents in the collection.

Vector Index

A vector index records the terms in each document (see Figure 5-4). It computes how
often terms occur in a single document relative to the distribution of terms over the
collection. The vector index provides the data and functions to allow efficient
comparison of two documents so you can judge how close they are in content. This
index might be used to route messages into the sub-collections they match best; for
example, a random set of recipes could be organized into groups with similar
ingredients.

Figure 5-4 A vector index

5-6

Vector Index

Terms
Document Total # terms butter confit danish prune
Prune Confit 5 2 1 0

Prune Danish 9

—

nes
2Th. 4—/

12c. .
1 batch Puff Pastry PruneConfit
Icing Prunes

Mash the prunes until a paste. Add the
butter and sugar. Place in a puff pastry Mash the prunes until a paste. Line a

shell. Bake asdirected for pastry. Frost loaf pan with butter. Mix the prune

paste with sugar, then toss in the pan.

Refrigerate for 1 day before eating.

Although you can do other searches with just a vector index, it is typically slower than
using an inverted index as each vector must be read. The time to search is proportional
to the number of documents in the collection.

Choosing an Index Type
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Inverted Vector Index

Unless index space is a particular concern, you will generally want to use an inverted
vector index. This will speed up certain powerful operations such as relevance feedback
(also known as query-by-example or similarity search), in which the application asks the
IAT to find “documents like this one.” In the case of the RecipeSwap, for example, Irina
uses this feature to find recipes similar to the newest one (when checking for potential
duplicates).

An inverted index can also perform relevance feedback. However, it must re-analyze the
text of the document in order to do so. To save this time (but at the expense of space), use
an inverted vector index.

Comparison of Time and Space Requirements

Table 4-1 Comparison of index types for time and space
Actual
Time in Index Index Space
Index Type Minutes MB Per Hour Space Overhead
Inverted Index 11.18 196 5.9 MB 16.3%
Vector Index 6.83 321 6.9 MB 19.1%
Inverted Vector Index 11.03 199 10.8 MB 29.6%

This table compares relative times to build the index and the amount of space the index
takes for a folder and sub-folders containing about 12,000 documents. The document set
occupies 36.6 MB. The indexing was done on a Power Macintosh 9500/132. Although
results will vary by document content, this may give some idea of the trade-offs
involved.

Note

The documents were SGML-tagged articles from the Wall Street Journal,
concatenated together in groups of about 100 per file. This is comparable
to a typical e-mail or database application, where many documents (or
records) are stored in a small number of storage files. For applications in
which each document is a separate file, greater file I/ O will result in
substantially decreased performance.

Index Size vs. Speed

It takes much longer, proportionately, to update a very large index than to update
several smaller indexes. As the size of the collection grows and memory is held constant,
indexing speed will gradually decrease. For example, in one test indexing a 1 gigabyte
collection, performance was about 75 MB/ hr. For this reason, you may wish to build
smaller indexes on partitions of your collection, and search them simultaneously.

Choosing an Index Type 5-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Alternatively, you may wish to use the Merge function to consolidate several small
indexes into one.

Common Operations

5-8

Creating an Index

Creating a new index requires that all items upon which it depends be created first. You
must create:

» astorage in which the index will reside. See “Creating New Storage” on page 9-5.
= a corpus to organize a collection of documents and extract their text.

» an analysis for locating the terms in the documents.

This example just creates the index framework; to load the index, see “Updating an
Index” on page 5-14. The example creates an index for an HFSTextFolderCorpus using a
Simple Analysis.

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Figure 5-5 Interaction diagram for index creation

aStorage anHFSTextFolderCorpus  aSimpleAnalysis aninVecindex

MakeHFSStorage
(vVRefNum, dirlD, name)

Initialize()

|

_new (aStorage, anHFSTextFolderCorpus, gSierIgAn_alygs)_»

Initialize()
—

Commit()

Listing 5-1 Creating an index

/1 include Mac types for HFS-related itens
#i ncl ude <Types. h>

/1 choose a storage inplenmentation
#i ncl ude "HFSSt or age. h"

/1 choose a corpus inplenentation
#i ncl ude "HFSText Fol der Cor pus. h"

/1 choose an anal ysis inplenentation
#i ncl ude " Si npl eAnal ysi s. h"

/1 choose an index inplenenation
#i ncl ude "I nVecl ndex. h"

/1 get the user information (using constants for the sake of this exanple)
StringPtr nane = "\precipes.index";
StringPtr HFSFol der Nanme = "\ pMaci nt osh HD: Cor por a: r eci pes";

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



/1

11

/1

5-10

CHAPTER 5

Index Category

short vRef Num = O;
| ong dirlD = 0;

create storage for the index

| ASt orage * aStorage = MakeHFSSt or age(vRef Num dirl D, nane);
| ADel et eOnUnwi nd del | nxSt or age( aSt or age) ;
aStorage->lnitialize();

create index for folder (creates corpus and anal ysis)
I nVecl ndex anl nVecl ndex( aSt or age,

new HFSText Fol der Cor pus( HFSFol der Narre) , new Si npl eAnal ysi s());
anl nVecl ndex. I nitialize();

commit the storage to disk
aSt orage->Conmit ();

Naming the Index Root Block

You can establish a block of storage and ensure the index root block is stored in this
block. This allows access to the index block at another time. This may be necessary if an
application needs to open this index and does not know which type of index it is. See
“Establishing an Index Whose Type is Unknown” on page 5-13.

When storage is allocated, you must allocate a named IO block. Then this block id can be
provided to the index constructor. See “Allocating and Deallocating Blocks of Storage”
on page 9-6 for more information.

InVecIndexType is a constant indicating this is an inverted vector index.

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Listing 5-2 Differences when creating an index with a named block

/1

11

create storage for the index

| ASt or age* aStorage = MakeHFSSt or age(vRef Num dirl D, nane);

| ADel et eOnUnwi nd del | nxSt or age( aSt or age) ;

aStorage ->lnitialize();

const char* aBl ockNane="1 NDEXROOT";

| ABI ockl D anl ABI ockl D=aSt or age- >Al | ocat eNanedBl ock( aBl ockNane) ;

create index for folder (creates corpus and anal ysis)
I nVecl ndex anl nVecl ndex( aSt or age,

new HFSText Fol der Cor pus( HFSFol der Nane) , new Si npl eAnal ysi s(),

I nVecl ndexType, anl ABl ockl D);
anl nVecl ndex. I nitialize();

Establishing an Existing Index

To reuse a stored index, create a new index object using the same type of corpus and
analysis that is in the original object and the name of the storage where the index was

established. Then Open(), rather than Initialize(), this index to restore its contents. The

storage must be reestablished (and opened) first. See “Opening Existing Storage” on

page 9-6 for more on reestablishing storage.

This example establishes an inverted vector index with an HFSTextFileCorpus and a
SimpleAnalysis. The index is established as writable, but no update has begun. To

establish an index as read-only, open its storage as read only.

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5-11



CHAPTER 5

Index Category

Figure 5-6 Interaction diagram for establishing an existing index

(vVRefNum, dirlD, name)_|

5-12

aStorage anHFSTextFolderCorpus  aSimpleAnalysis

MakeHFSStorage

Open(writable

o rlew_(HESF_()IdnggnLe)D

_new (_aSt_ora_ge,_ anH F§Tel<tF9IdngQrpgs, gSir_nIef\neilysls)

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

aninVeclndex

Open()




CHAPTER 5

Index Category

Listing 5-3 Establish an existing index

/1 get the user information (using constants for the sane of this exanple)

/1

11

StringPtr nane = "\precipes.index";

StringPtr HFSFol der Nane = "\ pMaci nt osh HD: Cor por a: reci pes”;
short vRef Num = O;

| ong dirlD = 0;

Bool ean witable = true;

reestablish storage for the index

| ASt orage * aStorage = MakeHFSSt or age(vRef Num dirl D, nane);
| ADel et eOnUnwi nd del | nxSt or age( aSt or age) ;

aSt orage ->Qpen(writable);

reestablish index for fol der (reestablishes corpus and anal ysis)
I nVecl ndex anl nVecl ndex( aSt or age,

new HFSText Fol der Cor pus( HFSFol der Nane) , new Si npl eAnal ysi s());
anl nVecl ndex. Open();

Establishing an Index Whose Type is Unknown

If you don’t know which type an index is, but you do know its index root name, analysis
and corpus types, you can test the root to determine the index type. See “Naming the
Index Root Block,” above, to create an index to a named root block.

The following code would replace the index construction in the “Establish an existing
index” code, above.

Common Operations 5-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Listing 5-4 Determining type of index

/1l get the pre-defined root block ID
const char* aBl ockNane = " | NDEXROOT”;
| ABI ockl D anl ABIl ockl D = aSt orage- >TOC GCet (aBl ockNan®) ;

/1 determine which index type it is
| Al ndexTypes i ndexTypes;
I Al ndex* i ndex;
| AReadl ndexTypes(aSt orage, anl ABl ockl D, & ndexTypes);
swi tch(i ndexTypes. i ndexType) {
case | nVecl ndexType:
i ndex = new I nVecl ndex( aSt or age,
new HFSText Fol der Cor pus( HFSFol der Nane) ,
new Si nmpl eAnal ysi s(),
i ndexTypes. i ndexType, anl ABl ockl D);
br eak;
case |l nvertedl ndexType:
i ndex = new I nvertedl ndex(aStorage,
new HFSText Fol der Cor pus( HFSFol der Nane) ,
new Si nmpl eAnal ysi s(),
i ndexTypes. i ndexType, anl ABl ockl D);
br eak;
case Vectorl ndexType:
i ndex = new Vector | ndex(aSt or age,
new HFSText Fol der Cor pus( HFSFol der Nane) ,
new Si nmpl eAnal ysi s(),
i ndexTypes. i ndexType, anl ABl ockl D);
br eak;
defaul t:
//throw exception
| AAssertion(fal se,”index type invalid’, "VIIV);

Updating an Index

There are two main ways to update an index:

» ensure it is synchronized with its corpus by using the Update() function to apply any
changes to its corpus

» individually add or delete documents

5-14 Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

No matter which means of updating you use, you must first ensure the index is
established and writable. This means it must be created and initialized (see “Creating an
Index” on page 5-8) or re-established from storage that has been opened as “writable”
(see “Establishing an Existing Index” on page 5-11). Following the update, you must
commit the storage to ensure the changes are stored in persistent storage.

Synchronizing an Index to the Corpus

The corpus maintains the collection of documents that is indexed in the index. If changes
have been made to this collection, the index may no longer reflect the corpus. For
example, if the index was for an HFSTextFolderCorpus, documents may have been
added or deleted from the corpus, or a documents text may have changed, without any
change to the index. The index would no longer be synchronized with its corpus.

You can ensure an index matches its corpus by using the Update() function of the index.
This function depends on having a corpus with an iterator, that is, one which can
provide a list of each document in the corpus.

This function will:

= remove any documents from the index that are no longer found in the corpus

» add any documents to the index that are in the corpus but not in the index

» re-analyze any documents that have been modified since the last index update.

If a new filter has been added to an analysis (for example, more stop words) this update
will ensure every document has been reanalyzed to match that filter.

Common Operations 5-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Figure 5-7 Interaction diagram of an update to match the corpus

aStorage anHFSTextFolderCorpus  aSimpleAnalysis aninVeclndex

MakeHFSStorage
(vVRefNum, dirlD, name)_|

Open(writable)

new
T s |

_new (aStorage, an l—|F§Te_xtF_oId§rCPrpHs,gSirlwpIgAn_alygs)_»_

Open()

Update
pdate()

Compact()
—_— ]

Commit()

Listing 5-5 An example of updating an index to match its corpus

/1 establish the index in storage (see above)
/1 update index to match corpus and re-analyze all docs
anl nVecl ndex. Updat e() ;

/1 take care of changes caused by possible del etions
anl nVecl ndex. Conpact () ;

/1 commt the changed storage to disk
aSt orage->Commit ();

Updating by Individual Document

You may wish to update an index without completely matching a corpus. For example, a
user may “touch” just those documents to be added, deleted, or re-analyzed.

5-16 Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Note

If your corpus class has a document iterator, and you add or delete a
document from the index, you must also, separately, add or delete the
document from the corpus.

AddDoc(IADoc*) and DeleteDoc(IADoc*) allow individual updates. After a call to
AddDoc, the index takes responsibility for the IADoc object passed in and will delete it
at destruct time. (This is not the case for DeleteDoc.)

After a number of insertions and deletions, Flush() must be called to make the changes
permanent in the index.

Figure 5-8 Interaction diagram for individual update

anHFSDoc aninVecindex anHFSCorpus aStorage

|

new(anHFSCorpus, docVRefNum,|
docDirlD, docName)

e

DeleteDoc(anHFSDoc)
-

AddDoc(anHFSDoc)
>

Flush()

Compact()
-

T Commit() -

Listing 5-6 Updating individual documents

/1l get the user information (using constants for the sanme of this exanple)

StringPtr name = "\precipes.index";
StringPtr HFSFol der Nanme = "\ pMaci nt osh HD: Cor por a: r eci pes";
short vRef Num = 0;
| ong dirlD = 0;
Bool ean witable = true;
Common Operations 5-17

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



/1

/1

11

11

/1

/1

/1

/1

5-18

CHAPTER 5

Index Category

get the new docunent infornmation
StringPtr docNanme = "\plnsertMe";
short docVRef Num = 0;

| ong docDiriID =0

create storage for the index

| ASt orage * aStorage = MakeHFSSt or age(vRef Num dirl D, nane);
| ADel et eOnUnwi nd del | nxSt or age( aSt or age) ;

asSt orage- >Qpen(writabl e);

create the corpus
HFSCor pusanHFSCor pus( HFSCor pusType) ;

create the HFS Doc
HFSDoc *anHFSDoc =
new HFSDoc( &nHFSCor pus, docVRef Num docDirl D, docNane);

create index for folder (creates analysis)
I nVecl ndex anl nVecl ndex(aSt orage, &anHFSCor pus, new Si npl eAnal ysis());
anl nVecl ndex. Open();

do individual updates (iterate if multiple docunents)

/1 add or delete it
anl nVecl ndex. AddDoc( anHFSDoc) ;

conpl ete the update
anl nVecl ndex. Fl ush();

conmit the storage to disk

aSt or age->Commit ();
printf ("Successful Conpletion\n");

Functions for Updating

These functions exist for individual updates. See the reference for these functions in
“IAlndex” on page 5-31 for more information.

AddDoc
Del et eDoc

| sDocl ndexed
RenanmeDoc

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Note

If you want to re-analyze a document that is in the index (perhaps
because it has changed) , you should first delete it from the index and
then add it back. The document will be re-analyzed and the index
updated.

Iterating Through the Documents in an Index

There may be a need to list all documents found in an index, or to provide each
document to another task. This can be done with an index iterator.

Figure 5-9 Interaction diagram for iterating through an index
aninVeclndex anlADoclterator anHFSDoc
| |
GetDoclterator() ! I
|
- _ newg] |
GetNextDoc() |
-
_ o _ newy,|
Listing 5-7 Iterating through an index

/1 establish the index

/1 establish the iterator
| ADocl t erator* anl ADocl t er at or =anl nVecl ndex. Get Doclterator();
HFSDoc* anHFSDoc

/1 loop through the index // NULL returned at end
whi | e (anHFSDoc = (HFSDoc*) anl ADocl t er at or - >Get Next Doc()) {
Pri nt DocNane(anHFSDoc); // application provides

Common Operations 5-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



5-20

CHAPTER 5

Index Category

Merging Indexes

Two or more indexes may be merged into a single index using the merge member
function. This function requires several 100k /index and needs twice the disk space
during the merge.

Merges are about ten times faster than building an index, and as noted before, building
large indexes takes proportionally more time than building small ones. Because of this,
you may wish to build several small indexes and then merge them rather than build one
very large one.

Ensure these things before you merge indexes:

» the indexes have the same type of corpus and analysis

= no document is indexed in more than one of the indexes
» there is sufficient disk space to do the merge

» the indexes are not currently being updated.

Indexes must be in storage and opened before they can be merged. You may wish to
open the storage of the source indexes as read-only to save memory.

If a document is present in more than one of the indexes, the merge operation will throw
an exception with code IndexDocAlreadyIndexed (‘VIAT').

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Figure 5-10 Interaction diagram for a merge
arraylAlndex sourcelnVeclndex destinationInVeclndex destinationStorage
- - - - _hew]

arraylAlndex[0] =

sourcelnVecindex

Marge(arraylAlndex,numbgerSourcelndexes) AD

Commit()>’7

Listing 5-8 Merge a source index to a destination index

/1 establish the indexes as witable
/1 delete duplicates from source

/1 make an iterator
| ADoclterator* anl ADoclterator = sourcel nVecl ndex. Get Doclterator();
ui nt 32 docCount = sour cel nVecl ndex. Get DocCount () ;
printf ("% u docunments in the source index before \n", docCount);
HFSText Fol der Doc* anHFSDoc;

/1 find dupes and delete themuntil source exhausted
whi | e(anHFSDoc = (HFSText Fol der Doc*) anl ADocl t er at or - >Get Next Doc()) {

i f (destinationlnVeclndex.|sDocl ndexed(anHFSDoc)) ({
sour cel nVecl ndex. Del et eDoc( anHFSDoc) ;
Pri nt DocNane( anHFSDoc) ;
printf ("is duplicated in destination index\n");

docCount = sourcel nVecl ndex. Get DocCount () ;
printf("%u docunents in purged source\n", docCount);
/1 flush the changes

Common Operations 5-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

sour cel nVecl ndex. Fl ush();
sour cel nVecl ndex. Conpact () ;

/1 do the actual nerge
docCount = desti nati onl nVecl ndex. Get DocCount () ;
printf ("% u docurments in the index before\n", docCount);

/1l create the array of indexes
const ui nt 32 numnber Sour cel ndexes = 1;
| Al ndex* anl Al ndexAr r ay[ nunber Sour cel ndexes] ;
anl Al ndexArray[ 0] = &sourcel nVecl ndex;

/1 do the merger

printf("Merging\n");

desti nati onl nVecl ndex. Mer ge(anl Al ndexArray, nunber Sour cel ndexes);
docCount = desti nati onl nVecl ndex. Get DocCount () ;
printf("%u docunments in the index after merging\n", docCount);

Compacting an Index

When a document is deleted from an InvertedIndex using DeleteDoc, the function marks
the document as deleted and prevents the access to the document; the function does not
actually delete the references to the documents and those terms it uses exclusively.
Because of this, after many deletions, the index may contain unused information. You
should periodically compact the index to remove this unused information. The
recommended procedure is to compact the index just before committing the storage.

A WARNING
You must compact the index at least once before committing the storage
after doing a number of deletes.

Compacting an index does not compact its storage. If you wish to regain the storage
used by the deleted documents, use the storage class Compact function following the
index compaction. See “Compacting Storage” on page 9-8 for more information.

Listing 5-9 Compact an index

/1 establish the index in storage
anl nvert edl ndex. Qpen() ;
anl nvert edl ndex. Conpact () ;
aSt orage->Commit () ;

5-22 Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Index Class Category Reference

Header Files in the Index Category

FreqPosting.h

FreqPosting

HighFreqTerms.h

FreqTerm

IAIndex.h

IAIndex
IAIndexTypes
IAReadIndexTypes

InVecIndex.h

InVecIndex

InvertedIndex.h

FreqPS
InvertedIndex

Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5-23



CHAPTER 5

Index Category

TermIndex.h

DocInfo
IDDoc
IDTerm
TermIndex
TermInfo

TFVector.h

TFComponent
TFVector

VectorIndex.h

VectorDocInfo
VectorIndex

5-24 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Class Specifications

DocInfo Class

Header: TermIndex.h

Hierarchy

Public subclass of IAOrderedStorable. See “IAOrderedStorable” on page 10-14.

Description

DoclInfo is the relationship between the index and a document within the index.

Relationships

DoclInfo contains IADoc

One doc info contains one IADoc.

Clients

See “FreqPosting maps to DocInfo” on page 5-28.

Public Member Functions

constructor()

constructor(IADoc* document, DocID docID)

Input
| ADoc* The document.
Docl D The ID for the document.
Index Class Category Reference 5-25

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

destructor

Deletes the document.

DeepCopy

See”IAStorable.DeepCopy” on page 10-28.

Equal
See“IAOrderedStorable. Equal” on page 10-15. DocInfo equals another DoclInfo if the doc
equals the other doc.
GetDocID
Access method for DocInfo member data.
Output
Docl D id
The identification number of the document within the index.
GetDocument
Access method for DocInfo member data.
Output
| ADoc* doc
A pointer to the indexed document.
GetDocumentLength
Access method for DocInfo member data.
5-26 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Output
DocLength | ength
The total number of indexed terms in the document.
LessThan
See “IAOrderedStorable.LessThan” on page 10-16. DocInfo is sequenced by its doc
member data.
Restore
See”IAStorable.Restore” on page 10-28.
SetDocument
Access method for DocInfo member data.
Input
| ADoc* doc
The document object.
Store
See “IAStorable.Store” on page 10-30.
StoreSize
See “IAStorable.StoreSize” on page 10-29.
FreqPosting

Struct
Header: FreqPosting.h

Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5-27

Struct



CHAPTER 5

Index Category

Description

Represents an occurrence of a term in a document. FreqPosting is the relationship
between a term and an indexed document in which it occurs. See Figure 5-13 on
page 5-47.

Relationships

FreqPosting maps to DocInfo

One frequency posting maps to one doc info.

This is done by carrying the DocID, a unique identifier of DocInfo.

Clients

See “FreqPS contains FreqPosting” on page 5-30.

Public Functions

constructor

constructor(DocID docID, DocLength numberTerms)

Input

Docl D The ID of the document

DocLengt h  The number of terms in the document
GetDocID

Access method for FreqPS member data.
5-28 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Output
Docl D id
The identification number of the document in which the term occurred.
GetFreq
Access method for FreqPS member data.
Output
DocLength freq
The number of times the term occurred in the document.
StoreSize()
Output

| ABl ockSi ze
The size of the blocks used to store postings

StoreSize(FreqPosting™ previous)

Input
FreqPosti ng* previous
The last posting stored
Output
| ABl ockSi ze
The size of the output block used.
FreqPS
Header: InvertedIndex.h
Hierarchy

Base Class.

Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5-29

Class



CHAPTER 5

Index Category

Description

FreqPS accesses the postings for a term in an inverted index from the storage provided.
It provides a stream from which FreqPostings can be retrieved.

Relationships

FreqPS contains FreqPosting

One FreqPS may contain many frequency postings.

Clients

See “InvertedIndex gets (by Term) FreqPS” on page 5-48.

Public Member Functions

constructor

Input

I nvertedTern nf o*
A pointer to the termInfo for the term to be posted.

Bi t Array*  An array of deleted documents. Used to ensure those not physically
deleted yet are not given as postings.

| ASt or age* The storage in which to place the postings. Storage must be open.

destructor
Next
Input
FregqPost i ng* Returns the address of the next posting in this slot.
5-30 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Output
bool True if one returned, false if not.
Description
Copies the next FreqPosting from the stream into the provided FreqPosting. Returns
NULL at the end of the stream.
Usage
for (bool go = fps->Next(&posting); go ;
go = fps->Next (&posting))
FreqTerm
Struct
Header: HighFreqTerms.h
Data
ui nt 32 freq
The number of times the term appears.
| ATer nt term
The term.
[AIndex
Heading: IAIndex.h
Hierarchy

Abstract base class.

Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5-31

Struct

Class



CHAPTER 5

Index Category

Figure 5-11 Index hierarchy

IAIndex

Termindex

InvertedIindex Vectorindex

InVeclndex

Description

IAIndex is the base class of all the index classes. It controls the establishment of a corpus,
and the location of terms through analysis. It manages the storage for the index, corpus,
and analysis used.

The relationships with the analysis and corpora are stored in the index root block. This
block is stored upon Initialize() and FinishUpdate(). It is restored on an open. Subclasses
can add information to this root block by implementing the protected functions
RootSize(), StoreRoot() and RestoreRoot().

5-32 Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Relationships

Figure 5-12 Overview of the index relationships

IAAnalysis

extracts terms using

resides in
IAIndex —— | IAStorage

locates docs using

IACorpus

IAIndex locates docs using IACorpus

One index contains one and only one corpus.

IAIndex locates terms using IA Analysis

One index contains one and only one analysis.

IAIndex is stored in IAStorage

One index is stored in one storage for its root, but allocates and stores items in many
storages internally.

Index Class Category Reference 5-33
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Public Member Functions

constructor

Input

| ASt or age* st orage
A pointer to the storage in which to place the index.

I ACor pus* cor pus
A pointer to the associated corpus.
| AAnal ysi s* anal ysi s
A pointer to the analysis to be used to extract terms.
ui nt 32 i ndexType
The index type constant.
| ABl ockl D i ndexRoot

The block id of the root. Default is nil; the root will be allocated if not
defined.

destructor
Virtual
Deletes corpus and analysis.
AddDoc
Pure virtual.
Input
| ADoc* docunent
A pointer to the IADoc for the document that is to be added to the index.
Description
Adds a document to the index. Also passes control of the IADoc object to the index. The
IADoc will be deleted automatically when the index is deleted.
5-34 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

A WARNING
AddDoc assumes the document does not already exist in the index. If
you are not sure if the document has been indexed, use IsDocIndexed()
to check. If you wish to replace the previous index information for a
document that has changed, you must delete the document and then
re-add it.

Usage
anl Ai ndex. AddDoc( &nl ADoc) ;
Compact
Virtual.
Attempts to compact the index; removes deleted items.
A WARNING
If documents have been deleted, the index must be compacted before
storage is committed.
Usage
anl Al ndex. Conpact () ;
DeleteDoc
Pure virtual.
Input
| ADoc* docunent
A pointer to the IADoc for the document that is to be removed from the
index.
Description
Marks a document as deleted. Prevents reporting of postings to this document.
Usage

anl Andex. Del et eDoc( &nl ADoc) ;

Index Class Category Reference 5-35
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Notes

Does not delete the caller’s IADoc from memory.
Flush

Virtual.

Flushes all changes and disables further changes. Typically called just before

aSt orage->Conmmit ().
Usage

anl Andex. Fl ush();

GetAnalysis

Access method for IAIndex member data.
Output

| AAnal ysi s*anal ysi s

A pointer to the analysis used to extract terms.

GetCorpus

Access method for IAIndex member data.
Output

I ACor pus* corpus

A pointer to the corpus used to interface with the physical documents.

GetDocCount

Pure virtual.
5-36 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Output
ui nt 32 number Docunent s
The total number of documents indexed.
Usage
for (uint32 i = 0; i < indexCount; i++)
docCount += indices[i]->CGetDocCount();
GetDoclterator
Pure virtual.
Output
| ADocl t erat or*
A pointer to an iterator over the documents indexed.
Description
Returns an iterator over all the documents indexed. See IADoclterator.
Usage

| ADoclterator* anlterator= anl Andex. Get Doclterator();

GetDoclterator(IADoc* start)

Pure virtual.

Input
I ADoc* start
A pointer to the IADoc of the document that you wish to be the first in the
series accessed by the iterator.
Output

| ADocl t erat or *
A pointer to an iterator over the documents indexed. Iterator is
positioned at IADoc if it exists in the index. If not, it is positioned at the
document which would logically follow that doc should it exist.

Index Class Category Reference 5-37
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Usage
| ADoclterator* anlterator = index. GetDoclterator(startDoc);
GetIndexRoot
Access method for IAIndex member data.
Qut put
| ABl ockl D i ndexRoot
The block ID of the index root storage block.
GetIndexType
Access method for TAIndex member data.
CQut put
ui nt 32 i ndexType
A constant that indicates which type (e.g., inverted) of index this is.
GetIndexTypes
Input
| Al ndexTypes* types
The struct of the type codes for the index.
Description
Accesses the types (storage, corpus, etc.) of an index. May be called at any time. See
“IAlndexTypes” on page 5-43.
Usage
| Al ndexTypes types;
Get | ndexTypes( & ypes) ;
5-38 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

GetMaxDocumentSize

Access method for IAIndex member data.

Qut put
ui nt 32 maxDocSi ze
The current maximum document size.
Notes
See SetMaxDocumentSize().
GetQueryAnalysis
Virtual.
Description
Gets the IA Analysis to be used for processing queries on this index. If a preferred
analysis has been set (by SetPreferred Analysis), then it will be returned. If a preferred
analysis has not been set, than GetQueryAnalysis will default to whatever analysis was
specified at index construction.
CQut put

| AAnal ysi s*anal ysi s
A pointer to the analysis to be used for processing queries.

GetPreferred Analysis

Access method for IAIndex member data.

Qut put

| AAnal ysi s*anal ysi s
A pointer to a preferred analysis.

Index Class Category Reference 5-39
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

GetStorage

Access method for IAIndex member data.

Qut put
| ASt or age* st orage
A pointer to the storage for the index, corpus, and analysis blocks.
Initialize
Virtual.
Description
Initializes a new empty index in a new empty storage.
Usage
anl Al ndex. Initialize();
IsDocIndexed
Pure virtual.
Input
| ADoc* doc
A pointer to the IADoc of the document that might be indexed.
CQut put
bool
True if the document is indexed; False if the document is not indexed.
Usage
anl Al ndex. i sDocl ndexed( &loc) ;
5-40 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Merge
Pure virtual.
Input
I Al ndex** i ndexes
An array containing the indexes to be merged into this index.
ui nt 32 indexCount
The number of indexes in the array.
Description
Merges an array of indexes into an index. The index, corpus and analysis classes must be
the same for all indices. The indices must be disjoint — no documents may be indexed in
more than one index. If a document is in more than one index, Merge will throw an
exception with code IndexDocAlreadyIndexed (‘VIAI').
Usage
dest | ndex. Mer ge(i ndexes, indexCount);
Open
Virtual.
Description
Opens an existing index. By default, Calls Open() on the storage, corpus and analysis.
The index must have been constructed with the exact same types as that in the storage.
Usage
anl Andex. Open() ;
RenameDoc

Pure virtual.

Index Class Category Reference 5-41
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Input
| ADoc* ol dName
A pointer to the IADoc containing the old name.
I ADoc* newNane
A pointer to a new IADoc containing the new name.
Description
Updates the indexes references to an (unchanged) document. Only the names need be
present in the IADocs. The new name must not already exist in the index. The index
must be opened for update.
Usage
anl Al ndex. RenaneDoc( ol dDoc, newDoc);
SetMaxDocumentSize
Access method for IAIndex member data.
I nput
ui nt 32 maxDocSi ze
The number of unique words to be used as the maximum document size.
Notes
In order to prevent the potential for unbounded memory usage, indexes stop processing
documents after this number of unique index terms has been reached. (Note that
“unique index terms” is not the same as “unique words.” For example, if a stemmer is
being used, then all forms of a word with the same stem will be treated as a single
unique index term.) The default is 2000. If your application will be working with very
large documents, you should set this higher.
SetPreferred Analysis
Access method for IAIndex member data.
Input
| AAnal ysi s* anal ysi s
An analysis to be used for processing queries.
5-42 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Description
Sets the analysis module that will be used to process new queries on the index. See
GetQueryAnalysis().
Usage
I AAnal ysi s *myNewAnal ysis = new Si npl eAnal ysi s();
anl Al ndex. Set Pr ef err edAnal ysi s( myNewAnal ysi s) ;
Update
Virtual.
Description

Usage

Uses the corpus iterator to add new documents and delete expired documents. Simple
applications should be able to maintain an index with just this method; complex
applications will need the more fine-grained control of other methods. See “Updating an
Index” on page 5-14.

The index must be open, but no update may be started.
WARNING
It is the responsibility of the corpus iterator to return documents in the

correct order. If documents are out of order, Update may either miss
some documents that require adding, or reindex unchanged documents.

anl Andex. Updat e() ;

[AIndexTypes Struct

Struct
Header: IAIndex.h

Index Class Category Reference 5-43
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Functions

CHAPTER 5

Index Category

constructor

Usage

| Al ndexTypes types;

constructor(uint32 s, uint32 ¢, uint32 a, uint32 i)

Input
ui nt 32 S
The storage type.
ui nt 32 c
The corpus type.
ui nt 32 a
The analysis type.
ui nt 32 [
The index type.
Usage
| Al ndexTypes types(storageType, corpusType,
anal ysi sType, indexType);
Equal
Input
| Al ndexTypes* ot her
The structure of types to which this might be equal.
Output
bool
True if equal; false if not.
5-44 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Note
Null types are not considered equal.

Usage
if (myTypes. Equal (theirTypes)) printf("Match\n");
Data
ui nt 32 anal ysi sType;
ui nt 32 cor pusType;
ui nt 32 i ndexType;
ui nt 32 osSet Type;
ui nt 32 st or ageType;
InVecIndex Class
Header: InVecIndex.h
Hierarchy
Public subclass of both InvertedIndex and VectorIndex.
Description

This combines both inverted and vector index.

Public Member Functions

constructor

Input

| ASt or age* st orage
A pointer to the storage in which to place the index.

I ACor pus* cor pus
A pointer to the associated corpus.

| AAnal ysi s* anal ysi s
A pointer to the analysis to be used to extract terms.

Index Class Category Reference 5-45
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

ui nt 32 type = I nVecl ndexType
The index type. InVecIndexType is a constant ‘1&V2’.

| ABl ockl D i ndexRoot = NULL
The block id of the root. Will create one if not supplied.

class InvertedIndex

Header: InvertedIndex.h

Hierarchy

Public subclass of TermIndex. Virtual.

Description

An inverted index keeps tracks of terms and points to which documents they are in.

5-46 Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Relationships
Figure 5-13 Inverted index overview
Invertedindex
gets (by ter contains
FreqPS
Terminfo
IATerm* term
_ TermID id
contains TermFreq docCount

FreqPosting

DoclD doclD
DocLength freq

maps to

\

DoclInfo

IADoc* doc
DocID id
DocLength length

Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5-47



CHAPTER 5

Index Category

InvertedIndex contains TermInfo

One InvertedIndex contains many TermInfo

InvertedIndex gets (by Term) FreqPS

One Inverted Index creates and gets many FreqPS, one per term.

Public Member Functions

constructor

Input
| ASt or age* st orage
A pointer to the storage in which to place the index.
| ACor pus* cor pus
A pointer to the associated corpus.
| AAnal ysi s* anal ysi s
A pointer to the analysis to be used to extract terms.
ui nt 32 type = I nvertedl ndexType
The index type. Constant is ‘Invé’.

| ABl ockl D indexRoot = NULL
The block id of the root. Will create one if not supplied.

destructor

Compact

See “IAIndex.Compact” on page 5-48.

5-48 Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

GetDeletedDocCount

Output

ui nt 32 nunber Del et edDocs
The number of deleted documents since the last Compact.

Usage
ui nt 32 nunber Del et edDocs = Cet Del et edDocCount () ;
GetFreqPostings
Input
Term nfo* termnfo
Pointer to the termInfo for the term.
Output
FreqPS *
A pointer to the frequency postings.
Usage
FregPS* fps = index. Get FreqPostings(ti);
Initialize
See “IAlndex.Initialize” on page 5-49.
Open
See “IAlndex.Open” on page 5-49.
TermIndex Class

Header: TermIndex.h

Index Class Category Reference 5-49
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Hierarchy

Public subclass of IAIndex.

Description

A term index is a general abstraction of any index which maintains a relationships
between terms and documents. It contains the general structures and functions for
creating and maintaining these indexes. TermIndex, although instantiable, serves as the
base class for InvertedIndex and VectorIndex.

Public Member Functions

constructor
Input
| ASt or age* st orage
A pointer to the storage in which to place the index.
I ACor pus* cor pus
A pointer to the associated corpus.
| AAnal ysi s* anal ysi s
A pointer to the analysis to be used to extract terms.
ui nt 32 type = Term ndexType
The index type. Constant is ‘Ter 2’.
I ABl ockl D indexRoot = NULL
The block id of the root. Will create one if not supplied.
destructor
AddDoc

See “IAIndex.AddDoc” on page 5-34.

5-50 Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

AddDoc(IADoc* document, DocID* returnID);

I nput
| ADoc* document
A pointer to document to add.
Input/Output
Docl D* returnlD
The document id; AddDoc assigns this and returns its address here.
Description
The same as AddDoc(IADoc* document), except the document ID is returned. Must have
a StartUpdate before calling.
DeleteDoc
See “IAlndex.DeleteDoc” on page 5-35.
Flush
See “IAlndex.Flush” on page 5-36.
GetDocCount
CQut put
Docl D
The number of documents in the index.
Usage

t ot al DocCount += i[]j]->CGet DocCount ();

Index Class Category Reference 5-51
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

GetDoclInfo
Input
| ADoc* docurent
The pointer to the document whose information is needed.
bool i gnoreError = false
If false, will throw an Invalid document exception if the doc info is not
found. If true, DocInfo will be nil if no info found.
Output
Docl nf o*
Pointer to the document information.
Usage
Docl nfo* info = GetDocl nfo(doc, true);
GetDoclInfolterator
Output

| AOr der edSt or abl el terat or*
Pointer to an iterator over the set of document information.

Usage

| AOrderedStorabl elterator* docs = index. CGetDoclnfolterator();

GetDoclnfolterator(IADoc* start);

Input
| ADoc* start
Pointer to an IADoc containing the document name at which you wish
this iterator to start.
Output
| AOr deredSt orabl el terator*
Pointer to an iterator over the set of document information.
5-52 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Description
Same as GetDocInfolterator, only the iterator will be positioned at the DocInfo for the
input document and continue from there. If the document is not found in the set, the
iterator will be positioned at the document which would logically follow this one.
GetDoclterator

See “IAlndex.GetDoclterator” on page 5-37.

GetDoclterator(IADoc* start)

See “IAIndex.GetDoclterator(IADoc* start)” on page 5-37.

GetFlushProgressData

Access method for TermIndex member data.

CQut put

voi d* pdat a
A pointer to a the item whose progress is being reported.

GetFlushProgressFn

Access method for TermIndex member data.

Qut put

Fl ushPr ogressFn*f | ushPr ogr essFn
A pointer to the function used for progress callbacks.

GetFlushProgressFreq

Access method for TermIndex member data.

Index Class Category Reference 5-53
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Qut put
cl ock_t fl ushProgressFreq
The number of clock ticks between progress reports. Uses ANSI
clocks_per_sec.
GetIDDoc
Input
Docl D i d
The id of the document.
Output
| ADoc*
The TADoc for the document.
Notes
The index must be open. This function will fail with an Invalid Doc ID exception if the
document ID does not exist.
Usage
StringDoc* doc = (StringDoc*)index. Getl DDoc(posting.doclD);
GetIDTerm
Input
Term D id
The id of the term.
Output
| ATer nr
The IATerm for the term.
Notes
The index must be open. This function will fail with an Invalid Term ID exception if the
term ID does not exist.
5-54 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Usage
| ATernmt term = index. Getl DTer n( conponent - >t erm D) ;
GetMaxDocID
Output
Docl D
The next available document ID.
Notes
This is also used as the maximum count; that is the largest number of documents
including those which have been deleted but not actually physically purged.
Usage
Docl D max = i ndex->CGet MaxDocl X))
GetMaxTermID
Output
Term D
The next available term ID.
Notes
This is also used as the maximum count; that is the largest number of terms including
those which have been deleted but not purged.
Usage

Term D maxTerm D = i ndex->CGet MaxTerm D() ;

Index Class Category Reference 5-55
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

GetTermCount
Output
Ter nFreq
The number of terms in the index.
GetTermInfo
Input
| ATer nt term
The pointer to the term whose information is needed.
Output
Ter m nf o*
Pointer to the term information.
Notes

The index must be open. This will fail with an invalid term exception if the term does not

exist.
Usage
Term nfo* i = indices[j]->CGetTerm nfo(entry->ternj;
GetTermInfolterator
Output
| AOrderedStorabl elterator* iterator
Pointer to an iterator over the set of term information.
Usage
| AOrderedStorablelterator* terns =
i ndex->Cet Ternm nfolterator();
5-56 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

GetTermInfolterator(IATerm™ start);

Input
| ATer nt
The term at which the iterator should be positioned.
Output
| AOr der edSt or abl el t erat or *
Pointer to an iterator over the set of term information.
Description
Same as GetTermInfolterator() except the iterator will be positioned at the input term. If
this term is not in the set, the iterator will be positioned at the term which would
logically follow.
Initialize
See “IAlndex.Initialize” on page 5-40.
IsDocIndexed
See “IAlndex.IsDocIndexed” on page 5-40.
Merge
See “IAlndex.Merge” on page 5-41.
Open

See “IAIndex.Open” on page 5-41.

Index Class Category Reference 5-57
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

RenameDoc

See “IAlndex.RenameDoc” on page 5-41.

SetFlushProgressData

Access method for TermIndex member data.

Input
voi d* pdat a
The item whose progress is to be reported.
SetFlushProgressFn
Access method for TermIndex member data.
Input
Fl ushPr ogressFn*fn
The function to be called for progress status during AddDoc(),
DeleteDoc(), and Flush().
SetFlushProgressFreq
Access method for TermIndex member data.
Input
cl ock _t freq
The number of clock ticks between progress reports. Uses ANSI
clocks_per_sec.
5-58 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Protected Member Functions

GetBytesForUpdate

Access method for TermIndex member data.

Qut put
ui nt 32 byt esFor Updat e
Number of bytes allocated for certain indexing data structures.
Notes
BytesForUpdate is an internal value used as a hint to help allocate data structures
efficiently for indexing. See SetBytesForUpdate().
SetBytesForUpdate
Access method for TermIndex member data.
I nput
ui nt 32 byt esFor Updat e
Number of bytes to allocate for certain indexing data structures.
Notes
BytesForUpdate is an internal value used as a hint to help allocate data structures
efficiently for indexing. The default is 1,000,000. Larger values will cause the indexing
application to use more memory, but it will process changes to the index in larger chunks
and therefore increase its performance.
TermInfo Class
Header: TermIndex.h
Hierarchy

Public subclass of IAOrderedStorable. See “IAOrderedStorable” on page 10-14.

Index Class Category Reference 5-59
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Description

Term Info is the basic information about a term as it relates to this index.

Relationships

TermInfo contains IATerm

One termInfo contains one and only one term.

Clients

See “InvertedIndex contains TermInfo” on page 5-48.
See “TFComponent maps to TermInfo” on page 5-63.

Public Member Functions

constructor()

constructor(IATerm* term, TermID termID)

Input
| ATer nt term
The term.
Term D term D
The ID for the term.
destructor
Deletes the term.
5-60 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

DeepCopy
See”IAStorable.DeepCopy” on page 10-28.
Equal
See”IAOrderedStorable. Equal” on page 10-15. TermInfo equals another TermInfo if the
term equals the other term.
GetDocumentCount
Access method for TermInfo member data.
Qut put
Ter nFreq docCount
The number of documents in which the term occurs.
GetTerm
Access method for TermInfo member data.
CQut put
| ATer nt term
The term in question.
GetTermID
Access method for TermInfo member data.
Qut put
Term D id
The ID of the term.
Index Class Category Reference 5-61

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

LessThan

See “IAOrderedStorable.LessThan” on page 10-16. TermInfo is sequenced by term.

Restore
See “IAStorable.Restore” on page 10-28.
SetDocumentCount
Access method for TermIndex member data.
Input
Ter nFreq docCount
The number of documents in which the term occurs.
SetTerm
Access method for TermIndex member data.
Input
| ATer nt term
The term in question.
Store
See “IAStorable.Store” on page 10-30.
StoreSize
See “IAStorable.StoreSize” on page 10-29.
5-62 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

TFComponent Class

Header: TFVector.h

Description

A TFComponent is the relationship between a document and a term it contains. See
Figure 5-14 on page 5-69.

Relationships

TFComponent maps to TermInfo

One TF component maps to one and only one term info.

This mapping is indirect; TFComponent contains a TermID, which uniquely points to a
single TermInfo.

Clients
See “TFVector contains TFComponent” on page 5-64.
Data
Term D term D
The TermID
Ter nFreq freq
The frequency of that term.
TFVector Class
Header: TFVector.h
Hierarchy
Base Class.
Description

The stream of TFComponents; the vehicle for obtaining the components of a document.

Index Class Category Reference 5-63
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Relationships

TFVector contains TFComponent

One TFVector contains many TFComponents.

Clients

See “VectorIndex gets (by doc) TFVector” on page 5-69.

Public Member Functions

constructor(DocLength length)

Input
DocLength | ength
The number of components in the vector.
destructor
ComponentsRead
Input
I Al nput Bl ock* i nput
The allocated and opened input block for the components
ComponentsSize
Output
| ABl ockSi ze
The block size used for component storage
5-64 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

ComponentsWrite

Input

| ACut put Bl ock* out put
The alllocated output block for the storage

GetComponents

Access method for TFVector member data.

Output
TFConponent *conponent s
An array of TFComponents.
GetDocumentLength
Access method for TFVector member data.
Output
DocLength length
The number of components in the vector (i.e. the number of unique
indexed terms in the document).
SetComponents
Access method for TFVector member data.
Input
TFConponent * conponent s
An array of TFComponents.
SetDocumentLength

Access method for TFVector member data.

Index Class Category Reference 5-65
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Class

CHAPTER 5

Index Category

Input
DocLength | ength
The number of components in the vector (i.e. the number of unique
indexed terms in the document).
VectorDocInfo
Header: VectorIndex.h
Hierarchy
Public subclass of DocInfo. See “DocInfo” on page 5-25.
Description
Doclnfo for a vector index. This allows the storage of DocInfo as a block.
Client
See “VectorIndex contains VectorDocInfo” on page 5-70.
Public Member Functions
GetVectorBlockID
Access method for VectorDocInfo member data.
Output
| ABI ockl D vect or Bl ock
The BlockID of the block where the vector is stored.
SetVectorBlockID
Access method for VectorDocInfo member data.
5-66 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Input

| ABl ockl D vect orBl ock
The BlockID of the block where the vector is stored.

constructor()

constructor(IADoc* document, DocID docID)

Input

| ADoc* The document.

Docl D The ID for the document.
DeepCopy

See”IAStorable.DeepCopy” on page 10-28.
Restore

See “IAStorable.Restore” on page 10-28.
Store

See “IAStorable.Store” on page 10-30.
StoreSize

See “IAStorable.StoreSize” on page 10-29.
VectorIndex Class

Header: VectorIndex.h

Index Class Category Reference 5-67
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Hierarchy

Public subclass of TermIndex. Virtual. See “TermIndex” on page 5-49.

5-68 Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Relationships

Figure 5-14 Vector index overview

Vectorindex Doclnfo
gets (by doc) JADoc* doc
DoclD id

contains DocLength length

= )\
TFVector

VectorDoclInfo

DocLength length
TFComponent** components

IABlockID vectorBlock

confains

TFComponent

TermID id
TermFreq freq

maps to

Terminfo

IATerm* term
TermID id
TermFreq docCount

VectorIndex gets (by doc) TFVector

A vector index create and gets many TFVectors, one per document.

Index Class Category Reference 5-69
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

VectorIndex contains VectorDocInfo

One vector index contains many VectorDocInfo, one per document.

Public Member Functions

constructor
Input
| ASt or age* st orage
A pointer to the storage in which to place the index.
I ACor pus* cor pus
A pointer to the associated corpus.
| AAnal ysi s* anal ysi s
A pointer to the analysis to be used to extract terms.
ui nt 32 i ndexType=Vect or | ndexType
The index type constant.
| ABl ockl D i ndexRoot
The block id of the root. Default is nil; the root will be allocated if not
defined.
destructor
GetTFVector
Virtual.
Input
| ADoc* doc
Pointer to the document.
Output
TFVector*
The vector.
5-70 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Usage

TFVector* vector = aVectorl ndex. Get TFVect or (di - >doc);

Index Class Category Reference 5-71
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Class Utilities

GetHighFreqTerms

Header: HighFreqTerms.h

Input
Ter m ndex* i ndex
A pointer to the index.
ui nt 32* nTermns
The desired number of terms. Returns the actual number (n or less) found.
Output
FreqTer nt
A pointer to an array of freqTerms.
Notes
Results should be freed with IAFreeArray().
Usage
FregTernt results = GetH ghFreqTerns(& ndex, &resultCount);
IAReadIndexTypes
Input
| ASt or age* st orage
A pointer to the storage in which to place the index.
| ABl ockl D i ndexRoot
The block id of the root.
| Al ndexTypes* types
A pointer to the initialized index types structure. This will be returned
with the types read.
5-72 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Usage

| Al ndexTypes i ndexTypes;
| AReadl ndexTypes(storage, indexRoot, & ndexTypes);

Index Class Category Reference 5-73
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Typedefs

DoclID
A unique identifier for a document.
Type
TermID
Header
TermIndex.h
DocLength
The number of terms in a document
Type
TermFreq
Header
TermIndex.h
FlushProgressFn
Fl ushProgressFn(fl oat percent void* data); the progress function to be used
when building an index.
Type
void
Header
TermIndex.h
5-74 Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

TermFreq

The number of times a term appears in a document.
Type

ui nt 32
Header

TermIndex.h
TermID

A unique identifier for a term.
Type

ui nt 32
Header

TermIndex.h

Index Class Category Reference 5-75
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Extern Data

extern “C
Order function so that arrays of TFComponent can be sorted by gsort.

extern ui nt 32TI MaxDocSi ze
The maximum number of tokens indexed per doc.
Documents longer than this are currently truncated. Default, set in
TermIndex, is 2000.

5-76 Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Constants

const uint32 Invertedl ndexType="1nv6’
InvertedIndex.h

const uint32 | nVecl ndexType="1&V2’
InVecIndex.h

const uint32 Term ndexType=" Ter 2’
TermIndex.h

const uint32 Vectorl ndexType=" Vec4’
VectorIndex.h

Index Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

5-77



VCHE

VIV

VSPB

VTWN

5-78

CHAPTER 5

Index Category

Index Exceptions and Error Handling

Errors That May Occur when Working with Indexes

These are errors that sometimes occur when working with indexes. IAT reports errors as
exceptions. The explanations suggest possible causes of the exception in the context of
working with indexes. See the exception code under its category for more detailed
information.

You can tell the category of an exception by its prefix: VA: accessor, VC: corpus, VS,
storage, VI, index. VTWN is a general exception code.

Validation of File Names (HFS Error)

There is no validation of the input storage and folder names. You must ensure they exist
or could exist under that name in the path specified.
Incompatible Index Type

You can get this exception when you try to establish an existing index as a corpus or
analysis type different from the one used in its creation.
Incompatible Corpus Type (Store Past Block End)

One way to read past the end of a block is to update an existing index that was created
with a text folder corpus with a text file not in that corpus. The update will work;
however, when you try to access the index after updating, you may get this error. You
may only have documents within the folder for a text folder corpus.

Incomplete Index

If the index was being built under the same storage name, and that build failed, you get
this exception.

Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

Exceptions Thrown by Index Classes

VIAI
IndexDocAlreadyIndexed. Something has been renamed to a document already in the
index, or there is an attempt to merge an index with one which already contains the
document name.

Header
IAIndex.h

VIAO
IndexAlreadyOpen. The Initialize or Open functions were called when the index was
already initialized or open.

Header
IAIndex.h

VIDN
IndexDocNotIndexed. The document is not found.

Header
IAIndex.h

VIIV
Index Invalid. The types of an index opened from storage do not equal the types of the
constructed index.

Header

IAIndex.h

Index Class Category Reference 5-79
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 5

Index Category

VINO

IndexNotOpen. One of these functions have been called without opening or initializing
the index first.

IAIndex:

= Compact

= StartUpdate
Inverted Index

= Get Deleted Doc Count
TermIndex

s GetDocCount

= GetDoclnfo

= GetDoclnfolterator
s GetIDDoc

s GetIDTerm

s GetMaxDocID

s GetMaxTermID

. GetTermCount

s GetTermInfo

» GetTermInfolterator

Header
IAIndex.h

5-80 Index Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTETR 6

Accessor Category

Choosing an Accessor Type 3
Query Logic 4
Query Analysis 5

Common Operations 6
Building an Accessor 6
Answering Queries 7

Answering a Simple Ranked Query 8
Answering a Query by Example 11
Answering a Boolean Query 14

Describing a Document 16
Finding Related Words 18
Accessor Class Category Reference 20

Header Files in the Accessor Category 20
Class Specifications 22

IA Accessor 22

[IAHit 26

IAProgressReport 29

InVecAccessor 32

Inverted Accessor 33

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Ranked Accessor 36

RankedHit 43

RankedProgress 45
RankedQueryDoc 46
TWComponent 47

TWVector 48

VectorAccessor 51

Typedefs 53

Constants 53

Accessor Exceptions and Error Handling

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

This accessor category contains the classes required to access IAT indexes. Accessors can
be used to search for documents in the index and get information about them. An
accessor provides the means to locate documents by query or to determine which
documents are similar to each other. All searches are done through an accessor.

Searches may vary based on the accessor type (Vector, Inverted, or InVec), the item used
to search (a text query or one or more sample documents), and the way the query is to be
interpreted (ranked or Boolean).

With ranked searching, the user describes his or her information need with an arbitrary
list of words (which may be a sample of natural language text, or even a question), and
the system determines which documents best satisfy that need. Because there is no single
“right answer,” the system computes a score for each potentially matching document
which represents its estimated relevance. The documents are then returned with the
scores, sorted from highest relevance to lowest.

With Boolean searching, users describe their information need with a logical expression
consisting of words connected by the Boolean operators AND, OR, and NOT.” While
Boolean searching is useful for some specialized tasks, studies consistently show that
users get better search results with ranked searching.

Choosing an Accessor Type

As seen in Figure 6-1, the inheritance tree for an accessor parallels that of an index.
Generally you will wish to use the accessor that matches the index type used. Although
you may use an inverted accessor or a vector accessor with an InVecIndex, the InVec
accessor takes most advantage of the InVecIndex features.

" Ininformation retrieval, the Boolean NOT operator is shorthand for BUT NOT. For example, the Boolean
query “dog NOT beagle” would find all items containing the word “dog” except those also containing the
word “beagle.”

Choosing an Accessor Type 6-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Figure 6-1 Accessor inheritance tree
IAAccessor
RankedAccessor
InvertedAccessor VectorAccessor
InVecAccessor

Query Logic

The primary work of the accessor is to search the index in answer to queries. When it
does this it reports hits, which match terms to documents. Figure 6-2 shows the abstract
classes used in a query.

6-4 Query Logic
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Figure 6-2 Query logic

h
RankedAccessor % Termindex IADoc
found in
reports

indexed

RankedHit

IAIndex* index;

IADoc* doc;

IATerm** matchingTerms;
float score;

uint32 matchingTermsLen;

matching

IATerm

One accessor may access many indexes. It reports an array of RankedHits in answer to a
query.

Query Analysis

Queries, like documents, must be analyzed by an analysis module in order to extract the
terms to be searched. By default, the query is processed using the same analysis as was
used when indexing the documents. However, there may be cases where developers
may want to allow their applications to offer differ analysis options at search time.

For example, a collection of documents may be indexed using an analysis that uses all
the words in the text. An application may then offer the users the option of automatically
removing stop words (like “the”) from the query text. This would require the use of a
different analysis for queries.

To use a different analysis for queries, call the IAIndex function SetPreferred Analysis
(page 5-42) after opening the index to be search with the accessor.

Query Analysis 6-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Common Operations

Building an Accessor

An accessor is built for a set of indexes. The indexes should be established in storage and
opened (generally opened for read only access unless there is some other use than
accessing them).

Note
Changing the index (by adding or deleting documents) after opening an
accessor will cause the open accessor to become invalid.

The example below builds an accessor for a single index.

Figure 6-3 Interaction diagram to build an accessor
aninVeclndex aninVeclndexArray aninVecAccessor
i 14

aninVeclndexArray[O]=anInVecindex

new(aninVeclndexArray, numberindexes))

Listing 6-1 Build an inverted vector accessor

/1
/1

/1

/1

establish an index in storage
See (“Establish an existing index” on page 5-13)

make an array of indexes to use (can be > one)

const ui nt32 nunberl ndexes = 1;

I nvert edVect or I ndex* anl nVecl ndexAr r ay[ nunber | ndexes] ;// make i ndexes
anl nVecl ndexArray[ 0] = &anl nVecl ndex;

create the accessor
I nVecAccessor anl nVecAccessor (anl nVecl ndexArray, nunberl| ndexes);

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Answering Queries

Accessors are the means by which indexes can be searched. The search request takes the
form of a query. There are two general types of queries against an index:

» asimple ranked query, which, given a string of text, locates individual terms in that
text. The accessor then finds documents which have those terms.

» aBoolean query, which, given a Boolean expression, locates documents that satisfy
that expression.

= a query by example, which, given one or more documents that have been indexed and
their index, will locate the most similar documents.

Preparing for a Query

To prepare for a query, you must establish these items:

s the maximum number of documents to retrieve(nunber Docs). RecipeSwap, for
example, chooses to limit the number of recipes to give the patron to ten, so the
number of Ranked Hits is limited to ten

» the maximum number of matching terms (nunber Ter ms Per Doc) to show per query.
Those terms which contibute most to the document being retrieved are used.

You can then establish an array for the storage of the resulting RankedHits. This array
will have as many members as the maximum number of documents to list.

Reporting Progress

You may wish to have a report of progress as the search goes on. You may establish a
progress reporting function and pass that address to the search. The function you
develop will use the RankedProgress type as an input parameter. See “RankedProgress”
on page 6-45.

You provide the frequency of progress to the query; this parameter is the number of
clock_t between reports.

Note

Set a frequency of progress greater than 0. If you set the frequency of
progress to zero, you will have very frequent (about 1 ms) progress
reporting. This will make the accessor intolerably slow.

Listing 6-2 is an example of a primitive progress reporting function.

Listing 6-2 Report search progress

bool Report QueryProgress(RankedProgress* progress, void* data) ({
#pragma unused (data)
printf(“Percent Searched: %i.1f \n“, progress->percent);
return false;

Common Operations 6-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Answering a Simple Ranked Query

Listing 6-3 is an example of a program which parses a simple string of terms and
matches that string against the terms in an inverted index. The results show which
documents have any of the terms, what their score is, and which terms they contain. The
terms are sorted according to how much they contributed to this document being
retrieved. Figure 6-4 shows an output display of this query.

Figure 6-4 Output from a simple ranked query

Query: Swiss, spinach, onion

searching: 0.0

searching: 100.0

search time: 00 hours, 00 minutes and 00 seconds.
5 hits

1.00 : spinach-pizza[ spinach]

0.89 : quiche05 [ spinach onion]

0.82 : quichelO [ spinach]

0.65 : quichell [ spinach]

0.63 : quicheQ9 [ swiss onion]

Figure 6-5 Interaction diagram for a simple ranked query

aProgressFunction aRankedHitArray aninVecAccessor

RankedSearch(query,queryLen, NULL, 0, aRankedHitArray,numberDocs,
numberTermsPerDoc, aProgressFunction, frequency Of Progress)

.score

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Listing 6-3 Answer a simple ranked query

/1
11

/1

/1

/1

11

create the accessor

(see “Build an inverted vector accessor” on page 6-6)

I nVecAccessor anl nVecAccessor (anl nVecl ndexArray, nunberl| ndexes);
anl nVecAccessor.Initialize();

set up display of results

const nunber TernsPerDoc = 4; // max terms to show doc

const nunber Docs = 5; // max docs to |ist

RankedHi t * aRankedHi t Array[ Nunber Docs] ;

clock_t frequencyOfrProgress = clocks_per_sec / 2; // tics btwn

get the query and display it
char* query = GetQuery(); // application provided function
printf(“Query: %\n", query);

do the search

ui nt 32 nunber Hi t sFound = accessor. RankedSear ch(
(byte*)query, strlen(query),// query string and |length
NULL, O, /1 no query by exanpl e doc paraneters
aRankedHi t Array, numnber Docs, nunber TernsPerDoc,// final results
&Report Quer yProgress, frequencyO Progress, NULL);

report the results

Di spl ayResul t s(aRankedHi t Array, nunberHitsFound); // see Listing 6-4

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6-9



CHAPTER 6

Accessor Category

Listing 6-4 Display search results

voi d Di spl ayResults (RankedH t** aRankedHi t Array,
ui nt 32 nunber Hi t sFound) {
/1 display nunber of hits
printf(“%u hits\n”, nunberH tsFound);
/1 show the docunents that hit and their rel evance score
for (uint32 i = 0; i < nunberHitsFound; i++) {

/1l show docunment nanme and rel evance score
RankedHi t * aRankedHi t = aRankedHit Array[i];
printf(“9%.2f : “, aRankedHit->GetScore());

/!l see Listing 6-5 for PrintDocNane.

Pri nt DocNane( aRankedHi t - >Get Docurent () ) ;

/1 show the top n terns/docunent (unl ess none)
i f (aRankedHit->Get Mat chi ngTer nmsLen()){
printf(* [*);
for (uint32 j = 0;
j < aRankedHit - >Get Mat chi ngTermsLen(); j++) {
printf(“ %",
aRankedHi t - >Get Mat chi ngTerns()[j]->CetData());

}
printf(*]");
}
printf(“\n");
del ete aRankedHit;
}
return;
}
Listing 6-5 Get and print a document name

voi d PrintDocName(| ADoc* doc) {
ui nt 32 docNanelLengt h;
char* docNanme = (char*)doc->Get Nanme( &docNameLengt h) ;
printf(“%”, docNane);
del ete[] docNane;

6-10 Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Answering a Query by Example

This type of search uses one or more documents as the query. It locates other documents
similar to the query documents, and scores their relevance to the sample document. The
result, is a ranked list of documents found.

Similarity is measured based on matching the statistical distribution of terms in the
example and hit documents. Roughly speaking, two documents will have high similarity
scores if they use many of the same words.

When you have a new document and you wish to see if a similar document exists
already, you must add the new document to the index before you can use it as a query.
Once you have added the document to the index, you can use it to create a
RankedQueryDoc. This is a pairing of the document with the index it is in. If you do not
wish to keep the new document in the index, you can delete it after the search.

Figure 6-6 Sample output from a query by example

adding Mom'’s Chocolate Decadence

flushing: 0.00

flushing: 80.00

flushing: 100.00

Mom'’s Chocolate Decadence

searching: 0.0

searching: 50.0

searching: 121.9 into

searching: 150.0

5 hits

1.00 : Mom'’s Chocolate Decadence [ rasp choc genache decadance chambord]
0.94 : Chocolate Decadence [ rasp choc genache decadance chambord]

0.18 : Hazelnut Cheesecake [ paris gene min ken crust]

0.13 : Cheesecake Collection [ gelatin crust tbs oreos chocolate]

0.13 : White Choc Cheesecake02 [ gelatin mousse chocolate bittersweet pipe]
deleting Mom’s Chocolate Decadence

In this example, the second item has almost the same score as the first, suggesting that
this is probably the same recipe as the sample document.

Note

The sample document must be in an index that is contained in the array
used when constructing the accessor. If you are matching to a different
index, create the accessor with both indexes.

Common Operations 6-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Figure 6-7 Interaction diagram for creating a RankedQueryDoc

aninVeclndex anlADoc aRankedQueryDoc

new(anlADoc, anlnVecindex) _

6-12 Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Sample Code for Query-by-example

Listing 6-6 Find documents matching example document

/1 Set up the exanple doc with its index
StringPtr docNane = "\pMonis Chocol at e Decadence”;
HFSText Fol der Cor pus* anHFSText Fol der Cor pus =
(HFSText Fol der Cor pus*) r eci pel ndex. Get Cor pus() ;
HFSText Fol der Doc* anEnmi | Doc = new HFSText Fol der Doc(
( HFSText Fol der Cor pus*) anHFSText Fol der Cor pus, 0, docNane,

reci pel ndex. AddDoc( ( HFSText Fol der Doc*) anEmmai | Doc- >DeepCopy());
reci pel ndex. Fl ush();

/1 Convert exanple doc to a RankedQueryDoc

RankedQuer yDoc aRankedQuer yDoc(anEnai | Doc, &reci pel ndex);
Pri nt DocNane(anEmai | Doc); // see Listing 6-5
printf("\n");

/1 Set up query results
const nunber TermsPer Doc = 5; // anmount to show docunent
const nunberDocs = 5; // top n docs to show

/1 Create the query structure
RankedHi t * aRankedHi t Array[ nunber Docs]; // array of hits

clock_t frequencyOfProgress = 30; // time btwn progress rpts

/1 Do the search

0);

I nVecAccessor anl nVecAccessor (anl nVecl ndexArray, numnberl| ndexes);

anl nVecAccessor. |l nitialize();

char* query = NULL; //Null the termsearch parneters

ui nt 32 nunmber O Exanples = 1; //There is one sanple doc

ui nt 32 nunber O Hi t sFound = anl nVecAccessor . RankedSear ch(
(byte*)query, strlen(query),// query is nil

&aRankedQuer yDoc, nunber Of Exanpl es,// feedback doc paramns
aRankedHi t Array, numnber Docs, nunber TernsPerDoc,// results

&DenmoRankedPr ogr ess, frequencyO Progress, NULL);

/!l Report the results and renmove new doc

Di spl ayResul t s(aRankedHi t Array, nunmber O H tsFound); // Listing 6-4

reci pel ndex. Del et eDoc(anEnai | Doc) ; }

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6-13



CHAPTER 6

Accessor Category

Answering a Boolean Query

This type of search uses a Boolean expression as the query. It locates documents that
satisfy the Boolean expression. For example, the expression “cat AND dog” would be
satisfied by only those documents containing both the word “cat” and the word “dog.”
The result, as with a ranked query, is a ranked list of documents with relevance scores.

The actual characters to be interpreted as Boolean operators can be set by the application
using the member functions SetBooleanAndOperator (default is ‘&’),
SetBooleanOrOperator (default is “ | "), and SetBooleanNotOperator (default is !). In
addition, Boolean expressions can be nested, and the nesting operators can be set using
the functions SetBooleanLeftFence and SetBooleanRightFence; left and right parentheses
are the defaults.

Figure 6-8 Sample output from a Boolean query

6-14

accessor initialization: 00 hours, 00 minutes and 01 seconds.
Query: (chocolate & cinnamon) ! liqueur
searching: 0.0

searching: 100.0

search time: 00 hours, 00 minutes and 00 seconds.
5 hits

1.00 : Cinn Choc Chip Cookies

0.76 : Vegan Choc Pudding

0.75 : Chocolate Cheesecake06

0.69 : White Choc Fruitcake

0.68 : Chocolate Pecan Pudding

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Sample Code for Boolean Query

Listing 6-7 Find documents satisfying Boolean expression

const ui nt32 kMaxDocunents = 5;

I nVecAccessor accessor (indices, nlndices);// make appropriate accessor

accessor.lnitialize();
RankedQuer yDoc rqdl[ kMaxDocunent s];
printf("Query: %\n", query);// display query

RankedHi t * results[ kMaxDocunents];// allocate array for results
ui nt 32 resul t Count = 0;

result Count = ((IlnvertedAccessor*)accessor)->RankedSear chBool ean
((byte*)query, strlen(query),// query string
results, kMaxDocunents, // result array
&DenmpRankedPr ogress, 30, NULL);//progress args

Di spl ayResul ts(&results, resultCount);// see Listing 6-4

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6-15



CHAPTER 6

Accessor Category

Describing a Document

In addition to searching, accessors can also provide a list of words that best describe the
document. You may use the GetDocTopic function for this purpose.

In this context, “best describe” means “most differentiate from other documents in the
index.” So, for example, if your collection of documents consists of 500 items all about
Pizza, the word “pizza” would probably not be one of the words, since it does not help
distinguish one document from another. Instead, you would expect to see words like
“vegetarian” or “pepperoni.” The terms are sorted from most to least descriptive.

Figure 6-9 Sample output from describing a document

6-16

Terms Describing Document: Ice Cream Xmas Pudding
australian

cherry

ice

rising

cherries

marshmallows

christmas

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Sample Code for Describing a Document

Listing 6-8 Find the words that best describe a document

DenpAccessor accessor (i ndi ces, nlndices);// make appropriate accessor
accessor.Initialize();

| ATernt resul ts[ MaxResultCount];// allocate array for results
/1l For this exanple, get nobst recently added docunent

Docl D max!I D = i ndex. Get MaxDocl D() ;

| ADoc* doc = index. Getl DDoc(maxID - 1);

| ADel et eOnUnwi nd del Doc(doc);

RankedQueryDoc rqgd(doc, & ndex);

ui nt 32 resul t Count = accessor. Get DocTopi c(& qd, results, MaxResult Count,

&DenmpRankedPr ogress, 30, NULL);

printf("Terns Describing Docunent: ");
Pri nt DocName( doc) ;
printf("\n");
for (uint32 i =0; i < resultCount; i++) {

| ATermf term= results[i];

printf(" %\n", term>CetData());

delete term

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6-17



CHAPTER 6

Accessor Category

Finding Related Words

Accessors can also provide a list of words related to a given word.

In this context, “related to” means “commonly occurs in the same contexts.” In a
collection of recipes, the word “pepperoni” might have “pizza,” “crust,” and “sausage”
as some of its related terms. The terms are sorted from most to least related.

7

Figure 6-10 Sample output from finding related words

6-18

accessor initialization: 00 hours, 00 minutes and 02 seconds.
searching: 0.0
searching: 0.0
searching: 100.0
searching: 0.0
searching: 100.0
Terms related to: dijon
mustard

tblsp

seed

herb

age

honey

grainy

instructions

vinegar

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Sample Code for Finding Related Words

Listing 6-9 Find the words related to a given wordt

/!l Make accessor & storage, etc -- see 6-1

I nVecl ndex i ndex(storage);
i ndex. Open();

const uint32 nlndices = 1;
I nVec* indices[nlndices];// nake indices
i ndi ces[ 0] = & ndex;

I nVecAccessor accessor (i ndices, nlndices);// nake appropriate accessor
accessor.Initialize();

| ATernt ternResults[ MaxResultCount];// allocate array for results

ui nt 32 resul t Count = accessor. Get Ter nsRel at ed(
(byte*)query, strlen(query),// query string
ternResults, MaxResultCount,// result array
&DenmobRankedPr ogress, 30, NULL);// progress args

printf ("Terms related to: %\n", query);

printf("related terns:");

for (uint32 i = 0; i < resultCount; i++) {
| ATernt term= ternResults[i];
printf(" %\n", term>CetData());
delete term

Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6-19



CHAPTER 6

Accessor Category

Accessor Class Category Reference

Header Files in the Accessor Category

IA Accessor

TAAccessor
IAHit
IAProgressReport

InVecAccessor

InVecAccessor

Inverted Accessor

Inverted Accessor

RankedAccessor

RankedAccessor
RankedHit
RankedProgress
RankedQueryDoc

TWVector

TWComponent
TWVector

6-20 Accessor Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

VectorAccessor

VectorAccessor
IARound

Accessor Class Category Reference 6-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Class Specifications

class IAAccessor

Header: IA Accessor.h

Hierarchy

Abstract Base Class.

Figure 6-11 Accessor inheritance

IAAccessor
RankedAccessor
InvertedAccessor VectorAccessor
InVecAccessor

Description

IA Accessor is the base class for providing access (such as a search) to an index.
6-22 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Relationships

IA Accessor accesses IAIndexes

One accessor may access many indexes.

IAAccessor reports an IAHit

One accessor may report many hits

TAAccessor reports status with IAProgressReport

One accessor uses one Progress Report

Public Member Functions

constructor
Input
I Al ndex**
The array of indexes to search.
ui nt 32
The number of indexes in the array.
destructor
Virtual.

Note that this destructor does not delete the indexes.

Accessor Class Category Reference 6-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

GetAccessorType

Access method for IA Accessor member data.

Qut put
ui nt 32 accessor Type
The type of the accessor used.
GetIndexCount
Access method for IA Accessor member data.
CQut put
ui nt 32 i ndexCount
The number of indexes being accessed by the accessor.
GetlIndices
Access method for IA Accessor member data.
Qut put
I Al ndex** indices
An array of the indexes being accessed by the accessor.
Initialize
Virtual.
Input
| ASt or age*
storage for the accessor; default is NULL; generally the named block in
the index is used.
I ABl ockl d
the blockID for the storage, if provided. Default is 0.
6-24 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Notes
Must be called after constructor but before any other methods. This is required because
constructors cannot call virtual methods.
If the accessor initialization data was stored, it is restored. Otherwise it is computed from
scratch, which may be slow for large indexes.

Usage

accessor->lnitialize();

IsInitializationValid

Input
| ASt or age*
storage for the accessor; default is NULL; generally the named block in
the index is used.
| ABl ockl d
the blockID for the storage, if provided. Default is 0.
Output
bool
True if the initialization has been stored.
Notes
Checks to see if the accessor initialization data was stored. If not, Initialize() will be slow.
Calling Storelnitialization will initialize and store so subsequent initializations will be
faster.
SetAccessorType
Access method for IA Accessor member data.
Input

ui nt 32 accessor Type
The type of the accessor used.

Accessor Class Category Reference 6-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Class

CHAPTER 6

Accessor Category

SetIndexCount

Access method for IA Accessor member data.

I nput
ui nt 32 i ndexCount
The number of indexes to be accessed by the accessor.
A WARNING
The index count must match the number of indexes in the array passed
by the SetIndices method.
SetIndices
Access method for IA Accessor member data.
I nput

I Al ndex** indices
An array of indexes to be accessed by the accessor.

Storelnitialization

Input
| ASt or age*
storage for the accessor; default is Nil; generally the named block in the
index is used.
| ABl ockl d
the blockID for the storage, if provided. Default is 0.
Notes
Both initializes and stores the accessor initialization data. Accessor should not be
initialized when this is called.
[AHit
Header: A Accessor.h
6-26 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Hierarchy

Base class.

Description

Base class for search results. A hit is the connection between a document that matches
the query and its index.

Relationships

Figure 6-12 IAHit relationships

IADoc

A

finds matching

IAHit

located in

\

IAIndex

IAHit finds matching IADoc located in IAIndex

An TAHit identifies one doc in one index.

Accessor Class Category Reference 6-27
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Clients

See “IAAccessor reports an IAHit” on page 6-23.

Public Member Functions

constructor
Input
| Al ndex* i ndex
Pointer to the index containing the matching document.
| ADoc* doc
Pointer to the matching document.
destructor
Virtual.
GetDocument
Access method for IAHit member data.
Qut put
| ADoc* doc
A pointer to the document found by the hit.
GetIndex
Access method for IAHit member data.
Qut put
| Al ndex* i ndex
A pointer to the index in which the hit document was found.
6-28 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

SetDocument

Access method for IAHit member data.

I nput
| ADoc* doc
A pointer a document to be used by a hit.
SetIndex
Access method for IAHit member data.
I nput
I Al ndex* i ndex
A pointer to the index in the hit document resides.
IAProgressReport Class
Header: IAAccessor.h
Hierarchy
Base class.
Description
Base class for progress reports. Progress reports are used by user-provided progress
functions.
Accessor Class Category Reference 6-29

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Relationships

Figure 6-13 IAProgressReport relationships

IADoc

A

reports which

IAProgressReport

reports which

Y

IAIndex

IAProgressReport reports which IAIndex is being processed

One progress report reports on one index at a time.

IAProgressReport reports which IADoc is being processed

One progress report reports on one document.

Clients

See “IAAccessor reports status with IAProgressReport” on page 6-23.

6-30 Accessor Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Public Member Functions

GetDocument

Access method for IAProgressReport member data.

Qut put
| ADoc* doc
A pointer to the document whose progress is being reported. NULL if not
applicable.
GetIndex
Access method for IAProgressReport member data.
CQut put
I Al ndex* i ndex
A pointer to the index whose progress is being reported. NULL if not
applicable.
GetPercent
Access method for IAProgressReport member data.
Qut put
fl oat per cent
A number between 0.0 and 100.0 inclusive, representing the percent of the
search (or other access operation) completed.
SetDocument

Access method for IAProgressReport member data.

Accessor Class Category Reference 6-31
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Class

CHAPTER 6

Accessor Category

I nput
| ADoc* doc
A pointer to the document whose progress is being reported.
SetIndex
Access method for IAProgressReport member data.
I nput
I Al ndex* i ndex
A pointer to the index whose progress is being reported.
SetPercent
Access method for IAProgressReport member data.
I nput
fl oat per cent
A number between 0.0 and 100.0 inclusive, representing the percent of the
search (or other access operation) completed.
InVecAccessor
Header: InVecAccessor.h
Hierarchy
Public subclass of Inverted Accessor and VectorAccessor. See “Inverted Accessor” on
page 6-33 and “VectorAccessor” on page 6-51.
Description
Accelerates searches on InVec indexes.
6-32 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Public Member Functions

constructor

Input

destructor

I Al ndex** i ndexes
The array of indexes to search.

ui nt 32 i ndexCount
The number of indexes in the array.

uint 32 type = I nVecAccessor Type

RankedSearch

See “RankedAccessor.RankedSearch” on page 6-41.

Inverted Accessor

Hierarchy

Header: Inverted Accessor.h

Description

Public subclass of Ranked Accessor. See “Ranked Accessor” on page 6-36.

An inverted accessor accesses inverted indexes for searches for terms.

Accessor Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6-33

Class



CHAPTER 6

Accessor Category

Public Member Functions

constructor

Input
I nvertedl ndex** indexes
The array of indexes to search.

ui nt 32 i ndexCount
The number of indexes in the array.

uint 32 I nvertedAccessor Type
The type of accessor. Constant ‘Inv(’.

destructor
RankedSearch
See “RankedAccessor.RankedSearch” on page 6-41.
RankedSearchBoolean
Input
byt e* bool eanText Query
The query text, in the form of a Boolean expression.
ui nt 32 text QuerylLen
The number of bytes in the query text.
RankedHi t** results
An array in which to place the resulting hits.
uint32 resultlLen
The maximum number of hits desired.
RankedPr ogressFn* progressFn
A pointer to the progress function to use.
cl ock_t progressFreq
The number of ticks between progress reports.
voi d* appDat a
A user-supplied parameter to the progress reporting function.
6-34 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Output

Notes

CHAPTER 6

Accessor Category

ui nt 32
The number of hits found matching the Boolean expression.

The Boolean expression assumes the Boolean operators set by the accessor functions
SetBooleanAndOperator, SetBooleanOrOperator, SetBooleanNotOperator,
SetBooleanLeftFence, and SetBooleanRightFence.

Protected Member Functions

GetInvertedRankedQueryMaxTerms

Qut put

Notes

Access method for Inverted Accessor member data.

ui nt 32 val ue
The maximum number of terms to be included in the query.

See notes for SetInvertedRankedQueryMaxTerms.

GetInvertedRankedQueryMinTerms

Qut put

Notes

Access method for Inverted Accessor member data.

ui nt 32 val ue
The number of terms below which no query truncation will occur.

See notes for SetInvertedRankedQueryMinTerms.

Accessor Class Category Reference 6-35
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

SetInvertedRankedQueryMaxTerms

Access method for Inverted Accessor member data.

I nput

ui nt 32 val ue
The maximum number of terms to be included in the query.

Notes

Inverted Accessors optimize performance by truncating extremely long queries. All terms
are used up to a certain minimum truncation threshold (set by
SetInvertedRankedQueryMinTerms). Then the query is truncated by discarding terms
whose weights are so low that they will have little or no effect on the results of the
search. Finally, only the top N (highest weighted) remaining terms are kept. This
function sets the value of N. The default is 50. For no query truncation, set both values to
OxFFFFFFFFE.

SetInvertedRankedQueryMinTerms

Access method for Inverted Accessor member data.

I nput

ui nt 32 val ue
The number of terms below which no query truncation will occur.

Notes

Inverted Accessors optimize performance by truncating extremely long queries. All terms
are used up to a certain minimum truncation threshold (set by this function). The default
is 10. Then the query is truncated by discarding terms whose weights are so low that
they will have little or no effect on the results of the search. Finally, only the top N
(highest weighted) remaining terms are kept, where N is the value set by the function
SetInvertedRankingQueryMaxTerms. For no query truncation, set both values to
OxFFFFFFFFE.

class RankedAccessor

Header: Ranked Accessor.h

6-36 Accessor Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Hierarchy
Public subclass of IAAccessor. See “IAAccessor” on page 6-22.
Description
An abstract class that searches any type of index and ranks the results.
Relationships
Figure 6-14 RankedAccessor relationships
RankedQueryDoc
sample
uses sample sample location
RankedAccessor | S02rches o Termindex IADoc
found in
reports
indexed
RankedHit
matching
IATerm

RankedAccessor uses sample RankedQueryDoc

One Ranked Accessor uses one RankedQueryDoc per query by example, but may use
many.

Accessor Class Category Reference 6-37
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

RankedAccessor searches TermIndex

OneRanked Accessor may search many TermIndexes.

RankedAccessor reports RankedHit

One RankedAccessor will report many RankedHits per query.

Public Member Functions

constructor
Input
| Al ndex** i ndexes
A pointer to an array of indexes to be used in the search.
ui nt 32 i ndexCount
The number of indexes.
ui nt 32 type
the constant indicating the kind of accessor.
destructor
GetDocTopic
Virtual.
Input
RankedQuer yDoc* doc
The sample document and its index.
| ATernt* results
The terms that characterize the document.
ui nt32 resultLen
The maximum number of terms to report.
6-38 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

RankedPr ogr essFn* progressFn
A pointer to the progress reporting function to use.

cl ock_t progressFreq
The frequency of reporting progress.
voi d* appDat a
User-provided parameter to the progress reporting function.

Output
ui nt 32
The number of terms found in the document (actual number of results).
Notes
Identifies the terms which best represent the document’s content. Orders them by
weights indicating their importance.
Usage
RankedQueryDoc rqd(doc, & ndex);
ui nt 32 resul t Count = accessor. Get DocTopi ¢
( &rqd, results, MaxResult Count,
&DenmpRankedPr ogress, 30, NULL);
HitEqual
Virtual
Input
I Ai ndex* index1
The index containing the first hit.
const | ADoc* docl
The document containing the first hit.
| Al ndex* index2
The index containing the second hit.
const | ADoc* doc2
The document containing the second hit.
Output

bool
True, these are the same documents; false, they are not.

Accessor Class Category Reference 6-39
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Notes
Determines merging of hits; current implementation returns equal if [ADocs are equal.
Used to determine whether hits from two different indexes are actually the same
document.
HitLessThan
Virtual
Input
I Ai ndex* indexl
The index containingf the first hit.
const | ADoc* docl
The document containing the first hit.
I Al ndex* i ndex2
The index containing the second hit.
const | ADoc* doc2
The document containing the second hit.
Output
bool
Returns True if the doc is less than the second doc.
IsHit
Virtual
Input
I Ai ndex* index
The index.
const | ADoc* doc
The document in the index.
Output
bool
Always true .
6-40 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Notes
This is provided to allow subclasses to filter hits by other criteria, like date. It must be
overridden to be useful.
MergeHits
Virtual
Input
const RankedHit* hit1l
The first of two hits on the same document.
const RankedHit* hit2
The second of two hits on the same document.
Output
RankedHi t
That hit with the highest score of the two.
Notes
Merges hits that are HitEqual() into one hit — default copies higher scoring. This may
occur when a document is indexed in more than one index.
RankedSearch
Pure virtual.
Input

byt e* textQery
The query text.

ui nt 32 text QuerylLen
The number of bytes in the query text.

RankedQuer yDoc* docQuery
A pointer to an array of sample documents and their index.

ui nt 32 nDocs
The number of sample documents.

RankedHi t** results
An array in which to place the resulting hits.

Accessor Class Category Reference 6-41
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Output

CHAPTER 6

Accessor Category

uint32 resultlLen
The maximum number of hits desired.

ui nt 32 mat chi ngTer nsLen
The maximum number of terms to report in ranked hits.

RankedPr ogr essFn* progressFn
A pointer to the progress function to use.

cl ock_t progressFreq
The number of ticks between progress reports.

voi d* appDat a
A user-supplied parameter to the progress reporting function.

ui nt 32
The number of hits found.

RankedSearch

Input

6-42

Pure virtual.

| ADocText * query
The query object.

RankedQuer yDoc* docQuery
A pointer to an array of sample documents and their index.

ui nt 32 nDocs
The number of sample documents.

RankedHi t ** results
An array in which to place the resulting hits.

uint32 resultlLen
The maximum number of hits desired.

ui nt 32 mat chi ngTer nsLen
The maximum number of terms to report in ranked hits.

RankedPr ogr essFn* progressFn
A pointer to the progress function to use.

cl ock_t progressFreq
The number of ticks between progress reports.

voi d* appDat a
A user-supplied parameter to the progress reporting function.

Accessor Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Output

ui nt 32
The number of hits found.

Notes
Applications may wish to use this variant of RankedSearch when they need the query
text to be part of a real object. For example, they may require some metadata — such as a
language code — to be passed along with the query text.

RankedHit Class
Header: RankedAccessor.h

Hierarchy
Public subclass of IAHit. See “IAHit” on page 6-26.

Relationships

Ranked Hit contains matching IATerm

1 hit may match many terms.

Client

See “RankedAccessor reports RankedHit” on page 6-38.

Public Member Functions

constructor

Input

I Al ndex* i ndex
A pointer to the index containing the document

| ADoc* doc
A pointer to the document.

Accessor Class Category Reference 6-43
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

fl oat score
The score of the hit.

| ATernt* terms
The array of matching terms.

uint32 ternien
The number of matching terms.

destructor
Deletes matchingTerms.
DeepCopy
const
Output
RankedHi t *
a copy of this ranked hit, including matching terms.
GetMatchingTerms
Access method for RankedHit member data.
Qut put
| ATer nt* mat chi ngTer s
An array of the top scoring terms in the intersection of the document with
the query.
GetMatchingTermsLen
Access method for RankedHit member data.
Qut put
ui nt 32 mat chi ngTer nsLen
The number of matching terms in the intersection of the document with
the query.
6-44 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

GetScore
Access method for RankedHit member data.
Qut put
fl oat score
The relevance score of the hit. The relative strength of this document’s
match to the query. Scaled from 0.0 to 1.0.
SetScore
Access method for RankedHit member data.
I nput
f1 oat score
A relevance score to be assigned to the hit.
RankedProgress
Header: Ranked Accessor.h
Hierarchy
Public subclass of IAProgressReport. See “1AProgressReport” on page 6-29.
Description

An extension of the progress report that adds reporting by the current term being
processed.

Accessor Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

6-45

Class



Struct

CHAPTER 6

Accessor Category

Public Member Functions

constructor

GetTerm

Access method for RankedProgress member data.

Qut put
| ATer n¥ term
When non-NULL, reports the term currently being processed.
SetTerm
Access method for RankedProgress member data.
I nput
| ATer n term
Used to report the term currently being processed.
RankedQueryDoc
Struct
Header: RankedAccessor.h
Description
The document that is used as an example for query by example. This document must
reside in an index used by the accessor. This struct identifies that index.
6-46 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Relationships

RankedQueryDoc connects a sample IADoc to its location in a TermIndex

1 query connects a single doc to a single index.

Client

See “RankedAccessor uses sample RankedQueryDoc” on page 6-37.

Public Member Data

| ADoc* doc
Ter m ndex* i ndex

Public Member Functions

constructor

constructor(IADoc* doc, TermIndex* index)

Input

| ADoc* doc
A pointer to the document.

Ter m ndex* i ndex

A pointer to the index it resides in.

TWComponent

Struct
Header: TWVector.h

Description

A term and its weight. Used in relationship to a document.

Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Struct



Class

CHAPTER 6

Accessor Category

Relationships

TWComponent points to an IATerm

1 component points to one term.

Clients
See “TW Vector contains TWComponent” on page 6-48.
Public Data
Term D term D
The unique ID of the term.
fl oat wei ght
The normalized weight of the term.
TWVector
Header: TWVector.h
Hierarchy
Base Class.
Description
A collection of weighted terms associated with a document.
Relationships

TWVector contains TWComponent

One TWVector may contain many TWComponents.

Client

See “VectorAccessor contains TWVector” on page 6-51.

6-48 Accessor Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Public Member Functions

constructor

Input

DocLength | ength
The number of components in the vector.

destructor

GetComponents

Access method for TWVector member data.

Qut put

TWConponent *conponent s
An array of TWComponents.

GetDocumentLength

Access method for TWVector member data.

Qut put

DocLength |ength
The number of components in the vector.

Normalize

Adjusts the weights of the vector components so that the Euclidean length of the vector
is 1.

Note
To compare vectors using the Similarity() function, normalize them first.

Accessor Class Category Reference 6-49
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

SetComponents

Access method for TWVector member data.

I nput
TWConponent *conponent s
An array of TWComponents.
SetDocumentLength
Access method for TWVector member data.
I nput
DocLength Iength
The number of components in the vector.
Similarity
Input
TWect or* ot her
The vector to compare to this one.
Output
float score
The score of similarity. How similar the two docs are to each other.
Notes
The score is increased by the product of the weights of any terms which appear in both
vectors. (In mathematical terms, the similarity score is the inner product of the two
vectors.)
6-50 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

Sum
Input
TW/ect or* ot her
The vector to be added to this one.
Output
TWect or *
A new vector whose length is the sum of this vector and the other vector.
VectorAccessor Class
Header: VectorAccessor.h
Hierarchy
Public subclass of Ranked Accessor. See “Ranked Accessor” on page 6-36.
Description
An accessor which allows a ranked search over a vector index.
Relationships

VectorAccessor contains TWVector

One Vector Accessor contains many TW Vector, one per document.

Public Member Functions

constructor(VectorIndex™* indices, uint32 indexCount uitn32 type);

Input

Vect or I ndex** i ndexes
The array of indexes to search.

Accessor Class Category Reference 6-51
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

ui nt 32 i ndexCount
The number of indexes in the array.

ui nt 32 type
The kind of accessor. Defaults to VectorAccessorType, “Vec0'.

constructor(VectorIndex™ index_ptr_ptr, TermIndex” context);

Input
Vect or I ndex** i ndexes
The array of indexes to search.
Ter m ndex* cont ext
An example index to locate the most similar.
destructor
GetDocTopic
See “RankedAccessor.GetDocTopic” on page 6-38.
GetTWVector
Input
| ADoc* doc
The document whose components are needed.
ui nt 32 i ndex
The number of the index (position in the indexes array).
Output
TWect or
A pointer to the container of the components.
Notes
Returns the vector for a doc from the Nth index of this accessor
6-52 Accessor Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 6

Accessor Category

RankedSearch

See “RankedAccessor.RankedSearch” on page 6-41.

Typedefs

RankedProgressFn

The function for reporting progress during a search,

Usage

RankedPr ogr essFn

(const RankedProgress* progress, void* data)

Type

bool
Header

RankedAccessor.h

Constants

const uint32 | nVecAccessor Type ='1&V0'
const uint32 InvertedAccessor Type ='1nv0’
const uint32 VectorAccessor Type = VecO'

Accessor Class Category Reference 6-53
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



VAAI

CHAPTER 6

Accessor Category

Accessor Exceptions and Error Handling

Errors are currently handled by throwing exceptions.

VANI

| AAccessor Al readylnitialized
May mean that initialize has been called when the accessor has already been initialized.

VAIV

| AAccessorNotInitialized
May mean that RankedSearch or GetDocTopic has been called and the accessor has not

been initialized.

6-54

| AAccessorlnitlnvalid
A saved accessor initialization is no longer valid (most likely due to the fact that
documents have been added or deleted).

Accessor Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



NN

CHAPTER 7

Analysis Category

Understanding Tokens and Terms 3
Understanding Tokenizers 4
Understanding Filters 6
Existing Filters 6
Filter Sequence 8
Creating Analysis Subclasses 9
Creating a SimpleAnalysis Subclass 9
Creating a Subclass of IA Analysis 10
Creating a Subclass of IATokenFilter 12
Creating a Subclass of IATerm 13
Creating a Text Utility 13
Analysis Class Category Reference 15
Header Files in the Analysis Class Category 15
Class Specifications 17
AlphaTokenizer 17
DocTextCharStream 21
DowncaseFilter 23
IA Analysis 24
IATerm 27
IAToken 31

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

IATokenFilter 33
IATokenStream 35
IACharStream 37
ShortWordFilter 42
SimpleAnalysis 43
StringTerm 45
Constants 47
Exceptions 48

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

The analysis classes provided by IAT provides the abstract classes for the location of
terms within text.

The classes within this category can do these functions:
= scan text to locate tokens from which terms are extracted

= filter tokens to change them or remove them.

In this chapter we will refer to an example analysis module included with the IAT called
“SimpleAnalysis.” More powerful analysis modules may also be available; these may be
linked in as separate libraries.

Understanding Tokens and Terms

IAT distinguishes “token” and “term.” A “token” is a passage of text that might be a
term. A “term” is a token that, after filtering, has been accepted in the index. A term is
typically a word; it may be, however, the root of a word or a phrase.

The analysis provides a token stream. This stream contains many tokens, each of which
generally corresponds to a single term. Figure 7-1 shows the abstract class relationships.

Understanding Tokens and Terms 7-3
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Figure 7-1 Class diagram of tokens and terms

IAAnalysis

makes
|

\

IATokenStream

9

I
| contains

!

contains
IAToken IATerm
IATerm* term; byte* data;
const uint32 startPos; const uint32 datalLen;

const uint32 endPos;

Understanding Tokenizers

A tokenizer is a class that creates tokens. Tokenizers take input streams from text and, by
applying logic for determining the logical beginning and end of a possible term, create
tokens. Figure 7-2 illustrates one type of tokenizer, an alphabetic one.

A typical tokenizer might break the string

I’'m going on a date with R2D2 to the Galaxy Restaurant
into the tokens:

| date the
M with Galaxy

Understanding Tokenizers

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

going R Restaurant
on D

a to

Figure 7-2 A tokenizer

IATokenStream

A StringTerm
extracts _ ~

7
7

7

AlphaTokenizer

A

| gets characters from

|
I gets token stream from DocTextCharStream
|

SimpleAnalysis

AlphaTokenizer, the example tokenizer provided with SimpleAnalysis, creates a token
stream from an input character stream. AlphaTokenizer, as any subclass of
IATokenStream, provides a GetNextToken function. It creates tokens by selecting
contiguous “chunks” of alphabetic characters under a maximum length. Non-alpha
characters are skipped (however a new token is begun following non-alphabetic
characters).

The AlphaTokenizer uses the ANSI function i sal pha() to determine alphabetic
characters.

This tokenizer only works with 8-bit characters; if you are using a larger character such
as UNICODE, you must provide another tokenizer.

Applications may wish to create their own tokenizer for the initial creation of tokens.

Understanding Tokenizers 7-5

Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Understanding Filters

A filter is also a subclass of [ATokenStream. Unlike tokenizers, however, they depend
upon receiving a token stream as input. Filters also provide the “Get Next Token”
facility; they only pass on tokens that are acceptable or that have been changed to be

acceptable.
Figure 7-3 Token and filter classes
IATokenStream
IATokenFilter AlphaTokenizer
gets characters from
IACharStream
DowncaseFilter ShortWordFilter
DocTextCharStream

Existing Filters

Two sample filters are provided with IAT: Short Word Filter and Downcase Filter.

The Short Word Filter requires a source token stream. Its GetNextToken function will get
the next token from that stream until it finds a token equal to or greater than its
minimum length. The default minimum length (used by SimpleAnalysis) is three.

Understanding Filters
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

The DowncaseFilter turns all uppercase characters to lowercase using the ANSI function
t ol ower ().

Other common types of filters, which applications will probably want to provide,
include stop word filters and stemmers. Stop Word filters match the tokens against a list
of tokens which are not desired for a given application. In the example in Figure 7-4,
“with” and “the” are likely to be stopped by a common stop list. Stemmers remove
affixes (which are generally suffixes in English) to recognize common variations of a
term. For example, “going” would be reduced to “go.” This results in a normalization of
terms.

Successive Filtering

A token stream is successively passed through a series of filters to achieve the desired
effect. Figure 7-4 illustrates one such sequence.

Understanding Filters 7-7
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Figure 7-4 lllustration of sequential filtering

I'm going on a date with R2D2 to the Galaxy Restaurant

AlphaTokenizer

7 L]
g

StopWordFilter

date
 Caong

Filter Sequence

The sequence of filtering is important. For example, a stemmer would have to filter

Understanding Filters
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

following the short word filter. Otherwise the shortened forms produced by the stemmer
might be filtered out as too short. A stop word list may have to be filtered to match the
filtered term against it. If a stop word list includes words with upper case letters, for
example, it would have to be matched to terms before they have their letters converted
to lower case. If, however, the stop word list itself was filtered to be in lower case, it
should not be matched until after the downcase filter.

Creating Analysis Subclasses

Creating a SimpleAnalysis Subclass

IAT provides one instantiable analysis class, SimpleAnalysis. This uses an alphabetic
tokenizer, converts all terms to lower case, and filters out any token less than three
characters.

You can create an stronger analysis than Simple Analysis by creating a subclass of
SimpleAnalysis and adding additional filters.

Required Functions

GetProtoTerm
MakeTokenStream

Example

This example adds a stop list filter to simple analysis by creating a subclass,
StopWord Analysis.

Creating Analysis Subclasses 7-9
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category
Figure 7-5 Analysis subclass
Simple Analysis IATokenFilter
IAT
Application
StopWordAnalysis StopWordFilter
Listing 7-1 SimpleAnalysis subclass header

cl ass StopWrdAnal ysis : public SinpleAnalysis {
public:
St opWor dAnal ysi s() : Sinpl eAnal ysis() {}
St opWor dAnal ysi s( St opWor dAnal ysi s& sa)
Si npl eAnal ysi s(sa) {}
| ATokenSt r eant MakeTokenSt r ean( | ADocText * text);
| ATer nt Get ProtoTerm();

| AOr der edSt or abl eSet * st opset;
b

Listing 7-2 SimpleAnalysis subclass body

| ATokenSt r eant St opWor dAnal ysi s: : MakeTokenSt r eam
(1 ADocText* text) {
| ATokenSt r eant dncase Si npl eAnal ysi s: : MakeTokenSt rean(t ext);
| ATokenSt reant stopwd = new St opWor dFi | t er (dncase) ;
return stopwd,

Creating a Subclass of IAAnalysis

If you wish to use a different tokenizer or omit one of the filters in SimpleAnalysis, you
may wish to create a subclass of IA Analysis. See “IAAnalysis” on page 7-24 for detailed
information on its contents.

7-10 Creating Analysis Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

The code in Listing 7-3 and Listing 7-4 demonstrates how to subclass IA Analysis — in
this case, to build SimpleAnalysis.

Required Functions

GetProtoTerm
MakeTokenStream

Example

Listing 7-3 IAAnalysis subclass header

#i ncl ude "1 AAnal ysi s. h"
const ui nt 32Si npl eAnal ysi sType = 'Siml';

class SinpleAnalysis : public I AAnalysis {

public:
Si mpl eAnal ysi s() : | AAnal ysi s(Si npl eAnal ysi sType) {}
Si npl eAnal ysi s(Si npl eAnal ysi s& sa) : | AAnal ysis(sa) {}
| ATokenSt r eant MakeTokenSt r ean( | ADocText * text);
| ATer nt Cet ProtoTerm();
Listing 7-4 IAAnalysis subclass body
#i ncl ude " Si npl eAnal ysi s. h"
#i ncl ude "DocText Char Stream h"
#i ncl ude "Al phaTokeni zer. h"
#i ncl ude "DowncaseFilter.h"
#i nclude "ShortWrdFilter. h"

4

ncl ude "StringTerm h"

| ATokenSt reant Sinpl eAnal ysi s:: MakeTokenSt ream( | ADocText* text) ({
return new DowncaseFilter
(new ShortWordFil ter
(new Al phaTokeni zer
(new DocText Char Stream(text))));

Creating Analysis Subclasses 7-11
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

| ATern* Si npl eAnal ysi s:: GetProtoTerm() {
return new StringTerm("");

Creating a Subclass of IATokenFilter

The core of a new filter is the implementation of GetNextToken, which takes the next
token offered by the source IATokenStream, and weeds it out or alters it before passing it
on.

See “IATokenFilter” on page 7-33 for detailed information on the abstract base class.

The StopWordFilter created in this example establishes the ordered storable set of stop
words when it is constructed and places its input IATokenStream into sour ce.

Required Functions

GetNextToken

Listing 7-5 StopWordFilter header

7-12

#i ncl ude "Si npl eAnal ysi s. h"
#i ncl ude "HFSSt or age. h"
#i ncl ude "1 ASt orabl e. h"

class StopWordFilter : public | ATokenFilter {
public:
St opWordFil ter (1 ATokenStreant s);
virtual | AToken* Get Next Token();
pr ot ect ed:
| AOr der edSt or abl eSet * st opset;

Creating Analysis Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Listing 7-6 StopWordFilter implementation of GetNextToken

| AToken* St opWordFilter:: Get Next Token() {
for (I1AToken* token = source->Get Next Token(); token
t oken = source->Cet Next Token()) {
| ATermt stopTerm = (| ATernt) st opset->Get (t oken->term;
if (!stopTernm) {
return token;
} else {
del et e t oken;
}
}

return Nil;

Creating a Subclass of IATerm

You may create a subclass of IATerm if you would like to create a custom constructor, or
if you need to provide additional type conversions such as char” to byte*. You may not,
however, change the implementation of its order, LessThan or Equal , or of its format,
St or e or Rest or e, as the current index logic is dependent upon the existing order and
format.

See “IATerm” on page 7-27 for detailed information on the abstract class.

Required Functions

None

Creating a Text Utility

DocTextCharStream is an IAT-provided utility class that reads buffers of text from the
HFSDoc.

You may need to provide another implementation for your documents.

Required Functions

GetNextBuffer

Creating Analysis Subclasses 7-13
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Example

Listing 7-7 DocTextCharStream header

#i ncl ude "I AChar Stream h"
#i ncl ude "I ACor pus. h"

cl ass DocText Char Stream : public | AChar Stream {
public:
DocText Char Stream() : |ACharStream(), docText (NULL) {}
DocText Char St rean{ | ADocText * text)
| AChar Strean(), docText(text) {}
~DocText Char Stream() ;

ui nt 32CGet Next Buf f er (char* buffer, uint32 bufferlLen);

private:
| ADocText *docText ;

s

Listing 7-8 DocTextCharStream body

#i ncl ude "DocText Char Stream h"
DocText Char St r eam : ~DocText Char St rean() {

del et e docText;

ui nt 32 DocText Char Stream : Get Next Buf fer (char* buffer, uint32 bufferLen) {
return docText->CGet Next Buf fer((byte*)buffer, bufferLen);

7-14 Creating Analysis Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Analysis Class Category Reference

Header Files in the Analysis Class Category

AlphaTokenizer.h

AlphaTokenizer

DocTextCharStream.h

DocTextCharStream

DowncaseFilter.h

DowncaseFilter

IAAnalysis.h

IAAnalysis
IATerm
IAToken
IATokenStream
IATokenFilter

IACharStream.h

IACharStream

Analysis Class Category Reference 7-15
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category
ShortWordFilter.h

ShortWordFilter
SimpleAnalyis.h

SimpleAnalysis
StringTerm.h

StringTerm
7-16 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Class Specifications

AlphaTokenizer Class

Header: AlphaTokenizer.h

Hierarchy

Public subclass of IATokenStream. See “IATokenStream” on page 7-35.

Description

AlphaTokenizer breaks a stream of characters into tokens. These tokens are contiguous
alphabetic characters (as determined by the ANSI function i sal pha). Non-alphabetic
characters cause the end of a token and are removed from the stream.

Tokens longer than 63 characters are broken into smaller tokens. This number may be
changed by altering the constant Al phaTokeni zer MaxTokenLen.

Analysis Class Category Reference 7-17

Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Relationships

Figure 7-6 AlphaTokenizer relationships

StringTerm

!

extracts

AlphaTokenizer

A

DocTextCharStream

gets characters from

I gets token stream from

SimpleAnalysis

filters

—>_

DowncaseFilter

AlphaTokenizer gets characters from DocTextCharStream

An AlphaTokenizer gets its input from a single DocTextCharStream, given to it at the

time of construction.

AlphaTokenizer extracts IAToken

An AlphaTokenizer finds many IATokens in the text stream.

Clients

See “Simple Analysis gets tokens from AlphaTokenizer” on page 7-44.

7-18 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97




CHAPTER 7

Analysis Category

Public Member Functions

constructor(IACharStream* stream)

Input
| AChar Streant stream
The character stream that will provide characters to the tokenizer.
Usage
| ATokenSt r eant Subcl assAnal ysi s: :
MakeTokenSt rean( | ADocText* text) {
return new DowncaseFilter(new ShortWrdFilter(new
Al phaTokeni zer (new DocText Char Stream(text))));
}
destructor
Notes
Deletes charStream.
GetNextToken
Output
| AToken*
The next alphabetic token found in the stream of characters. Returns
NULL at end of stream.
Usage

for (IAToken* token = ts->CetNext Token(); token;
t oken = ts->Get Next Token()) {
posting.term = token->term

Analysis Class Category Reference 7-19
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

GetTextSpan

See “IATokenStream.GetTextSpan” on page 7-37.

Protected Member Functions

GetCharStream

Access method for AlphaTokenizer member data.

Qut put
I AChar St r eant char St ream
A pointer to the input character stream. This stream is deleted upon
destruction.
GetStreamBuffer
Access method for AlphaTokenizer member data.
CQut put
char* buf fer
Holds the token in progress.
SetCharStream
Access method for AlphaTokenizer member data.
I nput
I AChar St r eant char St r eam
A pointer to the input character stream. This stream is deleted upon
destruction.
7-20 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

SetStreamBuffer

Access method for AlphaTokenizer member data.

I nput
char* buf fer
Holds the token in progress.
DocTextCharStream
Header: DocTextCharStream.h
Hierarchy
Subclass of IACharStream.
Description
The DocTextCharStream is a utility that selects text from IADocs. SimpleAnalysis
provides DocTextCharStream as an input to the creation of the AlphaTokenizer.
Relationships
DocTextCharStream gets chars from IADocText
One DocTextCharStream gets its characters from IADocText.
AlphaTokenizer gets char stream from DocTextCharStream
In the implementation of Simple Analysis, AlphaTokenizer is created with a
DocTextCharStream. See AlphaTokenizer for more information.
Analysis Class Category Reference 7-21

Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class



CHAPTER 7

Analysis Category

Public Member Functions

constructor

constructor(IADocText* text)

Input
| ADocText * text
The text of the document to be analyzed.
Usage
| ATokenSt reant Subcl assAnal ysi s::
MakeTokenSt rean( | ADocText * text) {
return new DowncaseFilter(new ShortWrdFilter(new
Al phaTokeni zer (new DocText Char Stream(text))));
}
destructor
Deletes the input text.
GetNextBuffer
Input
char* buffer
The pointer to the buffer.
ui nt 32 bufferLen
The size of the buffer to read.
Output
ui nt 32 char sRead
The number of characters read. 0 if no more buffers.
7-22 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Notes
Returns a character pointer to the buffered data.
Usage
ui nt 32 charsRead = Get Next Buf fer (buffer, |AD skBl ockSi ze);
DowncaseFilter Class
Header: DowncaseFilter.h
Hierarchy
Public subclass of IATokenFilter. See “IATokenFilter” on page 7-33.
Description
Downcase filter is an available filter for analysis. It changes any tokens in the token
stream to be all lower case. DowncaseFilter uses the ANSI function t ol ower .
All terms provided to the Downcase Filter must be StringTerms.
Clients

See “Simple Analysis filters tokens through DowncaseFilter” on page 7-44.

Public Member Functions

constructor(IATokenStream™ stream)

Input

| ATokenSt r eant stream
The stream of tokens to be filtered.

Analysis Class Category Reference 7-23
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Usage
| ATokenSt reant Subcl assAnal ysi s::
MakeTokenSt rean( | ADocText * text) {
return new DowncaseFilter(new ShortWrdFilter(new
Al phaTokeni zer (new DocText Char Stream(text))));
}
GetNextToken

See “IATokenStream.GetNextToken” on page 7-43.

Class IAAnalysis

Header: IAAnalysis.h

Hierarchy

Abstract Base Class.

Description

IA Analysis is the base class for the provision of terms from given text. It is used by the
index class to locate terms in text provided by the corpus.

Relationships

IAAnalysis makes IATokenStream

An analysis makes one token stream.

7-24 Analysis Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Public Member Functions

constructor(uint32 type)

Input
ui nt 32 type
A constant that indicates which type of analysis was built. This allows
easier reconstruction of existing indexes.
Usage
(SimpleAnalysis is a subclass of IA Analysis)
I nvertedl ndex i ndex(storage,
new HFSText Fol der Cor pus(f ol der Nane) ,
new Si npl eAnal ysi s(Si npl eAnal ysi sType) ) ;
Initialize
Virtual.
Input
| ASt or age* st orage
Open or initialized storage.
| ABl ockl D anal ysi sRoot
A root block allocated to store analysis items.
Notes
Initializes persistent state, writing analysis parameters to storage.
Usage:

anal ysi sRoot = storage->Allocate();
anal ysis->lnitialize(storage, anal ysi sRoot)

Analysis Class Category Reference 7-25
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

GetProtoTerm

Pure virtual.

Output
| ATer ¥
The type of term produced by this analysis
Notes
Returns a prototype term, for bootstrapping sets of terms.
Usage
term nfoSet = | AMakeOr der edSt or abl eSet
(MakeTer m nf o(anal ysi s->Get Prot oTern(), 0));
MakeTokenStream
Pure virtual.
Input
| ADocText * docText
Document text as received from the corpus.
Output
| ATokenSt r eant
A stream handler for the tokens found in the text.
Notes
Builds and returns a tokenizer. The resulting token stream may be filtered through other
[ATokenFilters.
Usage
| ATokenStreant ts = i ndex->anal ysi s- >MakeTokenSt r eam
(i ndex- >cor pus- >Get DocText (doc) ) ;
7-26 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Listing 7-9 Sample implementation of filtered MakeTokenStream

| ATokenSt reant Sinpl eAnal ysi s:: MakeTokenSt ream( | ADocText* text) {
return new DowncaseFilter
(new ShortWordFilter
(new Al phaTokeni zer
(new DocText Char Stream(text))));

Open
Virtual.
Input
| ASt or age* st orage
Allocated and opened storage.
| ABI ockl D anal ysi sRoot
Allocated block for the analysis.
Notes
Reads persistent state, checking that it's consistent with current parameters.
Usage
anal ysi sRoot = input->ReadU nt32();// reading fromindex root
anal ysi s- >Qpen( st orage, anal ysi sRoot);
[ATerm Class
Header: IAAnalysis.h
Hierarchy
Public subclass of IAOrderedStorable. See “IAOrderedStorable” on page 10-14.
Description

An IATerm is the unit of indexing used in IAT.

Analysis Class Category Reference 7-27
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Clients

See “IAToken contains IATerm” on page 7-31.

See “TermInfo contains IATerm” on page 5-60.

Public Member Functions

constructor (const byte* buffer, uint32 length);

Input
const byte* buffer
Pointer to the term.
uint32 length
The length of the term.
Usage
new | AToken(new StringTerm(buffer, i), start,
char Stream >Current Pos() - 1);
destructor
Frees data.
DeepCopy
See “IAStorable.DeepCopy” on page 10-28.
Equal
See “IAOrderedStorable.Equal” on page 10-15. Subclasses should not override this
function.
7-28 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

EqualNonVirtual

const

Input
const | AOrderedStorabl e* nei ghbor
Output
bool
True if equal, false if not.
Notes
Non-virtual implementation of Equal() for use by performance-critical code.
Implemented version tests equality by word rather than byte.
GetData
Access method for [ATerm member data.
CQut put
byt e* dat a
The contents of the term. Allocated with IAMallocArraySized. This is
stored in a uint32-aligned array created by AllocData.
GetDataLength
Access method for IATerm member data.
Qut put
ui nt 32 dat aLen
The length of the term.
LessThan

See “IAOrderedStorable.LessThan” on page 10-16. Subclasses should not override this
function.

Analysis Class Category Reference 7-29
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

LessThanNonVirtual

const

Input
const | AOrderedSt orabl e* nei ghbor
Output
bool
True if less than, false if not.
Notes
Non-virtual implementation of LessThan() for use by performance-critical code.
Implemented version tests by word rather than by byte.
Restore
See “IAStorable.Restore” on page 10-28.
Store
See “IAStorable.Store” on page 10-30.
StoreSize

See “IAStorable.StoreSize” on page 10-29.

Private Member Functions

AllocData

const

7-30 Analysis Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Input
ui nt 32 datalenTerm
The number of bytes in the term.
Output
byt e* ui nt 32Dat a
A pointer to a uint32 array allocated to hold the term.
Notes
Allocates an array of uint32 corresponding to the length of the buffer. Does not load the
array.
IAToken Class
Header: IAAnalysis.h
Hierarchy
Base Class.
Description
An IAToken is a relationship between a term and a character stream. It represents a series
of characters which may be a term.
In the given implementation, IATokens are created with the AlphaTokenizer.
Relationships

IAToken contains IATerm

An IAToken contains one and only one term. A term may be in more than one token, or
no tokens once constructed.

Analysis Class Category Reference 7-31
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

IAToken is a portion of DocTextCharStream

An IAToken points to a start and end position within one character stream. A character
stream may have many IATokens.

Clients

See “IATokenStream contains IAToken” on page 7-36.

Public Member Functions

constructor (IATerm* term, uint32 start, uint32 end)

Input
| ATernt term
Term
ui nt 32 start
Start position in the character stream.
ui nt 32 end
End position in the character stream.
Usage
new | AToken(new StringTerm(buffer, i), start,
char Stream >Current Pos() - 1);
destructor
Virtual
Deletes the term.
GetEndPosition
Access method for IAToken member data.
7-32 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category
Qut put
ui nt 32 endPos
One greater than the position of the last character corresponding to this
token.
GetStartPosition
Access method for [AToken member data.
Qut put
ui nt 32 start Pos
The byte position of the first character in the text corresponding to this
token.
GetTerm
Access method for IAToken member data.
CQut put
| ATer n term
The term within the token.
[ATokenFilter
Header: IA Analysis.h
Hierarchy
Subclass of IATokenStream. See “IATokenStream” on page 7-35.
Description

An IATokenFilter is a specialized IATokenStream which depends upon an input stream
to modify. The filter will examine this stream and return only those tokens which pass its
filter, or, in some cases, return a modified token.

Analysis Class Category Reference 7-33
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class



CHAPTER 7

Analysis Category

Relationships

IATokenFilter filters IATokenStream

One token filter filters one and only one token stream at a time. One token stream may
be filtered by several filters, but is usually sent through each sequentially.

Public Member Functions

constructor(IATokenStream™ sourceStream)

Input
| ATokenStreant sourceStream
A token stream from which to extract unfiltered tokens.
Usage
(DowncaseFilter is a subclass of IATokenFilter)
| ATokenSt r eant Subcl assAnal ysi s: :
MakeTokenSt rean( | ADocText* text) {
return new DowncaseFilter(new ShortWrdFilter(new
Al phaTokeni zer (new DocText Char Stream(text))));
}
destructor
Deletes source.
GetNextToken
See “IATokenStream.’GetNextToken” on page 7-36.
Filters may bypass tokens until one is allowed to filter through.
7-34 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Listing 7-10 Sample Implementation of GetNextToken for an IATokenFilter

| AToken* DowncaseFi |l ter:: Get Next Token() {
| AToken* token = source->Cet Next Token();
if ('token) return NULL;
StringTernt term= (StringTernf)token->term
for (uint32 i = 0; i < term>TextLen(); i++)
term>Text ()[i] = tolower(term>Text()[i]);
return token;

GetTextSpan

See “GetTextSpan” on page 7-37. GetTextSpan() on a filter delegates to its source by
default.

Protected Member Data

| ATokenSt reant source
The source of tokens to be filtered.

[ATokenStream Class

Hierarchy

Header: IAAnlaysis.h

Description

Abstract Base Class.

IATokenStream is typically used as the interface between a character stream and the
index. It provides tokens from the text provided by the corpus.

There are generally two types of token streams, tokenizers or filters. Tokenizers are the
original providers of tokens constructed from the text. Filters are successive token
streams that modify or filter out the contained tokens.

Analysis Class Category Reference 7-35
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Relationships

IATokenStream contains IAToken

One token stream may contain many tokens. One token resides in one token stream.

Clients

See “IA Analysis makes IATokenStream” on page 7-24.

Public Member Functions

constructor

Only used for initialization. Operational TokenStreams are constructed through
IA Analysis.MakeTokenStream(). See page page 7-26.

GetNextToken

Pure virtual.

Output
| AToken* t oken
Next token in the stream, or Nil if at end of the stream.

Usage

for (I AToken* token = ts->Get Next Token(); token;

token = ts->Cet Next Token()) {
posting.term = token->term

}

7-36 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

GetTextSpan

Input

byt e* buffer
Destination address for the span.

ui nt 32 start Pos
Start position in the character stream.

ui nt 32 endPos
End position in the character stream.

Notes

Copies into the destination a span of bytes from the source text. The span must start less
than a buffer before the end of the last token read, and it may not extend past the end of
the last token read. If it starts more than a buffer before, AnalysisSpanUnavailable is
signalled.

Used to create a byte* copy of the term contents.

Usage

for (IAToken* token = ts->Cet Next Token();
t oken; token = ts->Get Next Token()) {
t s- >CGet Text Span( (byte*) buffer, token->startPos, token->endPos);

}

IACharStream Class
Header: IACharStream.h

Hierarchy

Base class.

Description

An TACharStream supplies a stream of characters to a tokenizer.

To access a stream of characters from the text of a document, use the subclass
DocTextCharStream.

Analysis Class Category Reference 7-37
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Public Member Functions

constructor

destructor

Deletes the text buffers.

AdvanceTo
Virtual.
Input
ui nt 32 desiredPosition
The desired position in the character stream.
Notes

Places the position in the character stream at the desired position. Will fail with a VTWN
exception if the desired position is before the current position or after the end of the set.

Subclasses may wish to implement a specialized faster version of this function.

Usage
/1 read ahead 5
ui nt 32 desiredPosition = currentPostion + 5;
cs- >AdvanceTo( desi r edPosi ti on)
CurrentPos
Inline.
Output
ui nt 32 current Pos
The current position in the character stream.
7-38 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Usage
// note start of token
uint32 start = charStream >CurrentPos() - 1;
GetBuffer
Access method for IACharStream member data.
CQut put
char* buf f er
A pointer to the current buffer of characters.
GetBufferPos
Access method for IACharStream member data.
Qut put
ui nt 32 buf f er Pos
Position of the first character in the buffer.
GetEndChar
Access method for IACharStream member data.
CQut put
char* endChar
A pointer to the end of the current buffer.
GetNextChar
Input
bool * eos
False upon input. Returns Tr ue if the read is past the end of the set.
Analysis Class Category Reference 7-39

Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



Output

Notes

CHAPTER 7

Analysis Category

char
The next character past the current position in the buffer; NULL if past end of buffer.

Eos is assumed to be false, and is only set when eos is reached (read past end of buffer).
When eos is set, the return value should be ignored.

char c;

/1 skip non-al pha characters

do {
¢ = char Stream >CGet Next Char ( &eof ) ;
if (eof) return NULL;

} while (!isalpha(c));

GetNextCharInBuffer

Qut put

Access method for IACharStream member data.

char* next Char
A pointer to the next character to read in buffer.

GetTextSpan

Input

Notes

7-40

char* buffer
ui nt 32 start Pos

ui nt 32 endPos

This can be used by a client to report the range of bytes in which a matching term
occurred (“key word in context”).

Analysis Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

SetBuffer
Access method for IACharStream member data.
I nput
char* buf f er
A pointer to the current buffer of characters.
SetBufferPos
Access method for IACharStream member data.
I nput
ui nt 32 buf f er Pos
Position of the first character in the buffer.
SetEndChar
Access method for IACharStream member data.
I nput
char* endChar
A pointer to the end of the current buffer.
SetNextCharInBuffer
Access method for IACharStream member data.
I nput

char* next Char
A pointer to the next character to read in buffer.

Analysis Class Category Reference 7-41
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



Class

CHAPTER 7

Analysis Category

Protected Member Functions

GetNextBuffer

Input
char* buffer
The pointer to the buffer.

ui nt 32 bufferlLen
The size of the buffer to read.

Output
ui nt 32 char sRead
The number of characters read. 0 if no more buffers.
Notes
Returns a character pointer to the buffered data. Subclasses must implement only this
one method.
Usage
ui nt 32 charsRead = Get Next Buf f er (buffer, |AD skBl ockSi ze);
ShortWordFilter
Header: ShortWordFilter.h
Hierarchy
Public subclass of IATokenFilter. See “IATokenFilter” on page 7-33.
Description
An IATokenFilter that will not pass tokens over a minimum length. The default length is
three characters.
7-42 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Public Member Functions

constructor(IATokenStream™ sourceStream, uint32 1 = MinWordLength)

Input

| ATokenStreant sourceStream

The input token stream.
uint32 I = M nWrdLength
The smallest length of token to allow through.

Notes

M nWor dLengt h is a constant defined in the header. Current value is 3.
Usage

| ATokenSt r eant Subcl assAnal ysi s: :

MakeTokenSt rean( | ADocText* text) {
return new DowncaseFilter(new ShortWrdFilter(new
Al phaTokeni zer (new DocText Char Stream(text))));

}
GetNextToken

See “IATokenStream.GetNextToken” on page 7-36.
SimpleAnalysis Class

Header: SimpleAnalysis.h
Hierarchy

Public subclass of IA Analysis. See “IA Analysis” on page 7-24.
Description

A version of IA Analysis that provides lower-case alphabetic tokens over two characters
long.

Analysis Class Category Reference 7-43
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Relationships

Simple Analysis gets tokens from AlphaTokenizer

Simple Analysis gets tokens from one AlphaTokenizer.

Simple Analysis filters tokens through DowncaseFilter

Simple Analysis filters tokens through one downcase filter.

Simple Analysis filters tokens through ShortWordFilter

Simple Analysis filters tokens through one short word filter.

Constants

const uint32 Si npl eAnal ysi sType = 'Siml';

Public Member Functions

constructor
Usage
I nvertedl ndex i ndex(storage,

new HFSText Fol der Cor pus(f ol der Nane) ,
new Si npl eAnal ysi s());

Notes

The type is constant and established with the default construction.
7-44 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

copy constructor(SimpleAnalysis& sa)

GetProtoTerm

See “IAAnalysis.GetProtoTerm” on page 7-26.

MakeTokenStream

See “I1AAnalysis.MakeTokenStream” on page 7-26. SimpleAnalysis uses AlphaTokenizer,
DowncaseFilter and ShortWordFilter. The result is terms of 3 or greater alphabetic
characters in lower case.

StringTerm Class

Header: StringTerm.h

Hierarchy

Public subclass of IATerm.

Description

String Term is the term produced by the AlphaTokenizer. It uses characters rather than
bytes.

Public Member Functions

constructor(const char” text)

Input

char* t ext
The IATerm text converted to characters.

Analysis Class Category Reference 7-45
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

constructor(const char* text, uint32 length)

Input
char* t ext
The IATerm text converted to characters.
ui nt 32 | ength
the number of characters in the string
DeepCopy
See “IATerm.DeepCopy” on page 7-28.
Text
Qut put
char* t ext
The IATerm text converted to characters.
TextLen
Qut put
ui nt 32 text Len
The number of characters.
7-46 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Constants

Al phaTokeni zer MaxTokenLen=63
The maximum length of a token

uint32 M nWrdLength = 3
The length of a token the Short Word Filter will allow through. Tokens
with fewer characters than this are filtered out of the token stream.

ui nt 32 Si npl eAnal ysi sType = 'Siml';
The identifier of the simple analysis type.

Analysis Class Category Reference 7-47
Confidential — do not redistribute.. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 7

Analysis Category

Exceptions

VASU
Anal ysi sSpanUnavai | abl e.
Thrown by IA Analysis.

VTSU
Text SpanUnavai | abl e.
Thrown by IACharStream.

7-48 Analysis Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Introduction 3
The HFS Implementation 4
HFS Corpus 4
HFSTextFolderCorpus 5
Common Procedures 5
Using a Corpus to Provide Documents 5
Creating a New Corpus 6
Establishing an Existing Corpus 7
Using an HFSCorpus to Locate a Document in HFS
Creating Corpus Subclasses 7
Creating a Subclass of IACorpus 8
Creating a Subclass of IADoc 9
Creating a Subclass of IADoclterator 10
Creating a Subclass of IADocText 11
Creating a Subclass of HFSIterator 13
Corpus Class Category Reference 16
Header Files in the Corpus Category 16
Class Specifications 17
DirectoryInfo 17
HFSCorpus 17
HFSDoc 21
HFSDocText 25
HFSVolumelnfo 29

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



8-2

CHAPTER 8

Corpus Category

HFSIterator 32
HFSTextFolderCorpus 35
HFSTextFolderDoc 39
IACorpus 41

IADoc 47

IADoclterator 49
IADocText 50

Constants 51

Exceptions 51

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Introduction

In the field of information retrieval a “corpus” is a collection of documents being
searched. In IAT the corpus class provides the tools for identifying a set of documents as
a collection and providing text from these documents so they can be indexed.

The corpus is the interface between documents and the index. The corpus locates the
document files and provides buffer text from these documents to the index and analysis
objects. The corpus maintains the location of the collection of documents and, optionally,
provides an iterator through them.

Figure 8-1 shows the relationships between the abstract classes.

Figure 8-1 Corpus relationships

IADoclterator

A

obtains in order

I constructs
I

|
IACorpus IADoc

obtains from document file

IADocText

Each index has a single corpus; that is, the documents within an index must be of the
same type.

The actual use of a corpus is closely coupled to an index; the index classes are the major
clients of the corpus classes. There is no given way to store a corpus except through an
index. The index Updat e function uses the corpus iterator to review all documents

Introduction 8-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

within the corpus and update the index as required. The index locates terms by feeding
the analysis text read from the documents through the corpus.

IAT provides an implementation that supports HFS files and interfaces to the collection
of text files within an HFS Folder. If you require the ability to index documents of
another file type, you must construct a corpus subclass for that type.

The HFS Implementation

There are two implementations of the corpus abstract classes. HFSCorpus provides
access to the text in HFS files. HFSTextFolderCorpus provides, in addition, the ability to
iterate through a folder and its subdirectories and select text documents.

Figure 8-2 shows these implementations.

Figure 8-2 HFS instantiation of corpus classes

HFSDoc

reads

HFSCorpus

unsigned short vRefID
short dirlD;
StringPtr fileName;

HFSVolumelnfo** volumelnfos;

extracts

a_

HFSVolumelnfo

short vRefNum;

HFSDocText
HFSDocText
(short vRefNum,
long dirID,
HFSTextFolderDoc reads HFSTextFolderCorpus StringPtr name);
long modDate; long rootDirld;
traverses folders
HFSlterator
HFSlterator(short vRefNum, long rootDirld=2)
CinfoPBRec* pb
HFS Corpus

The HFS Corpus characterizes the set of documents. It contains a mapping to which
volumes the documents reside on. The HFS-provided vRefNum cannot be used as a
persistent identifier of a document as it may change when the system is rebooted (it

The HFS Implementation

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

depends on the order in which devices are mounted). IAT has assigned its own
persistent vRefID to each volume, and maintains a mapping of the vRefID to the
vRefNum within HESCorpus.

HFSDoc contains the information to locate a document: its vRefID, dirID, and fileName.

The HFS Corpus can be used to extract text from given HFS text documents. It has no
iterator; that is, it may not be used, without further subclassing, with the Update()
function of an index. Updates must be individually done.

HFSTextFolderCorpus

The HFSTextFolderCorpus is a subclass of the HFSCorpus. It maintains an iterator that
chooses, from a given folder, any document with file type ‘“TEXT’ within that folder or
folders it contains.

HFSTextFolderDoc contains a modification date. Only those text documents modified
since the last update are submitted for re-analysis.

The HFSlterator is a utility used within the private implementation of the HFSCorpus
iterator. This utility will navigate through all the folders within a given root directory ID
and return the next available document of any type.

The HESTextFolderCorpus will iterate through all folders and contained folders and
select text documents from them.

Common Procedures

Using a Corpus to Provide Documents

Using the corpus document iterator can provide all documents currently in the corpus,
whether or not indexed.

The example illustrates listing all the documents in an HFS Text Folder.

Common Procedures 8-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Figure 8-3 Interaction diagram for iterating through a corpus

anlACorpus anlADoclterator anlADoc

GetDoclterator() ! |

_ _ _ hewg |
GetNextDoc() |
-
o _ _ _ hewy

Listing 8-1 List text files

/1 build the corpus
HFSText Fol der Cor pus anHFSText Fol der Cor pus(f ol der Nane) ;
printf ("9%2.30s\n", fol der Nane);

/1 get an iterator through the corpus
| ADoclterator* anl ADoclterator = anHFSText Fol der Cor pus. Get Doclterator();
HFSText Fol der Doc* anHFSText Fol der Doc;
whi | e (anHFSText Fol der Doc =
( HFSText Fol der Doc*) anl ADocl t er at or - >Get Next Doc()) {
/1 NULL when no nore text docs in fol der
printf("\t");
Pri nt DocNane( anHFSText Fol der Doc) ;
printf("\n");

Creating a New Corpus

A corpus is stored though its index. Generally a corpus is created at the same time an
index is created. See “Creating an Index” beginning on page 5-8.

8-6 Common Procedures
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Establishing an Existing Corpus

The corpus is stored through its index. To establish an existing corpus, you must first
establish its index (See “Establishing an Existing Index” on page 5-11) and then address
the corpus data member. The corpus is stored in the index as an IACorpus.

Listing 8-2 Establishing an existing corpus

/1 establish the existing index containing the corpus
/1 (see “Establish an existing index” on page 5-13 for exanple)
anl nVecl ndex. Qpen();

Using an HFSCorpus to Locate a Document in HFS

The file information for an HFSDoc can be found by using public access methods.

Vol unme Ref erence Number
anHFSCor pus- >CGet VRef Num{ anHFSDoc- >Cet Vol uneRef | () )

Directoryl D
anHFSDoc->CGet Dir |l ()

Fi | enane
anHFSDoc- >Get Fi | eNare()

HFSTextFolderCorpus provides this information:

Vol ume Reference Nunber of root text fol der
anHFSText Fol der Cor pus- >Cet Vol uneRef Num()

Directory ID of the root folder
anHFSText Fol der Cor pus- >Get Root Di r | ()

See “The HFS Implementation” on page 8-4 for more information on vRefID and
vRefNum.

Creating Corpus Subclasses

If you need to create a corpus subclass, you generally need to create several subclasses:
One of IACorpus, to characterize the set of documents

One of IADoc, to provide information to uniquely identify and locate a single document
One of IADocText, to obtain a text string from the document.

You may also need to provide a subclass of IADoclterator if you wish to provide an
index Update() function.

Creating Corpus Subclasses 8-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

The following examples use the HFS corpus implementation as an example. Specifically,

we show how the HFSCorpus class is derived from IACorpus, and how its associated
classes (such as HFSDoc) are derived from their base classes (in this case, IADoc).

Creating a Subclass of IACorpus

You may wish to create a subclass of IACorpus to access documents for an
implementation other than the provided HFS Corpus.

See “IACorpus” beginning on page 8-41 for detailed information on this class.

Required Functions

s GetProtoDoc (establishes which type of document is accessed through this corpus)
s GetDocText (provides the text from the document).

Listing 8-3 Sample header file of an IACorpus subclass

cl ass HFSCor pus : public | ACorpus {
public:

HFSCor pus(ui nt 32 type = HFSCor pusType)
vol unel nf os(NULL), vol uneCount (0), 1 ACorpus(type) {}
~HFSCor pus() ;

/1 1 ACor pus net hods
| ADoc* Get Pr ot oDoc() ;
| ADocText* GCet DocText (const | ADoc* doc);

/1 HFSCor pus- speci fi c met hods
unsi gned short Get VRef | D(short vRef Num ;

short Cet VRef Nun( unsi gned short vRefl D)
pr ot ect ed:
| ABl ockSi ze Initial Size();
voi d I nitializing(lACutputBl ock* output);
voi d Openi ng( | Al nput Bl ock* i nput);
| ABl ockSi ze Updat eSi ze() ;
voi d Updat i ng( | ACut put Bl ock* out put);
voi d Del et eVol unrel nf os() ;
voi d Set Vol unel nf os (HFSVol unel nf o** vi nf 0s)

8-8

{vol unel nfos = vinfos;}

Creating Corpus Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category
voi d Set Vol uneCount (short vCount) {vol uneCount = vCount;}
HFSVol unel nf o* * Cet Vol unel nfos () const {return vol unel nfos;}
short Get Vol uneCount () const {return vol uneCount;}

private:
HFSCor pus( HFSCor pus&) ;// don't define a copy constructor

HFSVol unel nf o** vol unel nfos;// array mapping fromvRefID to HFSVol unel nfo
short vol unmeCount ;// length of the array

s

Listing 8-4 Sample implementation of GetProtoDoc

| ADoc* HFSCor pus: : Get Prot oDoc() {
return new HFSDoc;

Listing 8-5 Sample implementation of GetDocText

| ADocText * HFSCor pus: : Get DocText (const | ADoc* d) {
HFSDoc* doc = (HFSDoc*)d;
return new HFSDocText ( Get VRef Num( doc- >Get Vol uneRef 1 D() ),
doc->GetDirl (), doc->CetFileNanme());

Creating a Subclass of IADoc

IADoc is the abstract class for the interface to the physical document. Any
implementation must contain the data required to locate the actual document. Creating
an implementation of IADoc requires a matching implementation of IADocText.

See “IADoc” beginning on page 8-47 for detailed information on this class.

An IADoc is an IAOrderedStorable. See “Creating a Subclass of IAOrderedStorable” on
page 10-6 for more information.

Listing 8-6 Sample header of an IADoc subclass

cl ass HFSDoc : public | ADoc {
public:

HFSDoc ( HFSCor pus* cor pus, short vRef Num
long dirlD,
const StringPtr nane);
HFSDoc() : fil eName(NULL) {}

Creating Corpus Subclasses 8-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

vi rtual

| ASt or abl e*
| ABl ockSi ze
voi d

| ASt or abl e*

bool
bool

/1 HFSDoc specific
byt e*

voi d
voi d
voi d

unsi gned short

~HFSDoc() ;

DeepCopy () ;

StoreSi ze();

St or e( | AQut put Bl ock* out put);
Rest or e( | Al nput Bl ock* input);

LessThan(| AOr der edSt or abl e* nei ghbor) ;
Equal (1 AOr der edSt or abl e* nei ghbor) ;

Get Nanme(ui nt 32 *1 ength);

Set Vol uneRef | D(unsi gned short vrid)
{vRefID = vrid;}

SetDirl DXl ong dlI D
{dirID = dID;}

Set Fi |l eNane(StringPtr nane)
{fileNanme = nane;}

Get Vol uneRef I () const {return vReflD;}

| ong GetDirl D) const {return dirlD;}
StringPtr Cet Fil eNane() const {return fil eNane;}
pr ot ect ed:
voi d DeepCopyi ng( | ASt or abl e* source);
voi d Rest ori ng(| Al nput Bl ock* i nput,
| ASt or abl e* proto);
private:
HFSDoc ( HFSDoc& fd) ;
unsi gned short vRef | D
| ong dirlD;
StringPtr fil eNane;
Creating a Subclass of IADoclterator
The IADoclterator will locate the documents in the corpus in sequence.
See “IADoclterator” beginning on page 8-49 for detailed information on this class.
Required Functions
s GetNextDoc()
8-10 Creating Corpus Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Listing 8-7 Sample Header for an IADoclterator subclass

cl ass HFSFol der Corpuslterator : public | ADoclterator {

public:
HFSFol der Cor pusl t er at or ( HFSText Fol der Cor pus* c)
corpus(c), hfslterator(new HFSIterator
(c->Cet Vol uneRef Num() ,
c->CetRootDirld())) {}
~HFSFol der Corpusliterator() { delete hfslterator; }
| ADoc* Get Next Doc() ;
private:
HFSText Fol der Cor pus* cor pus;
HFSI t er at or * hfslterator;
1

Listing 8-8 Sample Implementation of GetNextDoc

| ADoc* HFSFol der Cor puslterator:: Get Next Doc() {
while (hfslterator->lncrenent()) {
Cl nf oPBRec* info = hfslterator->pb;
if (info->hFilelnfo.ioFl Fndrinfo.fdType == "'TEXT') {
return new HFSText Fol der Doc( cor pus,

i nfo->hFilelnfo.ioFl Parl D,
i nf o->hFil el nfo.ioNanmePtr,
i nfo->hFil el nfo.ioFl MiDat) ;

}
return NULL;

Creating a Subclass of IADocText

IADocText provides the text from the actual document. An implementation of this must
be able to locate the document, read its content, and translate the content to text.

See “IADocText” beginning on page 8-50 for detailed information on this class.

Required Functions

s GetNextBuffer()

Creating Corpus Subclasses 8-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Listing 8-9 Sample header of an IADocText subclass

cl ass HFSDocText : public | ADocText ({

public:
HFSDocText () : ref Nun{0) {}
HFSDocText (short vRef Num | ong dirlD,
const StringPtr nane);
~HFSDocText () ;
| ADocText * DeepCopy() const;
pr ot ect ed:
voi d Set Ref Num (short rNun) {ref Num = rNun}
voi d Set TheVol uneRef Nun(short vrnum {theVRef Num = vrnum}
voi d Set TheDirI D(long did) {theDirID = did;}
voi d Set TheFi |l eNanme(StringPtr nanme) {theFil eNane = nane;}
short Get Ref Num () const {return refNum}
short Cet TheVol umeRef Num() const {return theVRef Num }
| ong GetTheDir1 D() const {return theDirlID}
StringPtr CGet TheFi | eNane() const {return theFil eNane;}
private:
HFSDocText ( HFSDocText &) ;// don't define a copy constructor
short ref Num
short t heVRef Num
| ong theDirl D
StringPtr t heFi | eNaneg;
b

Listing 8-10 Sample implementation of GetNextBuffer

ui nt 32 HFSDocText : : Get Next Buf f er (byte* buffer, uint32 bufferLength) {

8-12

| ong bytes = bufferLength;
OSErr err = FSRead(ref Num &bytes, buffer);
if (err & err != eof Err) {
| AAssertion (false, "cannot read the next buffer”, I|nvalidDocunent);

1)

return bytes;

Creating Corpus Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Creating a Subclass of HFSlterator

HFSlterator is a utility used for the HFS implementation. It can be subclassed to quickly
provide other HFS type corpora.

This iterator will, based on a volume reference number and root directory, locate all base
files in that directory. The member function | ncr enent will provide the CBInfoPBRec
information for a file in its member data, pb. When there are no more files, the function
returns False.

See “HFSlterator” beginning on page 8-32 for detailed information on the HFSIterator,
and “HFSTextFolderCorpus” beginning on page 8-35 for detailed information on this
corpus.

This example shows the use of that iterator with a custom filter to only return files that
are text files with the proper suffix (we have chosen an iterator for “.h” header files). A
subclass of IADoclterator is created to provide this custom iterator.

Listing 8-11 Creating a custom corpus iterator—header file

#pragnma once
#i ncl ude “HFSText Fol der Cor pus. h”
cl ass Hdr Corpus : public HFSText Fol der Cor pus {
publi c:
Hdr Cor pus(ui nt 32 type = HFSFol der Cor pusType)
HFSText Fol der Cor pus(type) {}
Hdr Cor pus(short vRef Num long rootDirld, uint32
type = HFSFol der Cor pusType)
HFSText Fol der Corpus( vRefNum rootDirld, type) {}
Hdr Cor pus(StringPtr rootDirPath, uint32 type =
HFSFol der Cor pusType)
HFSText Fol der Corpus( rootDirPath, type) {}
/1 inplenenting the doc iterator function
| ADoclterator* GetDoclterator();

}s

Creating Corpus Subclasses 8-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Listing 8-12 IADoclterator subclass header

#pragnma once

#i nclude “HFSIterator.h”

#i ncl ude “Hdr Cor pus. h”

#i ncl ude <string. h>

#i ncl ude <Files. h>

#i nclude <TextUWils.h>// for Rel String

#i ncl ude <Errors. h>

class HdrDoclterator : public | ADoclterator {
public:

Hdr Docl t er at or ( Hdr Cor pus* c¢)
corpus(c), hfslterator
(new HFSI t erat or (c->CGet Vol unreRef Num()
c->CGetRoot 1 IX))) {}
~Hdr Doclterator() { delete hfslterator; }

| ADoc* Get Next Doc() ;

private:
HFSText Fol der Cor pus* anHFSText Fol der Cor pus;
HFSIterat or* anHFSI t er at or

s

Listing 8-13 Corpus subclass body

8-14

| ADocl terator* Hdr Corpus:: GetDoclterator() {
return new HdrDoclterator(this);

Creating Corpus Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Listing 8-14 IADoclterator subclass body

| ADoc* HdrDoclterator:: Get Next Doc() {
while (anHFSIterator->Increnment()) {
Cl nf oPBRec* info = anHFSIterat or->pb;
if (info->hFilelnfo.ioFl Fndrinfo.fdType == *TEXT ) {
Str255 nane,
ui nt 32 nameLen =
anHFSI t er at or - >pb- >hFi | el nfo. i oNamePtr[ 0] ;
mencpy(name+l, anHFSIterator->pb->hFil el nfo.ioNamePtr+1,
nanelLen) ;
nanme[ 0] = nanelLen;
i f (name[naneLen] == ‘N’
&& nane[ naneLen-1] == *." ) {
return new HFSText Fol der Doc( cor pus,
i nfo->hFilelnfo.ioFl Parl D,
i nf o->hFil el nfo.ioNanmePtr,
i nfo->hFil el nfo.ioFl MiDat);

}

}
return NULL;

Creating Corpus Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

8-15



CHAPTER 8

Corpus Category

Corpus Class Category Reference

Header Files in the Corpus Category

HFSCorpus

DirectoryInfo

HFSCorpus
HFSDoc
HFSDocText
HFSVolumelnfo

HFSIterator

HFSIterator

HFSTextFolderCorpus

HFSTextFolderCorpus
HFSTextFolderDoc

IACorpus

IACorpus
TIADoc
IADoclterator
IADocText

8-16 Corpus Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Class Specifications

DirectorylInfo
Struct
Header: HFSCorpus.h
Data
| ong id
the id
short [ ength
the number of files
HFSCorpus
Header: HFSCorpus.h
Hierarchy
Public subtype of IACorpus. See “IACorpus” on page 8-41.
Description
A corpus implementation for Macintosh HFS files. HFSCorpus maintains a list of
volumes used in the corpus. The volumes are assigned a unique volume ID that persists
within IAT. The ID is mapped to the volume reference number. The associated class,
HFSDoc, maintains the directory ID and file name.
Relationships
HFSCorpus reads HFSDoc
1 HFSCorpus reads many HFSDoc.
Corpus Class Category Reference 8-17

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Struct

Class



CHAPTER 8

Corpus Category

HFSCorpus extracts HFSDocText

HFSCorpus extracts many HFSDocText from each HFSDoc

HFSCorpus contains HFSVolumelInfo

An HFSCorpus contains an array of HFSVolumelnfo

Public Member Functions

constructor

Input
ui nt 32 type = HFSCor pusType

destructor

Deletes volume array.

GetDocText

See “IACorpus.GetDocText” on page 8-44.

Usage

HFSDocText * best Txt =
(HFSDocText *) si ndex. cor pus- >CGet DocText ( best HFSDoc) ;

GetProtoDoc

See “IACorpus.GetProtoDoc” on page 8-44. HFSCorpus uses HFSDoc as its prototype.

8-18 Corpus Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

GetVRefID

Input

short vRef Num
The HFS Volume reference number.

Output
unsi gned short
The logical volume ID used in IAT.
Usage
unsi gned short vRefld = corpus->Get VRef | D( vRef Num ;
GetVRefNum
Input
unsi gned short vReflD
The logical reference ID assigned by IAT.
Output
short
The HFS volume reference number.
Usage

short vRef Num = cor pus->CGet VRef Num( doc- >Get Vol umreRef | () ) ;

Protected Member Functions

GetVolumeCount

Access method for HFSCorpus member data.

Corpus Class Category Reference 8-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category
Qut put
short vol uneCount
Length of the volume ID array.
GetVolumelnfos
Access method for HFSCorpus member data.
Qut put
HFSVol unel nf o**vol urel nf os
Array mapping from every vRefID to a HFSVolumelnfo.
Initializing
See “IACorpus.Initializing” on page 8-46. Establishes volume info array in storage.
InitialSize
See “IACorpus.InitialSize” on page 8-46. Computes size of volume info array.
Opening
See “IACorpus.Opening” on page 8-46. Reads volume array from storage.
SetVolumeCount
Access method for HFSCorpus member data.
I nput
short vol umeCount
Length of the volume ID array.
8-20 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

SetVolumelnfos

Access method for HFSCorpus member data.

I nput

HFSVol unel nf o**vol unel nf os

Array mapping from every vRefID to a HFSVolumelnfo.

UpdateSize

See “IACorpus.UpdateSize” on page 8-47. Computes new size of volume array.
Updating

See “IACorpus.Updating” on page 8-47. Writes volume array to storage.
HFSDoc Class

Header: HFSCorpus.h
Hierarchy

Public subclass of IADoc. See “IADoc” on page 8-47.
Client

See “HFSCorpus reads HFSDoc” on page 8-17.

Corpus Class Category Reference 8-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Public Member Functions

constructor

constructor(HFSCorpus* corpus, short vRefNum, long dirID, const StringPtr name)

Input
HFSCor pus* cor pus
The associated corpus.
short vRef Num
The HFS volume reference number of the volume where the file resides.
long dirlD
The HFS directory ID of the file.
const StringPtr name
The HFS filename.
Usage
HFSDoc docl(&cor pus, vVRef Num dirl D, nane);
destructor
Virtual.
DeepCopy
See “IAStorable.DeepCopy” on page 10-28.
Equal
See “IAOrderedStorable.Equal” on page 10-15. HFSDocs are keyed and ordered by
logical volume ID and directory ID, not by filename.
8-22 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

GetDirID
Access method for HFSDoc member data.
Qut put
| ong dirlD
The HFS directory ID of the file.
GetFileName
Access method for HFSDoc member data.
CQut put
StringPtr fil eNane
The HFS file name (not the full path). Allocated with
IAMallocArraySized. Use IAFreeArraySized to free.
GetName
See “IADoc.GetName” on page 8-48. Returns the file name, null terminated.
GetVolumeRefID
Access method for HFSDoc member data.
Qut put
unsi gned shortvRefI D
The logical volume reference ID assigned by IAT. Use the HFSCorpus
GetVRefNum() function to get the HFS volume reference number.
LessThan

See “IAOrderedStorable.LessThan” on page 10-16. HFSDocs are ordered by volumelD
and directoryID, not filename.

Corpus Class Category Reference 8-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Restore
See “IAStorable.Restore” on page 10-28.
SetDirlD
Access method for HFSDoc member data.
I nput
| ong dirlD
The HFS directory ID of the file.
SetFileName
Access method for HFSDoc member data.
I nput
StringPtr fil eNane
The HFS file name (not the full path).
SetVolumeRefID
Access method for HFSDoc member data.
I nput
unsi gned shortvRefI D
The logical volume reference ID assigned by IAT.
Store
See “IAStorable.Store” on page 10-30.
8-24 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

StoreSize

See “IAStorable.StoreSize” on page 10-29.

Protected Member Functions

DeepCopying

See “IAStorable.DeepCopying” on page 10-30.

Restoring
See “IAStorable.Restoring” on page 10-31.

HFSDocText Class
Header: HFSCorpus.h

Hierarchy
Public subclass of IADocText. See “IADocText” on page 8-50.

Client

See “HFSCorpus extracts HFSDocText” on page 8-18.

Corpus Class Category Reference 8-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Public Member Functions

constructor

constructor (short vRefNum, long dirID, const StringPtr name)

Input
short vRef Num
The HFS volume reference number of the volume on which the document
file resides.
long dirlD
The HFS directory ID of the file.
const StringPtr nane
The HFS name of the file.
Notes
Opens the document file.
Usage
return new
HFSDocText ( cor pus- >Cet VRef Nun{ doc- >Cet Vol umeRef | () ) ,
doc->GetDirlD(), doc->GetFileNane())
destructor
GetNextBuffer
See “IADocText.GetNextBuffer” on page 8-50. Reads the document file.
8-26 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Protected Member Functions

GetRefNum

Access method for HFSDocText member data.

Qut put
short ref Num
The path reference number returned when the access to the data fork was
opened.
GetTheDirID
Access method for HFSDocText member data.
CQut put
| ong theDirlD
The HFS directory ID.
GetTheFileName
Access method for HFSDocText member data.
Qut put
StringPtr theFil eNane
The HFS file name.
GetTheVolumeRefNum
Access method for HFSDocText member data.
CQut put

short t heVRef Num

The HFS volume reference number.

Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

8-27



CHAPTER 8

Corpus Category

SetRefNum

Access method for HFSDocText member data.

I nput
short ref Num
The path reference number returned when the access to the data fork was
opened.
SetTheDirID
Access method for HFSDocText member data.
I nput
| ong theDirI D
The HFS directory ID.
SetTheFileName
Access method for HFSDocText member data.
I nput
StringPtr theFil eNane
The HFS file name.
SetTheVolumeRefNum
Access method for HFSDocText member data.
I nput
short t heVRef Num
The HFS volume reference number.
8-28 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

HFSVolumelnfo Class

Header: HFSCorpus.h

Hierarchy

Public subclass of IAStorable. See “IAStorable” on page 10-27.

Description

HFSVolumelnfo is used to a map of the volume reference numbers to the creationDate
and Name of a volume. The creation date and name of the volume are persistent; the
volume reference number may vary over time if the system has been rebooted.

The HFSCorpus maintains a map of the HFSVolumelInformation to the internally used
vRefID.

When restored, HFSVolumelnfo locates the current volume reference number for the
volume name and creation date.

Client

See “HFSCorpus contains HESVolumelnfo” on page 8-18.

Public Member Functions

constructor

constructor(short vRefNum)

Input

short vRef Num
The HFS volume reference number.

Usage

newVol unel nf os[ vol uneCount] = new HFSVol unel nf o( vRef Num

Corpus Class Category Reference 8-29
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

DeepCopy

See”IAStorable.DeepCopy” on page 10-28.

GetCreationDate

Access method for HFSVolumelnfo member data.

Qut put
| ong creationDat e
Volume creation date (persistent).
GetVolumeName
Access method for HFSVolumelnfo member data.
CQut put
StringPtr name
Volume name (persistent).
GetVolumeRefNum
Access method for HFSVolumelnfo member data.
Qut put
short vRef Num
Volume reference number (persistent).
Restore
See”IAStorable.Restore” on page 10-28.
8-30 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

SetCreationDate

Access method for HFSVolumelnfo member data.

I nput
| ong creationDate
Volume creation date (persistent).
SetVolumeName
Access method for HFSVolumelnfo member data.
I nput
StringPtr name
Volume name (persistent).
SetVolumeRefNum
Access method for HFSVolumelnfo member data.
I nput
short vRef Num
Volume reference number (persistent).
Store
See”IAStorable.Store” on page 10-30.
StoreSize

See”IAStorable.StoreSize” on page 10-29.

Used to restore HFS Volume Info from storage.

Corpus Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

8-31



CHAPTER 8

Corpus Category

class HFSIterator

Header: HFSIterator.h

Hierarchy

Base Class

Description

HFSlterator is built to return any file from a given volume and directory. It will recurse
all folders to get to the actual files.

This can be used to determine which files, given a volume and directory, will be included
in the corpus. HFSTextFolderCorpus, for example, uses this iterator to retrieve files then
only includes text files.

Client

See “HFSTextFolderCorpus transverses folders using HFSIterator” on page 8-35.

Public Member Functions

constructor (short vRefNum, long rootDirld = 2)

Input
short vRef Num
The HFS volume reference number.
long rootDirld = 2
The directory ID of the highest level folder. Default is the volume root.
Usage
HFSIterator* hfslterator =
new HFSIt er at or (c- >Get Vol uneRef Num() ,
c->CGetRootDirld());
8-32 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

destructor
GetPBRec
Access method for HFSIterator member data.
CQut put
Cl nf oPBRec* pb
Parameter block containing HFS file information. See Inside Macintosh,
Files.
GetDir
Access method for HFSIterator member data.
Qut put
ui nt 32 dir
Index into array of directory infos, representing the root-level directory
being processed.
GetDirCount
Access method for HFSIterator member data.
Qut put
| ong di r Count
The number of root-level directories in the directory info array.
GetDirIlndex
Access method for HFSIterator member data.
CQut put

short di r 1 ndex
Index into directory being processed.

Corpus Class Category Reference 8-33
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

GetDirInfos

Access method for HFSIterator member data.

Qut put
Di rectoryl nfo* dirlnfos
Sorted array of directory IDs for current volume.
Increment
Output
bool
True if a file has been found. File information will be in HFSIterator->pb.
False if there are no more files within the folders.
Notes
Locates the next available file within the structure and places it in member data pb.
Usage
while (hfslterator->Increnment())
Listing 8-15 Using HFSlterator
while (hfslterator->lncrenent()) {
Cl nf oPBRec* info = hfslterator->pb;
if (info->hFilelnfo.ioFl Fndrinfo.fdType == "'TEXT') {
[l filter out non-text docunents
return new HFSText Fol der Doc( cor pus,
i nfo->hFil el nfo.ioFl Parl D,
i nf o->hFi |l el nfo.ioNanePtr,
i nfo->hFil el nfo.ioFl Mibat);
}
}
8-34 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

SetDirIndex

Access method for HFSIterator member data.

I nput

short di rl ndex
Index into directory being processed.

Protected Member Functions

CollectDirInfo

Builds a table of all the directory IDs in the named directory and all its subdirectories.

HFSTextFolderCorpus Class

Header: HFSTextFolderCorpus.h

Hierarchy

Public subclass of HFSCorpus. See “Directorylnfo” on page 8-17.

Description

A corpus implementation for all the text files under a root HFS folder.

Relationships

HFSTextFolderCorpus reads HFSTextFolderDoc

1 HFSCorpus reads many HFSTextFolderDoc.

HFSTextFolderCorpus transverses folders using HFSIterator

One corpus may use many iterators.

Corpus Class Category Reference 8-35
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Constants

const uint32 HFSFol der Cor pusType = ' HTF1'

Public Member Functions

constructor (uint32* type)

Input

ui nt 32*t ype = HFSFol der Cor pusType
The type of corpus.

Notes

Initializes only.

constructor (short vRef, long rootDirID, uint32 type = HFSFolderCorpusType);

Input

short vRef
The HFS volume reference number of the folder.

long rootDirlD
The HFS directoryID of the folder.

ui nt 32* type = HFSFol der Cor pusType
The type of corpus.

Notes

Builds the corpus by iterating thorough the files in the folder represented by the
reference number and directory ID.

Usage

HFSText Fol der Cor pus* corpus =
new HFSText Fol der Cor pus(vrefNum rootDirlD);

8-36 Corpus Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

constructor(StringPtr rootDirPath, uint32 type = HFSFolderCorpusType);

Input
StringPtr rootDirPath
The full path name to the folder. Do not end in a colon.
ui nt 32*t ype = HFSFol der Cor pusType
The corpus type.
Usage
StringPtr fol der Nane="\pHD: docs";
HFSText Fol der Cor pus* corpus =
new HFSText Fol der Cor pus( f ol der Name)
GetDoclterator
See “IACorpus.GetDoclterator” on page 8-43. The HFS Text Folder doc iterator uses
HFSlterator and only returns files of type “TEXT.”
GetProtoDoc
See “IACorpus.GetProtoDoc” on page 8-44. Uses HFSTextFolderDoc.
GetRootDirID
Access method for HFSTextFolderCorpus member data.
CQut put
| ong rootDirlD
The HFS directory ID of the folder.
GetVolumeRefNum

Access method for HFSTextFolderCorpus member data.

Corpus Class Category Reference 8-37
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Qut put

short vRef Num
The HFS volume reference number of the volume where the folder resides.

Protected Member Functions

Initializing

See “IACorpus.Initializing” on page 8-46.

InitialSize

See “IACorpus.InitialSize” on page 8-46.

Opening
See “IACorpus.Opening” on page 8-46.
SetRootDirID
Access method for HFSTextFolderCorpus member data.
I nput
| ong rootDirlD
The HFS directory ID of the folder.
SetVolumeRefNum
Access method for HFSTextFolderCorpus member data.
I nput
short vRef Num
The HFS volume reference number of the volume where the folder resides.
8-38 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

UpdateSize

See “IACorpus.UpdateSize” on page 8-47.

Updating
See “IACorpus.Updating” on page 8-47.
HFSTextFolderDoc
Header: HFSTextFolderCorpus.h
Hierarchy
Public subclass of HFSDoc. See “HFSDoc” on page 8-21.
Client
See “HFSTextFolderCorpus reads HFSTextFolderDoc” on page 8-35.
Public Member Functions
constructor
constructor
Input
HFSText Fol der Cor pus* cor pus
The corpus controlling this document.
long dirlD
The document file’s HFS directory ID (ioFLParID)
Corpus Class Category Reference 8-39

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

Class



CHAPTER 8

Corpus Category

const StringPtr nane
The HFS file name of the document.

| ong date
The last modification date of the document.

DeepCopy

See “IAStorable.DeepCopy” on page 10-28.

Equal
See “IAOrderedStorable.LessThan” on page 10-16. This uses logical volume ID, directory
ID, filename and modification date as the key information.
GetModDate
Access method for HFSTextFolderDoc member data.
CQut put
| ong nodDat e
The modification date of the document.
LessThan
See “IAOrderedStorable.LessThan” on page 10-16. This corpus uses logical volume ID,
directory ID, filename and modification date as the key information.
Restore
See “IAStorable.Restore” on page 10-28.
SetModDate
Access method for HFSTextFolderDoc member data.
8-40 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category
I nput
| ong nodDat e
The modification date of the document.
Store
See”IAStorable.Store” on page 10-30.
StoreSize

See “IAStorable.StoreSize” on page 10-29.

Protected Member Functions

DeepCopying

See “IAStorable.DeepCopying” on page 10-30.

Restoring

See “IAStorable.Restoring” on page 10-31.

IACorpus Class

Header: IACorpus.h

Hierarchy

Abstract Base Class

Description

IACorpus serves as the major interface between the actual documents and the index. It
characterizes a document collection. It locates the text in the documents.

Corpus Class Category Reference 8-41
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Relationships

Figure 8-4 IACorpus relationships

IADoclterator

A

obtains in order

| constructs
1

IACorpus

IADoc

obtains from document file

IADocText

IACorpus constructs IADoclterator

One Corpus may construct any number of iterators.

IACorpus obtains from document file IADocText

One corpus may obtain several IADocText.

IACorpus contains IADoc

One corpus may contain many IADoc

8-42 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97




CHAPTER 8

Corpus Category

Public Member Functions

constructor(type)
Input
ui nt 32 type
The constant for the corpus type being created.
Usage

(HFSCorpus is a subclass)

I nvert edl ndex i ndex(storage,
new HFSCor pus( HFSCor pusType) ,
new Si npl eAnal ysi s());

GetCorpusType

Access method for IACorpus member data.

CQut put
ui nt 32 cor pusType
The type of the corpus. This is maintained to allow the reconstruction of
an already established corpus with the correct subclass.
GetDoclterator
Virtual.
Output
| ADocl t er at or *
An object which obtains the documents of the corpus.
Notes

Determines set of documents to be indexed by the ones it chooses to locate.

Corpus Class Category Reference 8-43
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Usage

| ADocl terator* corpusDocs = corpus->CetDoclterator();
GetDocText

Pure virtual.
Input

const | ADoc* doc

A document contained in the corpus.

Notes

Accesses the text of a document.
Usage

| ATokenStreant ts = index->anal ysis->
MakeTokenSt r ean(i ndex- >cor pus- >Get DocText (doc)) ;

GetProtoDoc

Pure virtual.
Output

| ADoc*

An initialized object of the type used in the corpus.

Notes

Used to establish sets based on the Doc type used in the corpus.
Usage

docl nf oSet = | AMakeOr der edSt or abl eSet
( MakeDocl nf o( cor pus- >Get Prot oDoc(), 0));

8-44 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Initialize
Input
| ASt or age* st orage
A pointer to the storage established and initialized for the corpus.
| ABlI ockl D cor pusRoot
The root id for the corpus.
Usage
cor pusRoot = storage->Allocate();
corpus->lnitialize(storage, corpusRoot);
Open
Input
| ASt or age*
A pointer to the storage established and opened for the corpus.
| ABl ockl D
The root id for the corpus.
Notes
Restores corpus information from storage.
Usage
cor pusRoot = i nput->ReadUl nt 32();
cor pus->Qpen(storage, corpusRoot);
Update
Input

| ASt or age* st orage
A pointer to the storage established for the corpus. Storage must be open
and writable.

| ABI ockl D cor pusRoot
The root id for the corpus.

Corpus Class Category Reference 8-45
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Notes

Writes changed corpus information to storage.

Usage

cor pus->Updat e( st orage, corpusRoot);

Protected Member Functions

Initializing

Virtual.
Input

| ACut put Bl ock out put
Notes

Used to implement Initialize().

InitialSize

Virtual.
Output

| ABI ockSi ze
Notes

Used to implement Initialize().

Opening

Virtual.

8-46 Corpus Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Input
I Al nput Bl ock i nput
Notes
Used to implement Openy().
UpdateSize
Virtual.
Output
| ABI ockSi ze
Notes
Used to implement Update().
Updating
Virtual.
Input
| ACut put Bl ock out put
Notes
Used to implement Update().
TADoc Class
Header: IACorpus.h
Hierarchy
Abstract Base Class, Subclass of IAOrderedStorable. See “IAOrderedStorable” on
page 10-14.
Corpus Class Category Reference 8-47

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Clients

See “IACorpus contains IADoc” on page 8-42.

See “IADoclterator obtains IADoc in order” on page 8-49.

See “IAHit finds matching IADoc located in IAIndex” on page 6-27.

See “IAProgressReport reports which IADoc is being processed” on page 6-30.

See “RankedQueryDoc connects a sample IADoc to its location in a TermIndex” on
page 6-47.

Public Member Functions

constructor
GetName
const
Virtual.
Input

ui nt32* length
Returned length of the name.

Output
byt e* nane
Pointer to the name array.
Notes
Returns the name of a document. This will return NULL, and set its input parameter to
0, unless implemented by its subclass.
Returned array is allocated by IAMallocArray() and should be freed by IAFreeArray().
Name is null terminated.
Usage
uint32 length = 0;
byte* nane = doc. Get Nanme(| engt h);
8-48 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

[ADoclterator

Header: IACorpus.h

Hierarchy

Abstract Base Class

Relationships

IADoclterator obtains IADoc in order

One iterator obtains many documents.

Client

See “IACorpus constructs [ADoclterator” on page 8-42.

Public Member Functions

GetNextDoc

Pure virtual.

Output

| ADoc* cor pusDoc
The next document in the set. NULL if at the end of the set.

Notes

Advances the iterator to the next document in a set and returns it.
The documents are returned in sequence, that is, the first document returned is the

lowest in the set, the next the second lowest, and so on until all have been returned.

IADoc* is NULL at the end of the set.
Returns a new copy of the document. Clients must delete.

Corpus Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

8-49

Class



CHAPTER 8

Corpus Category

Usage
| ADoc* corpusDoc = CorpusDocs- >Get Next Doc();

class IADocText

Header: IACorpus.h

Hierarchy

Abstract Base Class

Public Member Functions

constructor

GetNextBuffer

Pure Virtual.

Input
byt e* buffer
Pointer to the text buffer.
ui nt 32 bufferlLen
Buffer size.
Output
ui nt 32
Number of bytes placed in the buffer.
Notes
Extracts successive segments of the text of the document.
Returns number of bytes written into buffer.
Returns zero at end of document.
8-50 Corpus Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

Usage
ui nt 32 byt esRead=docText - >Get Next Buf f er (( byt e*) buffer, bufferLen);
Constants
const ui nt 32HFSCor pusType = ' HFSO'
const ui nt 32HFSFol der Cor pusType = ' HTF1l'
Exceptions
VCHV
HFSVol uneNot Found
VCHE
HFSEr r or
VCID

I nval i d docunent.

Corpus Class Category Reference 8-51
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 8

Corpus Category

8-52 Corpus Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

General Storage Logic 3
HFS Implementation 5
Creating New Storage 5
Sample Code to Create Storage 5
Opening Existing Storage 6
Sample Code for Establishing Existing Storage 6
Allocating and Deallocating Blocks of Storage 6
Reading and Writing Storage 8
Reporting on Storage 8
Compacting Storage 8
Using the Mutex Facility 9
Cloning Store Streams 10
Creating Storage Subclasses 10
Creating a Storage Construction Utility 10
Creating a Subclass of IAStoreStream 11
Creating a Subclass of IAMutex 15
Storage Class Category Reference 17
Header Files in the Storage Class Category 17
Class Specifications 18
HFSStoreStream 18
[AInputBlock 22
IAOutputBlock 25
IALock 28

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

IAMutex 28

IAStorage 30

IAStoreStream 39

Storage Class Utilities 45

Typedefs 48

Storage Exceptions and Error Handling 50

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

IAT provides classes to allow the storage of blocks of data into persistent storage. This
storage is used by IAT to hold the information access indexes and structures. Indexes
require persistent storage; this set of logical storage classes provides an interface to the
storage media desired to hold the index information. Developers may also use these
storage classes to store other data they wish to make perisistent.

General Storage Logic

Figure 9-1 illustrates the relationships of the storage classes.

IAStorage is managed in blocks. These blocks have ID Numbers which are stored within

the storage class.

Items are written through the IAOutputBlock, which in turn uses the I/ O functions of
IAStoreStream to write. Similarly, the IAInputBlock reads items through
thelAStoreStream.

General Storage Logic
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Figure 9-1 Logical storage classes

IAOutputBlock

IAOutputBlock(lAStorage s,
IABlockID bID,
IABlockSize size);

WriteByte();

IAStorage

writes via (friend)

IABlockID Allocate()
Deallocate(IABlockID)

contains
»{ IAStoreStream

addresses (friend)

IAInputBlock

IAInputBlock
(IAStorage* storage,
IABlockID blocklID);

ReadByte();

reads via (friend)

General use of IAT requires no internal knowledge of the storage. You create and open
storage, then create information access classes to be stored in this storage. Updates to the
IAT objects occur in memory. The storage is committed to disk after completion of the
processing. This prevents damaged files due to incomplete processing.

IAT also provides member functions to allow you to see the amount of storage used for a
file and to compact the file.

General Storage Logic

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

HFS Implementation

The IAT storage architecture is designed to be platform-independent. Platform-specific
subclass implementations may be used to optimize performance. IAT provides a
MacOS-specific implementation of storage that uses the Macintosh HFS file system. This
implementation will be used for examples. Applications which use other storage types
may create subclasses of the IAT abstract classes to interface to that storage.

Creating New Storage

Create storage with a utility rather than the direct use of a constructor. See
“IAMakeStorage” on page 9-45 for more information.

MakeHFSStorage is an implementation of that utility which constructs storage for an
HEFS file. You must know the HFS volume, directory and file name before you can
construct HFS storage.

Following creation, initialize the storage for use. This initialization creates the structures
used to address blocks and opens the storage for writing.

Sample Code to Create Storage

Listing 9-1 Constructing storage

#pragnma once
#i ncl ude <Types. h>
#i ncl ude "HFSSt or age. h"

/1 Cient nmust provide these val ues:
short vRef Num = 0O;
| ong dirlD = 0;
StringPtr storageFi |l eName = "\pstorage.file";

/1 create storage
| ASt or age* anl ASt orage = MakeHFSSt or age (vRef Num
dirl D, storageFil eNane);
anl ASt orage->lnitialize();

HFS Implementation 9-5
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Opening Existing Storage

Opening an existing storage requires a storage object and restores data from persistent
storage to the object.

Storage may be opened as read-only or read and write access. Open(True) will allow
writes.

Sample Code for Establishing Existing Storage

Listing 9-2 Establish existing storage

#pragnma once
#i ncl ude <Types. h>
#i ncl ude "HFSSt or age. h"

/1 Cient must provide these val ues:
short vRef Num = 0;
| ong dirlD = 0;
StringPtr storageFi |l eNane = "\pstorage.file;

bool witable = true;

/1 create storage
| ASt or age* anl ASt orage = MakeHFSSt or age (vRef Num
dirl D, storageFil eNane);
anl ASt or age- >Open(wri t abl e) ;

Allocating and Deallocating Blocks of Storage

9-6

The base unit of storage is a block. A block is a contiguous set of data that is written or
read from storage as a whole. Individual bytes, words, or strings are accessed in the
block once it is in memory.

Ablock has a block ID that uniquely identifies it. This ID is of type IABlockID.

The storage object maintains a table of allocated blocks that maps each block to a specific
location in physical storage. Objects using storage must know which block contains their
desired data. They can do this by maintaining their own table of contents of storage, or

they can request a named block in the internal storage table of contents and keep track of

Opening Existing Storage
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

that block name rather than its ID. In this case, the storage maintains an internal table,
known as the TOC (for "Table Of Contents"), which maps the block names to block IDs.

The following example allocates new HFSStorage by a named block. When a block of
storage is first created, it is always an output block, which will allow data to be written
to the block.

Listing 9-3 Allocating a named block of storage

/1 create storage
| ASt or age* anHFSSt or age = MakeHFSSt orage(vRef Num dirl D, fil eNane);
anHFSSt orage ->Initialize();
const char* aBl ockName = "My NAMED BLOCK”;

/1 ask for a new block to be labeled with the given name
| ABI ockl D anl ABIl ockl D = anHFSSt or age- >Al | ocat eNanedBl ock( aBl ockNane) ;
| AQut put Bl ock anl AQut put Bl ock( anHFSSt or age, anl ABI ockl D,
anl ABl ockSi ze) ;

The sample listing below establishes a named block of storage.

Listing 9-4 Opening a named block of storage

/1 create storage object
bool writable = true;
| ASt or age* anHFSSt or age = MakeHFSSt or age(vRef Num dirl D, fil eNane);
anHFSSt or age ->Cpen(writabl e);

/1 get the pre-defined block ID
const char* aBl ockName = MY NAMED BLOCK”;
| ABl ockl D anl ABl ockl D = anHFSSt or age- >TOC_Get (aBl ockNane) ;
I Al nput Bl ock anl Al nput Bl ock( anHFSSt or age, anl ABl ockl D);

Storage can be allocated directly without using a named block by the Allocate() function.
This returns a block ID which the application must keep track of.

Storage is deleted by deallocating a block using the Deallocate(anIABlockID) function for
unnamed blocks, or the RemoveNamedBlock(blockName) function for named blocks.

A WARNING

If you use Deallocate to delete a named block (instead of
RemoveNamedBlock), you will leave the TOC entry for that name
untouched. Unless you do a matching TOC_Remove, you will render
that name unusable for the remaining life of the index.

Allocating and Deallocating Blocks of Storage 9-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Reading and Writing Storage

Blocks of storage are accessessed through objects of the class IAOutputBlock or
IAInputBlock. IAOutputBlock is a class to write the storage. It accesses the appropriate
IAStoreStream implementation for the class. IAInputBlock reads the storage through the
store stream.

Note
No changes are made to persistent storage until the storage has been
committed by the Commit() function of the IAStorage class.

IAInputBlock read functions:

= byte ReadByte()

= Ui nt32 ReadUl nt 32()

= void ReadBuffer(void* aBuffer, uint32 |ength)
IAOutputBlock write functions:

= void WiteByte(byte b)

m void WiteU nt32(uint32 i)

= void WiteBuffer( void* aBuffer, uint32 |ength)

Reporting on Storage

There are member functions which return the amount of total space used by the storage
(TotalSpace()) and the amount of that total space which is free space (FreeSpace()).

Listing 9-5 Report amount of space in storage

printf ("% u Total Space\n", anl AStorage->Total Space());
printf ("% u Free Space\n\n", anl AStorage->FreeSpace());

Compacting Storage

9-8

Storage that has been maintained extensively may develop fractured spots of free space
within the allocated blocks. Compacting the storage will eliminate this free space and
reduce the total size of storage. You must establish the storage and open it as writable
before compacting. Compact() does the commit to storage; you do not need to commit

Reading and Writing Storage
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

storage after it has been compacted. Figure 9-2 shows how an application might report
the results of compacting storage.

Figure 9-2 A sample result of compacting storage

sour ce. i ndex

Bef ore Conpacti ng
94208 Total Space
2368 Free Space

After Conpacting
92160 Total Space
320 Free Space

Using the Mutex Facility

A MUtual EXclusion semaphore, or mutex, allows you to control access to the storage
when you are using multi-threaded applications. Although this presents no problem
when reading storage, there are many times when writing to storage within the IAT
functions that require access to storage be single-threaded to prevent lock-outs and
accidental override of storage. IAT has the logic in place to create and use these
semaphores to prevent this multiple access for its functions.

There is no implementation for the Mutex classes, however. If the application may be run
in multiple threads, the developer must create an implementation for IAMutex and
IALock. In addition, the application must ensure the mutex is invoked for any additional
areas of the application where multi-thread access must be controlled.

A mutex is established using the extern IANewMutex().
anl AMut ex = | ANewMut ex() ;
It is locked by creating an instance of IALock for the mutex:

| ALock anl ALock(anl AMut ex) ;

Using the Mutex Facility 9-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Destructing the mutex or the lock releases the lock.

Cloning Store Streams

In order to provide additional support for multithreaded applications, IAT offers a way
for each thread to get its own copy of the same store stream. This is called "cloning."
With cloned streams, threads do not have to wait for each other to do disk access. Several
of the storage classes, such as IAOutputBlock, have optional parameters for using a
cloned stream.

All subclasses of IAStoreStream must implement a Clone() method to support cloning.

Cloning is not used by single-threaded applications.

Creating Storage Subclasses

You may need to create a storage subclass if your persistent storage needs to be based on
somethoing other than the Macintosh HFS file system.

The IAStorage, IAInputBlock, and IAOutputBlock classes will not require a specialized
subclass. You will need to subclass IAStoreStream, and you will need to create a new
utility to construct your storage.

Creating a Storage Construction Utility

Storage is created by creating a store stream, then an object of IAStorage. There is a
default construction utility, IAMakeStorage(IAStoreStream* anIAStoreStream) that must
be invoked to construct storage. By supplying your file type’s store stream, you
effectively create your file types storage subclass. The following listing shows a storage
construction utility built to create HFS storage.

Listing 9-6 A utility to construct storage

#i ncl ude " Storage. h"
#i ncl ude <Types. h>

| ASt or age* MakeHFSSt or age(short vRef Num |ong dirl D,
const StringPtr fil eNane,
OSType creator = 'VIW ,
OSType fileType = 'STOR )

9-10 Cloning Store Streams
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

return | AMakeSt or age( new HFSSt or eSt r ean{ vRef Num
dirlD, fileName, creator, fileType));

Creating a Subclass of IAStoreStream

IAStoreStream requires a subclass as it does the actual storage input and output. A
specific subclass of this abstract base class is required to support the actual storage I/O
for a specific platform.

See”IAStoreStream” on page 9-39 for detailed information. Listing 9-7 through Listing
9-16 show the HFS implementation of IAStoreStream and its functions as an example.

Required Functions

= Clone

= IsOpen

s IsWritable
s Initialize
= Open

= GetEOF
» SetEOF

. Write

= Read

Listing 9-7 Sample header file of an IAStoreStream subclass

#i ncl ude "I ASt oreStream h"
#i ncl ude <Fil es. h>

class HFSStoreStream: public | AStoreStream {

publi c:
HFSSt or eStrean(short vRefNum long dirlD, const StringPtr fil eNane,
OSType creator = 'VIW , OSType fil eType = 'STOR );
~HFSSt or eSt rean() ;
voi d Initialize();
voi d Open(bool witable);
bool | sOpen();

Creating Storage Subclasses 9-11
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

bool IsWitable();
voi d Fl ush();

ui nt 32 Cet EOF() ;
voi d Set EOF( ui nt 32 addr ess);

virtual 1 AStoreStreant C one();

/1 Access nethods for private nenber data

OSType CetCreator() const {return creator;}
OSType GetFi |l eType() const {return fileType;}
const short GetVRef Num() const {return vRef Num}
const long GetDirID() const {return dirlD;}
StringPtr Get Fil eNanme() const {return fil eNane;}

short Get FRef Nun() const {return fRef Num}
voi d Set FRef Nun(short fref) {fRefNum= fref;} // better be open!
pr ot ect ed:

/1l constructor for use by C one()

HFSSt oreStrean(short vRef, long dirld, const StringPtr fil eNamne,
OSType creator, OSType fil eType, bool isQOpen,
bool isWitable,
short fRefNum;

voi d Wite(uint32 address, byte* data, uint32 |length);
ui nt 32 Read(ui nt 32 address, byte* data, uint32 |ength);

private:
bool i sOpen;
bool i sWitable;

const OSType creator;
const OSType fil eType;

const short vRef Num
const long dirlD;
StringPtr fil eNane;

/1 handl e on the open file
short f Ref Num

9-12 Creating Storage Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Listing 9-8 Sample implementation of Clone()

| ASt oreStreant HFSStoreStream : C one() {
return new HFSSt oreStrean{vRef Num dirl D, fil eNane,
creator, fileType, isQpen, isWitable,

f Ref Numj ;
}
Listing 9-9 Sample implementation of IsWritable()
bool HFSSt oreStream : I sWitable() {
return i sWitabl e;
}
Listing 9-10 Sample implementation of IsOpen()
bool HFSSt oreStream : 1 sOpen() {
return i sQpen;
}
Listing 9-11 Sample implementation of Initialize()
voi d HFSStoreStream :Initialize() {
| ALock | ock(mutex); // mutex created upon construction of |AStoreStream
OSErr err = HCreate(vRefNum dirl D, fileName, creator, fileType);
if (err == dupFNErr) {// already exists
short f Ref;
err = HOpenDF(vRef Num dirl D, fileNane, fsRAW Perm &f Ref);
| AAssertion(!err, "unable to open existing HFS file", StoreError);
err = ::SetEOF(fRef, 0);// reset data fork
| AAssertion(!err, "unable to reset data fork", StoreError);
err = FSO ose(f Ref);
| AAssertion(!err, "unable to close HFS file", StoreError);
} else I AAssertion(lerr, "unable to create HFS file", StoreError);
}

Creating Storage Subclasses 9-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Listing 9-12 Sample implementation of Open()

voi d

| ALock
| AAsse

HFSSt or eSt ream : Open(bool forWite) {
| ock( Get Mut ex());

rtion(!isOpen, "store stream al ready open", StoreError);
short f Ref;

OSErr err = HOpenDF(vRef Num dirl D, fil eNane,
forwite ? fsRAWPerm : fsRdPerm &f Ref);

StoreError);

| AAssertion(!err, "can't open data fork for store streant,
f Ref Num = f Ref;
i sOpen = true;
isWitable = forWite;
}
Listing 9-13 Sample implementation of GetEof()
ui nt 32 HFSSt or eSt ream : Get EOF() {
| ALock | ock(Get Mutex());
| AAssertion(isQpen, "store stream NOT Qpen", StoreError);
| ong eof;
OSErr err = ::Cet EOF(f Ref Num &eof);
| AAssertion(!err, "not able to get ECF", StoreError);
return eof;
}
Listing 9-14 Sample implementation of SetEof()
voi d HFSSt or eSt ream : Set EOF( ui nt 32 address) {
| ALock | ock(Get Mutex());
| AAssertion((isOpen && isWitable),
"store stream not open or witeable", StoreError);
OSErr err = ::Set EOF(fRef Num address);
| AAssertion(!err, "unable to set EOF", StoreError);
}
Listing 9-15 Sample implementation of Write()
void HFSStoreStream : Wite(uint32 address, byte* data, uint32 length) {
| AAssertion((isOpen && isWitable),
"store stream cl osed or read-only", StoreError);
Par anBl ockRec pb;
9-14 Creating Storage Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

pb. i oParam i oConpl eti on = NULL;

pb. i oParam i oRef Num = f Ref Num

pb.ioParamioBuffer = (Ptr)data;

pb. i oParam i oReqCount = | engt h;

pb.i oParam i oPosMbde = fsFronfstart;
[

pb. i oParam i oPosOf f set = address;
OSErr err = PBWiteSync(&pb);
| AAssertion(!err, "unable to wite", StoreError);
| AAssertion(pb.ioParamioAct Count == | engt h,
"actual wite not equal length", |AAssertionFailure);

Listing 9-16 Sample implementation of Read()

ui nt 32 HFSSt or eStream : Read(ui nt 32 address, byte* data, uint32 length) {
| AAssertion(isQpen, "store stream not open", StoreError);
Par anmBl ockRec pb;

pb. i oParam i oConpl eti on = NULL;

pb. i oParam i oRef Num = f Ref Num
pb.ioParamioBuffer = (Ptr)data;
pb. i oParam i oReqCount = | engt h;
pb.i oParam i oPosMbde = fsFronfstart;
pb. i oParam i oPosOf f set = address;

OSErr err = PBReadSync(&pb);
if(err & err = eofErr) {
| AAssertion(fal se, "unable to read", StoreError);

}

return pb.ioParam i oAct Count;

Creating a Subclass of IAMutex

If your application may be run in a multi-threaded environment, you will need to create
your own operative subclass of IAMutex. This will allow the IAT code to prevent
concurrent access when it would harm the integrity of storage. The resulting mutex may
also be used by the application code.

Required Functions

s Lock
s Unlock

Creating Storage Subclasses 9-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Implementing IANewMutex

IANewMutex is a variable used to by IAT construct a new mutex. The default
implementation defines IANewMutex as follows:

I AMut exConst ruct or *1 ANewMut ex = &I ADef aul t Mut exConst r uct or ;

where IADefaultMutexConstructor returns a pointer to a mutex with no-op
implementations of Lock() and Unlock(). (These variables are declared as shown in
Listing 9-17.) This default will work for single-threaded applications. Applications that
are creating a working subclass of IAMutex must reset this variable to their own mutex
class.

Listing 9-17 Current implementation of IAMutex

t ypedef | AMut ex* | AMut exConstructor ();
| AMUt ex* | ADef aul t Mut exConstructor();// no-op
extern | AMut exConstructor* | ANewMlit ex;

9-16 Creating Storage Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Storage Class Category Reference

Header Files in the Storage Class Category

HFSStorage.h

MakeHFSStorage (utility)

HFSStoreStream.h

HFSStoreStream

IAMutex.h

TALock
TAMutex

IAStorage.h

IAInputBlock
IAOutputBlock
IAStorage

IAStoreStream.h

TAStoreStream

Storage Class Category Reference 9-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Class Specifications

class HFSStoreStream

Header: HFSStoreStream.h

Hierarchy

Public subclass of IAStoreStream. See “IAStoreStream” on page 9-39.

Description

HFSStoreStream provides the I/O capabilities for HFSStorage. When MakeHFSStorage
(see “MakeHFSStorage” on page 9-45) creates storage it creates an HFSStoreStream.

Public Member Functions

constructor
Input
short vRef Num
The volume reference number of the storage to be accessed.
long dirlD
Its directory ID.
const StringPtr filenane
The HFS filename of the storage.
OSType creator = 'VIW
Who created the stream.
CSType fil eType = ' STOR
The type of store stream.
9-18 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

destructor
Clone
See “I1AStoreStream.Clone” on page 9-40.
Flush
See “IAStoreStream.GetMutex” on page 9-40.
GetCreator
Access method for HFSStoreStream member data.
Qut put
OSType creator
The creator of the store stream.
GetDirID
Access method for HFSStoreStream member data.
Qut put
const long dirlD
The HFS directory ID of the storage to access.
GetEOF

See “IAStoreStream.GetEOF” on page 9-41. Returns HFS EOF position for file.

Storage Class Category Reference 9-19
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

GetFileName

Access method for HFSStoreStream member data.

Qut put
StringPtr fileName
The HFS filename of the storage to access.
GetFileType
Access method for HFSStoreStream member data.
CQut put
OSType fileType
The file type of the storage.
GetFRefNum
Access method for HFSStoreStream member data.
Qut put
short f Ref Num
The HFS file reference number, a handle on the open file.
GetVRefNum
Access method for HFSStoreStream member data.
CQut put
const shortvRef Num
The HFS volume reference number.
Initialize
See “IAStoreStream.Initialize” on page 9-42.
9-20 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

IsOpen

See “IAStoreStream.IsOpen” on page 9-40.
IsWritable

See “IAStoreStream.IsWritable” on page 9-41.
Open

See “IAStoreStream.Open” on page 9-42.
SetEOF

See “IAStoreStream.Protected Member Functions” on page 9-41.
SetFRefNum

Access method for HFSStoreStream member data.
I nput

short f Ref Num
The HFS file reference number, a handle on the open file.

Protected Member Functions

constructor
Input
short vRef
HFS volume reference number.
long dirld
HFS directory ID.
Storage Class Category Reference 9-21

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

const StringPtr fil enane
HFS filename.

OSType creator
The creator of the stream.

CSType fil eType
The type of the stream.

bool isOpen
Whether the stream is open(true) or not (false).

bool isWitable
Whether the stream is open for output (true) or read only(false).

short f Ref Num
The HFS file reference number.

Notes

Constructor for use by Clone().
Read

See “IAStoreStream.Read” on page 9-43.
Write

See “IAStoreStream.Protected Member Functions” on page 9-41.

class IAInputBlock

Header: IAStorage.h

Hierarchy
Base Class.

Description
An input block is the logical container of storage. It serves as an interface between the
storage and the store stream.

9-22 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Relationships

IAInputBlock reads IAStoreStream

One input block reads from one and only one store stream. This store stream may be a
clone of the one created with the storage.

IAInputBlock addresses IAStorage

An IAInputBlock addresses part of one storage.

Client

See “IAStorable restores from IAInputBlock” on page 10-27.

Public Member Functions

constructor

Input

| ASt or age* st orage
The storage which has this block.

| ABl ockl D id
The identification number of the block.

| ASt oreStreant stream = NULL
A request for a cloned store stream.

Notes

Locks stream's mutex and positions stream at address for read.
A cloned IAStoreStream can be supplied to improved threaded throughput.

Usage

| Al nput Bl ock input(storage, id, strean);

Storage Class Category Reference 9-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

destructor
Unlocks stream's mutex
GetPosition
Output
ui nt 32 position
The current position in the input store stream.
Usage
uint32 start = input. GetPosition();
ReadBuffer
Input
void* buffer
Pointer to the buffer to be filled.
uint32 length
Nunber of bytes to place in the buffer.
Usage
i nput - >ReadBuf f er (newText, |ength);
ReadByte
Output
byt e
Usage
byte | ength = input->ReadByte();
9-24 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

ReadUlInt32
Output
ui nt 32
The uint32 read.
Usage
l ong newCreationbDate = input->ReadUl nt32();
IAOutputBlock Class

Header: IAStorage.h

Hierarchy

Base Class.

Description

IAOutputBlock connects a logical block with a store stream and position within storage.
It is used to write storage to disk.

Relationships

IAOutputBlock writes to IAStoreStream

One block writes to one and only one store stream.

Clients

See “IAStorage creates IAOutputBlock by ID” on page 9-31.
See “IAStorable stores in IAOutputBlock” on page 10-27.

Storage Class Category Reference 9-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Public Member Functions

constructor
Input
| ASt or age* st orage
The storage in which the block will lie.
| ABl ockI D id
The identification number of the block.
| ABl ockSi ze storeSize
The size of the block.
| ASt oreStreant stream = NULL
A cloned store stream; used only to improve throughput. If NULL, the
block will write to the storeStream contained in the storage.
Notes

Allocates block on the stack.
Locks stream's mutex and positions stream at address for write.
A cloned IAStoreStream can be supplied to improved threaded throughput.

Usage
| ACut put Bl ock out put (storage, id, storeSize, strean)

destructor

Flushes changes and unlocks stream's mutex
GetPosition
Output

ui nt 32 position

The current position in the stream.

9-26 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Usage
| ABl ockAddr ess position = output. GetPosition();
WriteBuffer
Input
voi d* buffer
Pointer to the buffer to be written.
uint32 length
Number of bytes to write.
Usage
out put. WiteBuffer(&buffer, sizeof(buffer));
WriteByte
Input
byte b
Byte to be written
Usage
out put->WiteByte(fil eNane[O0]);
WriteUInt32
Input
uint32 i
The uint32 to write.
Usage

out put ->WiteU nt32(Count());

Storage Class Category Reference 9-27
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Class IALock

Header: IAMutex.h
Locks a mutex for the duration of its stack-allocated life.

Description

IALock is a semaphore that, when constructed, prevents access to a store stream by
threads other than that of its creator.

See “IAMutex” on page 9-28 for more information.

Public Member Functions

constructor

Input
| AMut ex* nut ex

Notes

Locks the mutex. Run before code requiring a lock.

Usage

| ALock | ock( rmutex);

destructor

Notes

Unlocks the mutex.

class IAMutex

Header: IAMutex.h

9-28 Storage Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Hierarchy

Base Class

Description

Interface to mutexes (MUtual EXclusion semaphores) used by IA library.

There is no explicit constructor for [AMutex. The body establishes a no-op default mutex
by the automatic creation of IANewMutex.

Applications must subclass IAMutex and set IANewMutex to a real semaphore to make
IA code thread-safe for the application's threads.

Relationships

IAMutex is locked by IALock

One mutex may be locked by one lock.

Public Member Functions

constructor

Notes

No explicit constructor. Defining causes a function to run as part of a typedef.

Usage
I AMUt ex *nmut ex;
nmut ex( | ANewMut ex()) // part of constructor initialization
destructor
Virtual.
No-op.
Storage Class Category Reference 9-29

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

IADefaultMutexConstructor

Output
I AMut ex*
Notes
Default, no-op mutex constructor. [AMutexConstructor is a typedef for IAMutex*. (This
is not an actual IAMutex member function.)
Usage
| AMut exConstruct or* | ANewMut ex = &l ADef aul t Mut exConst ruct or;
Lock
Pure virtual.
Returns when we have control of the mutex.
Unlock

Pure virtual.
Releases control of the mutex. Not invoked directly; invoke through the destruction of
IALock.

Class I[AStorage

Header: IAStorage.h

Hierarchy
Abstract Base Class.

Description
This abstract class provides for storage in persistent memory. Storage is done in logical
blocks without knowledge of client data structures.

9-30 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Relationships

Figure 9-3 IAStorage relationships

IAOutputBlock

IAOutputBlock(lAStorage s,
IABlockID bID,
IABlockSize size);

WriteByte();

writes via (friend)

IAStorage

contains
>+ IAStoreStream

IABlockID Allocate()
Deallocate(IABlockID)

addresses (friend)

IAInputBlock reads via (friend)

IAInputBlock
(IAStorage* storage,
IABlockID blockID);
ReadByte();

IAStorage creates IAOutputBlock by ID

Blocks are allocated by ID. They are then constructed as input or output.

One storage may create many blocks.

Storage Class Category Reference 9-31
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

IAStorage creates IAStoreStream

One storage has one contained stream, but may have many clones.

Client

See “IAlnputBlock addresses [AStorage” on page 9-23.

Public Member Functions

constructor

Input
| ASt oreStreant s
uint32 t

Notes

Notes storeStream and type, creates mutex. Called through a utility. See
“IAMakeStorage” on page 9-45.

destructor

Deletes storeStream and mutex
Allocate

Pure virtual.
Output

| ABl ockl D id

The identification number of the new block.

9-32 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Notes
Allocates a new block ID. Block is actually created with IAOutputBlock is constructed.
See “IAOutputBlock” on page 9-25.
Usage
| ABl ockl D id = storage->Allocate();
AllocateNamedBlock
Input
char* nanme
The name to be assigned to the block.
Output
| ABl ockl D id
The identification number of the new block.
Usage
i ndexRoot = storage->Al | ocat eNanedBl ock( | ADef aul t | ndexNane) ;
Commit
Pure virtual.
Makes permanent any changes since open.
Usage
st orage->Commi t () ;
Compact

Pure virtual.
Attempts to compact the storage.

Storage Class Category Reference 9-33
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Usage
st or age- >Conpact () ;
Deallocate
Pure virtual.
Input
| ABl ockI D id
The identification number of block to delete.
Notes
Frees a previously allocated block. Does not remove the TOC entry in the case of named
blocks.
A WARNING
You should use RemoveNamedBlocks if you have a named block to
deallocate. If you use Deallocate on a named block without
simultaneously calling TOC_Remove on the name, you will render that
name unusable for the remaining life of the storage.
Usage
st orage- >Deal | ocat e(i d);
FreeSpace
Pure virtual.
Output
| ABl ockSi ze
The nunber of bytes of free space.
Usage
| ABl ockSi ze free = storage->FreeSpace();
9-34 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

GetMutex
Access method for [AStorage member data.
Qut put
I AMUt ex* mut ex
The mutex established to enable locking. See “IAMutex” on page 9-28.
GetNamedBlock
Input
const char* name
the string used as a label for the block
Output
| ABl ockl D
the ID of the block. Will allocate a new block if name not found in the
TOC.
GetStorageType
Access method for IAStorage member data.
Qut put
const ui nt 32st orageType
The type of storage.
GetStoreStream
Access method for [AStorage member data.
Qut put

| ASt or eStreant st oreStream
The store stream created to access the storage.

Storage Class Category Reference 9-35
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Initialize
Pure virtual.
Initializes a new storage, or empties an existing one. The storage is left open afterwards.
Usage
storage->lnitialize();
IsOpen
Output
bool
True: the storage is open. False: the storage is not open.
IsWritable
Output
bool
True: the storage is open with permission to write.
False: the storage is not open or open as read-only.
Open
Pure virtual.
Input
bool writable = fal se
Defaults to read only (false). True is write-permitted.
Notes
Opens the storage (and its storeStream), enabling subsequent operations.
If "writable" is true, destructive operations are supported.
9-36 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Usage
st or age- >Qpen(true);
RemoveNamedBlock
Input
const char* | abel
The name of the named block to remove.
Output
bool
True if the named block is removed; false if no block by that name exists.
Notes
Frees a previously allocated named block, and deletes the TOC entry for it.
Usage
st or age- >RenoveNanedBl ock(" ny bl ock name");
TOC_Get
Pure virtual.
Input
char* [ abel
The name assigned to the block.
Output
| ABI ockl D
The identification number of the block.
Usage

i ndexRoot = storage->TOC Cet (| ADef aul t | ndexNane) ;

Storage Class Category Reference 9-37
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

TOC_Remove

Pure virtual.

Input
const char* | abel
The name of the block to be removed from the TOC.
Output
bool
True if the block name was successfully removed; false otherwise.
Notes
Removes the entry in the storage TOC that maps the given name to a blockID. Does not
deallocate the block itself from storage.
Normally, you will want to deallocate the block at the same time you remove the TOC
entry. In that case, you should use RemoveNamedBlock, which does both.
Usage
i ndexRoot = storage->TOC Renove("M Bl ock Nane");
TOC_Set
Input
const char* | abel
The name to be assigned to the block.
IABlockID id
The identification number of the block.
Notes
See also “AllocateNamedBlock” on page 9-33. This will replace the entry if found; that is,
this function may be used to change the ID for a named block. If the entry is not found,
the name and blockID are added to the TOC.
Usage
st orage- >TCOC Set ("my bl ock name", bl ock);
9-38 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

TotalSpace
Pure virtual.
Output
| ABl ockSi ze
The number of bytes occuited by storage.
Usage

| ABl ockSi ze total = storage->Total Space();

Protected Member Functions

[AStoreStream Class

Header: IAStoreStream.h

Hierarchy
Abstract base class.
Description
For implementing IAStorage on different file systems.
Implementations need only implement pure virtual members.
Clients should not use [AStoreStream member functions directly, but rather use through
an IAStorage.
Clients

See “IAlnputBlock reads IAStoreStream” on page 9-23.
See “IAOutputBlock writes to IAStoreStream” on page 9-25.
See “IAStorage creates [AStoreStream” on page 9-32.

Storage Class Category Reference 9-39
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Public Member Functions

constructor
destructor

Virtual.
Clone

Pure virtual.

Returns a new storeStream read / writing the same store.
Usage

st or age- >st or eSt r eam >Cl one()

GetMutex

Access method for IAStoreStream member data.

Qut put
I AMut ex* mut ex
The mutex for the store stream.
IsOpen
Pure virtual. An implementation of this function should lock the mutex while executing.
Output
bool
True if the store stream is open, false if not. Returns the value of isOpen.
9-40 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Usage
| AAssertion(lsQOpen(), "Storage not open!™, StorageNot Open)
IsWritable
Pure virtual.
Output
bool
Returns the value of isWritable; true if the storage is open and writable,
false if not open or open for read only.
Notes

An implementation of this function should lock the mutex while executing.

Protected Member Functions

Flush
Pure virtual.
Flushes buffered output to disk. An implementation of this function should lock the
mutex while executing.
Usage
st oreSt ream >Fl ush()
GetEOF
Pure virtual.
Output
ui nt 32
The current EOF; one greater than last position currently occupied.
Storage Class Category Reference 9-41

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Notes
Returns one greater than the last position currently occupied. An implementation of this
function should lock the mutex while executing.
Usage
storeStream >Cet EOF()
Initialize
Pure virtual.
Creates a new store on disk and sets up the initial block tables. An implementation of
this function should lock the mutex while executing. Does not open the store stream.
Usage
storeStream>Initialize();
storeStream >Qpen(true);
MaybeFlushBuffer
Write buffer if it's dirty & mark it clean.
Open
Pure virtual.
Input
bool writable
True if open for output, false if open for read only.
Notes
Opens an existing store, enabling changes when “writable” is true. An implementation
of this function should lock the mutex while executing.
9-42 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Usage
storeStream >Qpen(true)
Read
Pure virtual.
Input
ui nt 32 fronPos
The position in the storage to read.
byt e* buffer
A pointer to the buffer; read data returned here.
ui nt 32 byt esWant ed
The number of bytes to read.
Output
ui nt 32 byt esAct ual
The number of bytes actually read.
Notes
Mutex should be already locked.
Usage
byt esActual = storeStream >Read(fronPos, buffer, bytesWanted);
SetEOF
Pure virtual.
Input
ui nt 32 address
The new position to become the end of file.
Notes

Truncates or extends the storage to the requested length. An implementation of this
function should lock the mutex while executing.

Storage Class Category Reference 9-43
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Usage
if (newkECF < ol dEOF) {
st or eSt r eam >Set EOF( newteOF) ;
}
Write
Pure virtual.
Input
ui nt 32 toPos
The position in the stream to begin to write to.
byt e* buffer
The pointer to the buffer containing the data
ui nt 32 bytes
The number of bytes to write.
Notes
Mutex should be already locked.
Usage
storeStream >Wite(toPos, buffer, bytes);
9-44 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Storage Class Utilities

IAMakeStorage

Header: IAStorage.h

Input
| ASt oreStreant storeStream
the store stream for the file type to be stored
Output
| ASt or age*
a pointer to the new logical storage object for the storage
Notes
This is the prototype of a basic utility to construct storage. It should be used instead of a
constructor for IAStorage.
MakeHFSStorage
Header: HFSStorage.h
Input

short vRef
The HFS volume reference number of the volume where the file is or is to
be located.

long dirld
The directory ID of the directory where the file is located.

const StringPtr name
The name of the file.

OSType creator = ' VIW
The creator of the storage.

OSType fil eType = ' STOR
The type of file.

Storage Class Category Reference 9-45
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Output
| ASt or age*
A pointer to the storage.
Notes
This is the “constructor” for HFSStorage. It constructs an IAStorage as a Macintosh HFS
file. All other operations on HFSStorage will be done as a function of IAStorage. There is
no true subclass named HFSStorage.
Usage
| ASt orage * exStorage =
MakeHFSSt or age( vRef Num dirl D, exStorNane)
VInt32Read
Header: VInt32.h
Input
| Al nput Bl ock* i nput
The input block positioned for the read.
Output
i nt
The next VInt32.
Notes
A variable length decoding of a uint32.
Usage
vRef I D = VI nt 32Read(i nput);
VInt32Size
Header: VInt32.h
9-46 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Input
uint 32 i
The item to be sized.
Output
byt e
The actual size of the item when encloded in VInt32 format.
Usage

| ABl ockSi ze HFSDoc: : StoreSi ze() {
return Vint32Si ze(vRefI D) + VInt32Si ze(dirl D)
+ 1 + fileNane[0];

VInt32Write(uint32 i, IAOutputBlock™ output)

Header: VInt32.h

Input
uint32 i
The item to be written.
| ACut put Bl ock* out put
The block to write it to, positioned for the write.
Notes
A variable length encoding of a uint32.
Usage

Vint32Wite(vRefl D, output);

Storage Class Category Reference 9-47
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Typedefs

IABlockAddress

The storage address of the first byte of a logical block.

Type
ui nt 32
Header
IAStorage.h
TIABlockID
A unique logical identifier for a block of storage.
Type
ui nt 32
Header
IAStorage.h
IABlockSize
The number of bytes allocated to a block.
Type
ui nt 32
Header
IAStorage.h
9-48 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

IAMutexConstructor();

Type
I AMut ex*
Header
IAMutex.h
Storage Class Category Reference 9-49

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

Storage Exceptions and Error Handling

Errors are currently handled by throwing exceptions.

VSAO
St or ageAl r eadyOpen.
You have tried to reopen storage that already is open. You may have tried an initialize.
Class
IAStorage
VSBI
St or ageBl ockl DI nval i d.
The block ID is not found in the table of contents of this storage.
Class
IAStorage
VSDF
St or ageFul I.
The disk is full.
Class
IAStorage
VSEr
StoreError.
Class
[AStoreStream
9-50 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

VSEo
St or ePast ECF.
Class
IAStoreStream
VSIV
St oragel nval i d
Cannot make or open this type of storage.
Class
IAStorage
VSNI
StorageNotInitialized
You have tried to access storage that has been created, but not initialized using the
Initialize() command.
Class
IAStorage
VSNO
St or ageNot Open
You have tried to access storage that has been established, but not opened using the
Open() command.
Class

[AStorage

Storage Class Category Reference 9-51
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 9

Storage Category

VSNW
St orageNot Wit abl e
You are trying to change storage that was opened as read-only. This may be because of a
deallocate, allocate, write, commit, or compact command.
Class
IAStorage
VSPB
St or ePast Bl ockEnd
Class
[AStoreStream
9-52 Storage Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Understanding Storables and Ordered Storables 3
Creating Subclasses 4
Creating a Subclass of IAStorable 4
Creating a Subclass of IAOrderedStorable 6
Creating a subclass of IAOrderedStorableSet 7
Common Operations 7
Creating an Ordered Storable Set 7
Open an Existing Ordered Storable Set 8
Updating an Existing Ordered Storable Set 8
Sample Code for Updating an Ordered Storable Set 10
Searching and Iterating through an Ordered Storable Set 11
Storable Class Category Reference 13
Header File 13
Class Specifications 14
IAOrderedStorable 14
IAOrderedStorablelterator 17
IAOrderedStorableSet 18
[AStorable 27
Class Utilities 32
Externs 33
Exceptions and Error Handling 33

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

10-2
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

IAStorable classes have been created to allow easy organization and storage of objects
within the IAT. You won’t have to be aware of the storable classes to use the IAT for
information access, but you may wish to use the classes for other object-oriented storage.
These classes differ from other existing implementations of structures, as they support
very large storable sets of variable-length objects. The sets are paged from disk.

This chapter describes the storable logic and requirements for re-use.

Understanding Storables and Ordered Storables

A storable (IAStorable) is any object with member data that should persist beyond
program execution. An ordered storable (IAOrderedStorable) is a storable object with a
unique identifier, or key. This identifier is a piece of member data whose value is unique
for any one occurrence of an object. This uniqueness allows sorts, equal, and less than
operations. These permit the use of a set (ILAOrderedStorableSet) and an iterator
(IAOrderedStorablelterator) that allows access in sequential order.

Figure 10-1 shows the relationships between the storable classes.

Figure 10-1 Object storage structures

IAStorable

IAOrderedStorableSet > V{ IAOrderedStorable

| 4

I constructs

| obtains in order

\

IAOrderedStorablelterator

If it is possible to have a unique identifier, you should implement objects to be stored as
subclasses of IAOrderedStorable.

Understanding Storables and Ordered Storables 10-3
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Creating Subclasses

Creating a Subclass of IAStorable

An IAStorable is an object which may be stored in the logical input and output blocks of
IAT Storage.

See “IAStorable” on page 10-27 for detailed information.

Required Functions

DeepCopy
= Store
s Restore

m StoreSize

Listing 10-1 Sample header file for an 1AStorable subclass

class HFSVolunelnfo : public | AStorable {
public:
HFSVol unel nfo() : name(NULL) {}
HFSVol unel nf o(short vRef Num ;
~HFSVol unel nfo() ;

/1 methods to store a HFSVol unel nfo

| ABl ockSi ze StoreSize() const;

voi d St or e( | AQut put Bl ock* out put) const;
| ASt or abl e* Restore(l Al nput Bl ock* input) const;
| ASt or abl e* DeepCopy() const;

short Get Vol uneRef Num() const {return vRef Num}

StringPtr CGet Vol uneNare() const {return nane;}

| ong CetCreationDate() const {return creationDate;}

voi d Set Vol uneRef Nunm(short ref Num) {vRef Num = ref Num }

voi d Set Vol uneNanme(Stri ngPtr vnane) {nane = vnane;}

voi d Set Creati onDate(l ong cDate) {creationDate = cDate;}
private:

HFSVol unel nfo(short v, StringPtr n, long c)

10-4 Creating Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

vRef Num(v), name(n), creationDate(c) {}

short Fi ndVRef Num(const StringPtr nane, |ong creationDate) const;

HFSVol unel nf o( HFSVol unel nfo&) ;// don't define a copy constructor

short vRef Num /1 volume reference nunber (epheneral)
StringPtr nane; /1 vol ume nanme (persistent)
| ong creationbDate; [// volune creation date (persistent)

Listing 10-2 Sample Constructor

HFSVol unel nf o: : HFSVol unel nf o(short vrn) {

Str 255 nameBuffer;

Par amBl ockRec pb;

pb. vol uneParam i oNanePtr = nanmeBuffer;// set up pb

pb. vol unePar am i oVRef Num = vrn;

pb. vol uneParam i oVol | ndex = O;

OSErr err = PBGetVInfo(&pb, false);// get info

| AAssertion (lerr, "cannot get volume info!", HFSVol umeNot Found) ;
vRef Num = pb. vol unePar am i oVRef Num

nanme = | AMal | ocArray(byte, pb.vol uneParamioNanmePtr[0] + 1);
pstrcpy(nane, pb.vol uneParam i oNanePtr);

creati onbDate = pb. vol uneParam i oVCr Dat €;

Listing 10-3 Sample Implementation of DeepCopy

| ASt or abl e* HFSVol unrel nf o: : DeepCopy() const {

byte* newNane = | AMal | ocArray(byte, name[0] + 1);
pstrcpy(newNane, nane);
return new HFSVol urel nf o( vRef Num newNane, creationDate);

Listing 10-4 Sample Implementation of Restore

| ASt or abl e* HFSVol unel nf o: : Rest or e( | Al nput Bl ock* input) const {

/1 read name
byte | ength = input->ReadByte();
byte* newNane = | AMal | ocArray(byte, length + 1);

Creating Subclasses
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

10-5



CHAPTER 10

Storable Category

newNane[ 0] = | engt h;
i nput - >ReadBuf f er (newNanme + 1, |ength);

| ong newCreationDate = input->ReadU nt32();// read creationbDate
short newVvRef Num = Fi ndVRef Nun{ newNare, newCreationDate);// find vRef Num

i f (newRef Num == 0)
return NULL;
el se
return new HFSVol unel nf o( newRef Num newNane, newCreati onDate);

Listing 10-5 Sample Implementation of StoreSize

| ABl ockSi zeHFSVol unel nfo: : StoreSi ze() const {

return 1 + name[0] + sizeof (uint32);

}
Listing 10-6 Sample Implementation of Store
void HFSVol unel nfo:: Store(l AQut put Bl ock* out put) const {
out put ->WiteByte(nane[0]);
out put->WiteBuffer(nane + 1, name[0]);
out put->WiteUl nt32(creationDate);
}
Creating a Subclass of IAOrderedStorable
An IAOrderedStorableSubclass is the same as a storable subclass (see “Creating a
Subclass of IAStorable” on page 10-4) with the addition of functions for Equal and Less
Than.
See “IAOrderedStorable” on page 10-14 for more information.
Required Functions
= DeepCopy
= Store
= Restore
= StoreSize
= Equal
10-6 Creating Subclasses

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

s Less Than

Listing 10-7 Sample Implementation of Equal

bool O deredStorabl eSubd ass: : Equal (1 AOrder edSt or abl e* nei ghbor) {
i nt comparison = strcnp(nane, neighbor->nane);
return (conparison == 0);
}
Listing 10-8 Sample Implementation of Less Than
bool O deredStorabl eSubC ass: : LessThan(| AOr der edSt or abl e* nei ghbor) {
i nt comparison = strcnp(nane, nei ghbor->nane);
return (conparison < 0);
}
Creating a subclass of IAOrderedStorableSet
You don’t have to create a subclass of the IAOrderedStorableSet or the
IAOrderedStorablelterator. The subclasses provided will work on any subclass of
IAOrderedStorable. The application can create instances of these classes, then cast as
required for the specific storable subclasses used.
Common Operations

Creating an Ordered Storable Set

The ordered storable set is the data structure that points to the members of the set and
provides the iterator to allow access to them. Ordered storable sets are used to store large
collections of persistent data.

You must have storage open for write access and an output block in the storage to
establish an IAOrderedStorableSet. See Chapter 9, “Storage Category” for more
information on establishing storage and allocating blocks. Generally you will want to
allocate a named block for storable set so it may be easily reestablished from storage.

Sets are constructed using the utility IAMakedOrderedStorableSet, which takes a
prototype of the OrderedStorable as input.

Common Operations 10-7
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Listing 10-9 Creating an IAOrderedStorableSet

/1l construct an ordered storable set
| AOr der edSt or abl eSet * anOSSet = | AMakeOr der edSt or abl eSet
(new OrderedSt orabl eSubcl ass());
/1 allocate a block for storing the set
| ABlI ockl D set Bl ockl D = anl ASt or age- >Al | ocat eNanedBl ock( aBl ockNan®) ;
/1 initialize the set
anOSSet->Initialize(anl AStorage, setBl ocklD);

Open an Existing Ordered Storable Set

An ordered storable set is restored from disk by restoring the storage, locating the
blockID, and creating and opening the set.
The example assumes storage was created with a named output block.

Listing 10-10  Open an existing Ordered Storable Set

“

/1 open storage (See “Qpening Existing Storage” on page 9-6)
/1 open ordered storable set
| AOr der edSt or abl eSet * anOSSet = | AvakeOr der edSt or abl eSet
(new OrderedSt orabl eSubcl ass());
| ABI ockl D set Bl ockl D = anl ASt or age- >TOC_Get (aBl ockNane) ;
anOSSet - >Qpen(anl ASt or age, setBlocklD, witable);

Updating an Existing Ordered Storable Set

IAOrderedStorableSet contains member functions to allow the set to be updated.

See “IAOrderedStorableSet” on page 10-18 for detailed information on each of these
functions.

The Put(anIAOrderedStorable) function adds or replaces a member of the set. If a
storable exists that is equal to the supplied input (that is, it has the same key data), the
storable will be replaced with the new storable.

If the storable supplied with Put does not exist in the set, it will be added to the set.

A WARNING
Applications should validate supplied input to be certain no unwanted
addition occurs because of an erroneous key.

The Get(anIAOrderedStorable) will retrieve any storable in the set with a matching key.
The supplied input storable must have the key data (that used for the equal member
function) in place. The retrieved storable will replace the input storable.

The Remove(anIAOrderedStorable) will locate and delete any storable with matching
key data from the set.

10-8 Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

If you wish to change the key data of a storable in the set, the storable with the existing
key must first be removed. Then the storable with the new key may be added with the
Put() function.

Old data is not overwritten in storage during the update. This allows the data to remain
consistent if there is a failure. To replace the persistent ordered storable set following any
updates, Flush() the set to place changes in storage, then Commit() the storage to make
the changes persistent.

You can use an iterator during the updates; the results of the update are reflected in the
iterator behavior.

Common Operations 10-9
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Sample Code for Updating an Ordered Storable Set

Perhaps Chef Irina requires a list of her customers by name, with additional data such as
number of recipes submitted. This could be kept as an ordered storable set. The
following examples assume a data member “name” which is the key data for the
OrderedStorableSubclass.

Listing 10-11  Adding a storable to an OrderedStorableSet

/] add a storable
char* addNane = "Lian';
Or der edSt or abl eSubcl ass newOr der edSt or abl e
((byte*)addName, strlen(addNane));
bool exists = an0SSet - >Get (&newOr der edSt or abl e) ;
if (exists) {
printf ("% is already there; will not add\n",
newOr der edSt or abl e. nane) ;
} else {
an(0sSet - >Put (&newOr der edSt or abl e) ;
printf("% is added \n", newOrderedStorable. nane);

Listing 10-12  Updating additional data for an existing storable

/1 change non-key data in a storable
char * existingName = "Liant;
char* newbData = "updated";
Or der edSt or abl eSubcl ass anOrderedSt or abl e
((byte*)existingName, strlen(existingName));
bool exi st s=anCSSet - >Get (anOr der edSt or abl e) ;
if (lexists) {
printf ("% is not there; cannot change\n", anO deredStorabl e. nane);
} else {
anOr der edSt or abl e. dat a=newDat a;
an(OSSet - >Put ( &anOr der edSt or abl e) ;
printf("% is replaced \n", anOrderedStorable. nane);

10-10 Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Listing 10-13 Removing a storable from an OrderedStorableSet

/1

renove storable
char * existingNane = "Liant;
Or der edSt or abl eSubcl ass anOrderedSt or abl e
((byte*)existingName, strlen(existingName));

bool existed = anOSSet - >Renpve( anOr der edSt or abl e) ;
if (!existed) {

printf ("% was not there; cannot renove\n", anOrderedStorable. nane);
} else {

printf("% has been renoved \n", anOrderedStorabl e. nane);

Searching and Iterating through an Ordered Storable Set

There are several means of reading the contents of an object stored in an Ordered
Storable Set:

» getting the object by its key using the Get member function
» making an iterator and searching the set sequentially
» making an iterator positioned at the object

In the above set of customers, you could use the Get function to find a specific
customer’s data.

Use the sequential iterator to list all the customers.

Use a positioned iterator to locate a certain point in the list (such as the letter “L”) and
list from that point on.

If you have a large number of items to look up in an ordered storable set, it may be faster

to iterate through the entire set than to do a series of lookups using Get.

Listing 10-14  Get an object by key

char * existingNane = "Liant;
O der edSt or abl eSubcl ass anOr der edSt or abl e( ( byt e*) exi sti ngNane,
strl en(exi stingName));
bool exists = an0SSet - >Get (anOr der edSt or abl e) ;
if (lexists) {
printf ("% is not there; \n", anOrderedStorabl e. nanme);

Common Operations 10-11

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Listing 10-15 Make a sequential iterator

/1l iterate through the entire set (list it)
ui nt 32 nunber St or abl es = anCSSet - >Count () ;
printf ("% u Nunber of storabl es\n", nunber Storables);
| AOr der edSt or abl el terat or*
anCSlter = anOSSet - >Makelterator();
Or der edSt or abl eSubcl ass* anCs;
whi l e(an0S = (OrderedSt orabl eSubcl ass*) anCSI t er->Next ()) ;
printf ("%\n", (char*)anCS->nane);

Listing 10-16 = Make a positioned iterator

/1 lterate froma given point
char* startingPoint = "L";
Or der edSt or abl eSubcl ass poi nt OS( (byte*)starti ngPoi nt,
strlen(startingPoint));
| AOrderedStorabl elterator* anCSlter = anCOSSet - >Makel t er at or (&poi nt OS) ;
Or der edSt or abl eSubcl ass* anCS =
(OrderedSt or abl eSubcl ass*) anCSl t er - >Next () ;

if (!(anCs->Equal (&point0s))) {

printf("% isn't in the set\n", startingPoint);
}
whi | e(an0S = (OrderedSt orabl eSubcl ass*) anCSl ter - >Next ()) ;

printf ("%\n", (char*)anCS->nane);

10-12 Common Operations
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Storable Class Category Reference

Header File

IAStorable.h

IAMakeOrderedStorableSet (utility)
IAOrderedStorable
IAOrderedStorablelterator
IAOrderedStorableSet

[AStorable

Storable Class Category Reference 10-13
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Class Specifications

class IAOrderedStorable

Header: IAStorable.h

Hierarchy
Abstract Base Class.
Superclass: IAStorable. See “IAStorable” beginning on page 10-27.

Description
An IAOrderedStorable object is something which is meant to be stored as part of an
ordered set of persistent objects. Ordered storables are the same as storables except they
have a unique key.

10-14 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Relationships

Figure 10-2 IAOrderedStorable relationships

IAStorable

IAOrderedStorableSet > V{ IAOrderedStorable

| 4

I constructs

| obtains in order

\

IAOrderedStorablelterator

Clients

See “IAOrderedStorablelterator obtains (in order) IAOrderedStorable” on page 10-17.
See “IAOrderedStorableSet contains IAOrderedStorable” on page 10-19.

Public Member Functions

Equal

Pure Virtual.

Storable Class Category Reference 10-15
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Input
I AOr der edSt or abl e* nei ghbor
The item to be tested for equality to this object.
Output
bool
The result of the test (true if the keys of the items are equal, false if they
are not.)
Notes
Equal returns true if this object is equal to the input object. The operation is performed
on the member data which make up the key to the ordered storable. Put and Get use this
function to allow access to an ordered storable by key. See “IAOrderedStorableSet” on
page 10-18 for more information on retrieval and update by key.
Listing 10-17  Sample Implementation of Equal
bool O deredStorabl eSubd ass: : Equal (1 AOrder edSt or abl e*
nei ghbor) {
i nt conmparison = strcnp(nane, nei ghbor->nane);
return (conparison == 0);
}
LessThan
Pure Virtual.
Input
| AOr der edSt or abl e* nei ghbor
The item to be tested to see this object’s key is less than the input object’s
key.
Output
bool
The result of the test (true if the key of this object is less than the Input
object, false if it is not.)
10-16 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Notes
LessThan returns true if this object is less than the input object, neighbor. The operation
is performed on the member data which make up the key to the ordered storable.
Listing 10-18  Sample Implementation of LessThan
bool O deredStorabl eSubd ass: : LessThan(| AOr der edSt or abl e*
nei ghbor) {
i nt comparison = strcnp(nane, neighbor->nane);
return (conparison < 0);
}
IAOrderedStorablelterator Class
Header: IAStorable.h
Hierarchy
Base Class.
Description
The iterator returns members of an IAOrderedStorableSet in sequence of their keys.
Relationships

IAOrderedStorablelterator obtains (in order) IAOrderedStorable

One iterator may obtain many storables.

Client

See “IAOrderedStorableSet constructs IAOrderedStorablelterator” on page 10-19.

Storable Class Category Reference 10-17
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Class

CHAPTER 10

Storable Category

Public Member Functions

constructor

There is no constructor for this class. Iterators should always be constructed with the
Makelterator functions of IAOrderedStorableSet. See “Makelterator()” beginning on
page 10-22.

Next
Pure Virtual.
Output
| AOr der edSt or abl e* key
A pointer to a copy of the next object (sequentially) or NULL if at the end
of the set.
Notes
This returns a deep copy of the next sequential (in terms of the key value)
IAOrderedStorable. If invoked after the end of the set, it will return NULL.
Deep copies must be explicitly deleted by the client.
[AOrderedStorableSet
Header: IAStorable.h
Hierarchy
Superclass: none.
This is an abstract base class; however, there is an internally implemented subclass that
is used in all cases.
Description
An IAOrderedStorableSet is a collection of IAOrderedStorable objects kept in sequential
order. Currently this set is implemented as a variant of a B-tree. IAOrderedStorableSets
are kept in storage objects.
10-18 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Relationships

IAOrderedStorableSet contains IAOrderedStorable

One set stores many storables.

IAOrderedStorableSet constructs IAOrderedStorablelterator

One set may construct many iterators.

Client

IAMakeOrderedStorableSet constructs IAOrderedStorableSet

IAMakeOrderedStorableSet is a class utility used to construct a set. There is no persistent
relationship.

Public Member Functions

constructor

Do not use the constructor directly. Rather, use the [AMakeOrderedStorableSet utility
found in this header. See “IAMakeOrderedStorableSet” on page 10-32 for more
information.

Count
Pure Virtual.
Output
ui nt 32
The number of objects in the set.
Storable Class Category Reference 10-19

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Notes
Count returns the number of objects in the set. The set must be initialized or open.
Usage
ui nt 32 nunKeys=KeyNaneSet - >Count () ;
Destroy
Pure Virtual.
Notes
Frees all storage blocks associated with the set.
Flush
Pure Virtual.
Output
void
Changes the storage to reflect changes in the set, but returns nothing.
Notes
Changes made to a set are cached. Flush empties the cache and writes the changes to
disk. The set must be initialized or open, and it must be writable.
Usage
/1 Al changes are conplete
KeyNanmeSet - >Fl ush(); //wites to disk
st orage- >Conmi t ;
Get
Pure Virtual.
10-20 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Input

Output

Notes

Usage

GetMutex

CHAPTER 10

Storable Category

| AOr der edSt or abl e* key
A “dummy” storable object with the key data of the object to be found.

I AOr der edSt or abl e*
A deep copy of the storable object if it exists, or NULL if it does not.

Get provides a pointer to a deep copy of an IAOrderedStorable that exists within the set.
If the object does not exist, the output pointer will be NULL.

The set must be open for Get to function.

The caller must explicitly delete the object returned by the Get function.

char * existingNane = "Liant;
Or der edSt or abl eSubcl ass anOr der edSt or abl e
((byte*)existingNane, strlen(existingNane));
bool exists = an(0SSet - >Get (&anOr der edSt or abl e) ;
if (lexists) {
printf ("% is not there; \n", anOrderedStorabl e. nane);
else (printf ("% is the data\n", exists.data);

}

Output

Description

Pure Virtual.

I AMut ex *mut ex
The mutex used to lock the storage.

Get the lock or mutex for committing the entire storage in one transaction.

Storable Class Category Reference 10-21
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Initialize

Pure Virtual.

Input

| ASt or age* st orage
The storage allocated to the set. Storage must be open (or initialized).

| ABl ockl D bl ock
The allocated block ID for the root of the set.

bool cloneStoreStream
A command to use a duplicate, or clone, of the store stream to increase
throughput in multi-thread applications. True will create the clone.
Default is false.

Notes

Initialize establishes the set in storage with its root at the allocated block. The set is
opened for output and left open.

If you want to improve throughput when working with multiple threads, you may ask
for a cloned store stream.

Usage

| ABl ockl D treeRoot = storage->AlIl ocat eNanmedBl ock(treeNane);
KeyNaneSet->Initialize(storage, treeRoot, );

Makelterator()

Pure Virtual.

Output

| AOrder edSt or abl el terator*
An iterator set to the beginning of the set.

Notes
Makelterator creates an IAOrderedStorablelterator positioned before the first
IAOrderedStorable in the set. The first call of Next() will return the first object.

This function, or Makelterator(IAOrderedStorable* key), should be used to construct the
iterator.

10-22 Storable Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

You can have multiple concurrent iterators on the same set. Iterators will function
correctly during concurrent updates to the set.

Usage

| AOrderedStorablelterator* iter =KeyNameSet->Makelterator();
/1 get the snmallest one (first one) in the collection
KeyNane* baby = (KeyName*)iter->Next();

Makelterator(IAOrderedStorable* key)

Pure Virtual.

Input

| AOr der edSt or abl e* key
An object in the set. Only the key data is required to be present. This
object is used to locate the item with the key and position the iterator at
that item.

Output

I AOrderedSt or abl el terator*
An iterator set to the item whose key matches the input, or, if that item is
not in the set, set to the next highest item.

Notes

Makelterator(key) constructs an iterator. If the input IAOrderedStorable exists in the set,
the iterator is positioned such that it will return that object when Next() is called. If the
storable does not exist in the set, the iterator will return the next greater object.

Usage

/1 List all names after a given point in the |ist

| AOr der edSt or abl el terat or*
nanmelter = KeyNaneSet->Makelterator(& nitial Letter);
KeyNane* newNane = (KeyNane*)nanelter->Next();
whil e (newNane! = NULL) {
printf ("%\n", (char*)newNane->nane);
newNane = (KeyName*) nanelter->Next();

Storable Class Category Reference 10-23
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Open

Pure Virtual.

Input

| ASt or age* st orage
The storage allocated to the set. Storage must be open (or initialized).

| ABl ockl D bl ock
The allocated block for the root of the set.

bool writable
Whether the set may be altered, or written. True if the set is writable, false
if it is read-only. This must be true to Flush, Put, or Remove.

bool cl oneStoreStream
A command to use a duplicate, or clone, of the store stream to increase
throughput in multi-thread applications. True will create the clone.
Default is false.

Notes

Open opens an existing ordered set. It is assumed that this set is rooted at the allocated
block.

Setting writable to true allows the set to be updated; otherwise the set is read-only.

A cloned store stream may improve throughput for multithreaded applications.

Usage

KeyNaneSet = | AMbkeOr der edSt or abl eSet (new KeyName()) ;
| ABl ockl D treeRoot = storage->TOC Cet (treeNane);
KeyNaneSet - >(pen(storage, treeRoot, witable, true);

PositionEstimate

Pure virtual.

Input

| AOr der edSt or abl e* key
An object whose position in the set is to be estimated.

10-24 Storable Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Output
f1 oat
The fraction of the set that lies before the named key.
Notes
In conjunction with TotalSize(), this function can be useful in estimating the cost of range
iteration.
Purge
Pure virtual.
Notes
Purges any cached data from memory.
Put
Pure Virtual.
Input
| AOr der edSt or abl e* obj
The object to be placed in the set.
Output
bool
The results of the put. True if the object was replaced, false if it was added.
Notes

Put places the input IAOrderedStorable object into the ordered set. If the object is already
in the set, it is replaced. An object is considered to be in the set if it Equals another object
in the set. See “Equal” on page 10-15.

The IAT assumes responsibility for deleting the object passed to Put.

The ordered storable set must be opened and writable (or initialized) before a put will
work.

Put caches the changes. You must Flush the set to write the changes to disk (and commit
the storage). Changes made to the set by Put will be reflected in iterators and Gets before
the set is flushed, however.

Storable Class Category Reference 10-25
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Usage

bool isReplaced = KeyNaneSet - >Put ( &out put Key) ;
if (isReplaced){
printf("% has been replaced\n", outputKey.nnane);
} el se{
printf("% has been added \n"); out put Key. nane) ;

Remove

Pure Virtual.

Input

| AOr der edSt or abl e* key
A storable object with the key data of the object to be removed.

Output

bool
The results of the remove. True if the object was removed, false if it was
not found.

Notes

Remove deletes the IAOrderedStorable matching the key object from the collection and
thus from persistent storage, but does not delete the argument object from memory.
Remove returns “true” if the object was found and removed from the set, “false” if the
object did not exist in the set.

Remove changes the cache. You must Flush the set to write the changes to disk (and
commit the storage). Changes made to the set by Remove will be reflected in iterators
and Gets before the set is flushed.

Usage

bool isRenmbved = KeyNaneSet - >Renove( &ey);
if (isRenoved) {printf ("% has been renoved\n", key.nane);}
el se {printf ("% was al ready gone\n", key.nane);}

10-26 Storable Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

TotalSize
Pure virtual.
Output
ui nt 32
The total number of bytes of storage allocated by the set.
Notes
In conjunction with PositionEstimate(), this function can be useful in estimating the cost
of range iteration.
[AStorable Class
Header: IAStorable.h
Hierarchy
Superclass: None
Abstract Base Class.
Description
An IAStorable is an object that may be stored on disk or within a data structure.
Relationships

IAStorable stores in IAOutputBlock

One storable stores in one output block.

IAStorable restores from IAInputBlock

One storable restores from one input block.

Storable Class Category Reference 10-27
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Public Member Functions

DeepCopy

Pure Virtual.

Output
| ASt or abl e*
A copy of this object.
Notes
Deep Copy returns a copy of the object itself as an IAStorable. There is no copy
constructor defined for an IAStorable to avoid hidden type errors.
Listing 10-19 Sample Implementation of DeepCopy
| ASt or abl e* HFSVol unel nf o: : DeepCopy() const {
byt e* newName = | AMal | ocArray(byte, name[0] + 1);
pstrcpy(newNane, nane);
return new HFSVol unel nf o(vRef Num newNane, creationDate);
}
Restore
Pure Virtual.
Input
I Al nput Bl ock* i nput
The input block containing the object and positioned at that object.
Output
| ASt or abl e*
The object existing at the set position of the input block.
10-28 Storable Class Category Reference

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Notes
Restore reads a previously stored object from storage. It reads StoreSize() bytes from
input.
IAInputBlock is a block allocated to the existing storage. This block must be established
and contain a store stream pointing at the beginning of this stored object.
Similar to Deep Copy, implementations of restore should use the protected member
function Restoring to copy the data.
Listing 10-20  Sample Implementation of Restore
| ASt or abl e* HFSVol unel nf o: : Rest or e( | Al nput Bl ock* i nput) const {
/'l read name
byte I ength = input->ReadByte();
byt e* newNane = | AMal | ocArray(byte, length + 1);
newNane[ 0] = | engt h;
i nput - >ReadBuf f er (newNane + 1, |ength);
 ong newCreationDate = input->ReadUl nt32();// read creationDate
short newwRef Num = Fi ndVRef Num( newNane, newCreationDate);//
i f (newRef Num == 0)
return NULL;
el se
return new HFSVol urel nf o( newwRef Num newNane,
newCr eat i onDat e) ;
}
StoreSize
Pure Virtual.
Output
| ABI ockSi ze*
An integer representing the storage size in bytes of a single storable object.
Notes

This function returns the amount of storage that will be used when this storable object is
stored.

IABlockSize is a typedef of uint32. It represents the number of bytes the object will
occupy after serialization for output.

Storable Class Category Reference 10-29
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Listing 10-21  Sample Implementation of StoreSize

| ABl ockSi zeHFSVol unel nfo: : StoreSi ze() const {
return 1 + name[0] + sizeof (uint32);

Store
Pure Virtual.
Input
| ACut put Bl ock* out put
The output block positioned at the next available slot.
Notes

Store outputs the storable object to storage. It will write StoreSize() bytes to output.

IAOutputBlock is an output block allocated to the storage that is to be used. It must be
established and contain a store stream pointing to the position in which to write the
object.

Listing 10-22  Sample Implementation of Store

void HFSVol unel nfo:: Store(l AQut put Bl ock* out put) const {
out put ->WiteByte(nane[0]);
out put->WiteBuffer(name + 1, nane[0]);
out put->WiteUl nt32(creationDate);

Protected Member Functions

DeepCopying

10-30

Pure Virtual.

Storable Class Category Reference
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



Input

Output

Notes

CHAPTER 10

Storable Category

| ASt or abl e* source
“this” object.

void
The data members of the object are updated with the input data; nothing
is returned.

When the creation of a copy requires several steps, it is clearer to implement this internal
routine to simplify the copy. If you do DeepCopying on a new object it will move the
data items of the input object into place.

A map, for example, is a storable that contains two other storables. This example is a
directory of names and numbers. Name and number are each contained storable objects.

Listing 10-23  Sample Implementation of Deep Copy and Deep Copying

Restoring

| ASt or abl e* St orabl eSubC ass: : DeepCopy() {
St or abl eSubC ass* copy = new Storabl eSubd ass;
copy- >DeepCopyi ng(this);
return copy;

}

voi d Storabl eSubC ass: : DeepCopyi ng( | ASt or abl e* source) {
St or abl eSubCl ass* other = (Storabl eSubCl ass*) source;
nane = (Contai nedSt orabl e) ot her - >nane- >DeepCopy() ;
nunber = (Cont ai nedSt or abl e) ot her - >nunber - >DeepCopy() ; }

}

The source is “this,” the object itself which is to be duplicated in this routine.

Input

Pure Virtual.

| Al nput Bl ock* i nput
The input block containing the item with the store stream positioned at its
beginning.

Storable Class Category Reference 10-31
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

| ASt or abl e* proto
An empty new object to be used as a prototype for the restore.

Notes
Restoring is an internal routine used when the creation of the storable object requires
several steps.
If the storable object were a map, for example, of two other storables, this function will
simplify the copy. This example shows a restore of a directory of names and numbers.

Listing 10-24  Sample Implementation of Restore and Restoring

| ASt or abl e* St or abl eSubCl ass: : Rest ore( | Al nput Bl ock* input) ({
St or abl eSubCl ass* restoredoj ect = new Storabl eSubd ass;
rest oredj ect - >Restoring(input, this);
return restoredbject;

}

voi d Storabl eSubd ass: : Restoring(l Al nput Bl ock* input,

| ASt or abl e* source) {

St or abl eSubC ass* ot her = (Storabl eSubd ass*) source;
nane = (Contai nedSt orabl e*) ot her - >nane- >Rest or e(i nput) ;
nunber =(Contai nedSt or abl e*) ot her - >nunber - >Rest or e(i nput ) ;

Class Utilities

IAMakeOrderedStorableSet

Header: IAStorable.h

Input
| AOr der edSt or abl e* proto
Used as a prototype for the Restore() functions. An empty example of the
type of item stored in the set.
Output
I AOr der edSt or abl eSet *
An empty storable set for the input object.
10-32 Class Utilities

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

Notes
This constructs an IAOrderedStorableSet. This must be used rather than an explicit
constructor. The input object provided is used as a prototype to establish new objects of
the type.

Usage

I AOr der edSt or abl eSet * KeyNaneSet =
| AMakeOr der edSt or abl eSet (new KeyNane());
Externs

extern bool | ACl oneOSSet St or eSt r eans;
When true, OrderedStorableSets will use cloned StoreStreams. False by
default.

Exceptions and Error Handling

Errors are currently handled by throwing exceptions.

VSBE
Or der edSt or abl eSet Ent r yTooBi g
The store size is greater than the IABlockSize / 2. Currently, store sizes
should be less than 2K.
Class
IAOrderedStorableSet
Externs 10-33

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



CHAPTER 10

Storable Category

10-34 Exceptions and Error Handling
Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



A PPENDTIX

Alphabetical List of

Functions
AddDoc 5-51 DeepCopying 10-30
AdvanceTo 7-38 DeepCopying 8-25
Allocate 9-32 DeepCopying 8-41
AllocateNamedBlock 9-33 DeleteDoc 5-35
AllocData 7-30 DeleteDoc 5-51
Clients 10-15 Destroy 10-20
Clients 6-28 DoclD 5-74
Clients 6-30 DocLength 5-74
Clone 9-19 Equal 10-15
Clone 9-40 Equal 5-26
CollectDirInfo 8-35 Equa 5-44
Commit 9-33 Equal 5-61
Compact 5-35 Equal 7-28
Compact 5-48 Equal 8-22
Compact 9-33 Equal 8-40
ComponentsRead 5-64 EqualNonVirtual 7-29
ComponentsSize 5-64 Flush 10-20
ComponentsWirite 5-65 Flush 5-36
Count 10-19 Flush 5-51
CurrentPos 7-38 Flush 9-19
Deallocate 9-34 Flush 9-41
DeepCopy 10-28 FlushProgressFn 5-74
DeepCopy 5-26 FreeSpace 9-34
DeepCopy 5-61 Get 10-20
DeepCopy 5-67 GetAccessorType 6-24
DeepCopy 6-44 GetAnalysis 5-36
DeepCopy 7-28 GetBuffer 7-39
DeepCopy 7-46 GetBufferPos 7-39
DeepCopy 8-22 GetBytesForUpdate 5-59

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



APPENDIX A

Alphabetical List of Functions

GetCharStream 7-20
GetComponents 5-65
GetComponents 6-49
GetCorpus 5-36
GetCorpusType 8-43
GetCreationDate 8-30
GetCreator 9-19
GetData 7-29
GetDatal_ength 7-29
GetDeletedDocCount 5-49
GetDir 8-33
GetDirCount 8-33
GetDirlD 8-23

GetDirlD 9-19
GetDirlndex 8-33
GetDirlnfos 8-34
GetDocCount 5-36
GetDocCount 5-51
GetDoclD 5-26
GetDoclD 5-28
GetDoclnfo 5-52
GetDoclnfolterator 5-52
GetDoclterator 5-37
GetDoclterator 5-53
GetDoclterator 8-37
GetDoclterator 8-43
GetDoclterator 5-37
GetDoclterator 5-53
GetDocText 8-18
GetDocText 8-44
GetDocTopic 6-38
GetDocTopic 6-52
GetDocument 5-26
GetDocument 6-28
GetDocument 6-31
GetDocumentCount 5-61
GetDocumentL ength 5-26
GetDocumentL ength 5-65
GetDocumentL ength 6-49
GetEndChar 7-39
GetEndPosition 7-32
GetEOF 9-19

GetEOF 9-41

A-2

GetFileName 8-23
GetFileName 9-20
GetFileType 9-20
GetFlushProgressData 5-53
GetF ushProgressFn 5-53
GetFlushProgressFreq 5-53
GetFRefNum 9-20

GetFreq 5-29
GetFregPostings 5-49
GetHighFreqTerms 5-72
GetIDDoc 5-54
GetIDTerm 5-54

Getlndex 6-28

Getlndex 6-31
GetlndexCount 6-24
GetlndexRoot 5-38
GetlndexType 5-38
GetlndexTypes 5-38
Getlndices 6-24
GetlnvertedRankedQueryMaxTerms 6-35
GetlnvertedRankedQueryMinTerms 6-35
GetMatchingTerms 6-44
GetMatchingTermsLen 6-44
GetMaxDoclD 5-55
GetMaxDocumentSize 5-39
GetMaxTermID 5-55
GetModDate 8-40
GetMutex 10-21

GetMutex 9-35

GetMutex 9-40

GetName 8-23

GetName 8-48
GetNamedBlock 9-35
GetNextBuffer 7-22
GetNextBuffer 7-42
GetNextBuffer 8-26
GetNextBuffer 8-50
GetNextChar 7-39
GetNextCharlnBuffer 7-40
GetNextDoc 8-49
GetNextToken 7-19
GetNextToken 7-24
GetNextToken 7-34

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



APPENDIX A

Alphabetical List of Functions

GetNextToken 7-36
GetNextToken 7-43
GetPBRec 8-33
GetPercent 6-31
GetPosition 9-24
GetPosition 9-26
GetPreferredAnaysis 5-39
GetProtoDoc 8-18
GetProtoDoc 8-37
GetProtoDoc 8-44
GetProtoTerm 7-26
GetProtoTerm 7-45
GetQueryAnalysis 5-39
GetRefNum 8-27
GetRootDirlD 8-37
GetScore 6-45
GetStartPosition 7-33
GetStorage 5-40
GetStorageType 9-35
GetStoreStream 9-35
GetStreamBuffer 7-20
GetTerm 5-61
GetTerm 6-46
GetTerm 7-33
GetTermCount 5-56
GetTermID 5-61
GetTerminfo 5-56
GetTerminfolterator 5-56
GetTermInfolterator 5-57
GetTextSpan 7-20
GetTextSpan 7-35
GetTextSpan 7-37
GetTextSpan 7-40
GetTFVector 5-70
GetTheDirlD 8-27
GetTheFileName 8-27

GetTheVolumeRefNum 8-27

GetTWVector 6-52
GetVectorBlocklD 5-66
GetVolumeCount 8-19
GetVolumelnfos 8-20
GetVolumeName 8-30
GetVolumeRefID 8-23

GetVolumeRefNum 8-30
GetVolumeRefNum 8-37
GetVRefID 8-19
GetVRefNum 8-19
GetVRefNum 9-20
HFSCorpus 8-16
HFSlterator 8-16
HFSTextFolderCorpus 8-16
HitEqual 6-39
HitLessThan 6-40

| AAccessor 6-20
|AAssertion 4-4
|ABlockAddress 9-48
IABlocklD 9-48
|ABlockSize 9-48
|ACorpus 8-16

| ADefaultMutexConstructor 9-30
|IAFree 4-7

|IAFreeArray 4-8
|AFreeArraySized 4-9
|AFreeSized 4-7
|AFreeStruct 4-9

| AMakeOrderedStorableSet 10-32
|AMakeStorage 9-45
IAMalloc 4-6
IAMallocArray 4-7
IAMallocArraySized 4-8
IAMallocSized 4-7
IAMallocStruct 4-9

| AMutexConstructor 9-49
| AReadIndexTypes 5-72
| AThrowException 4-4
Increment 8-34

Initialize 10-22

Initialize 5-40

Initialize 5-49

Initialize 5-57

Initialize 6-24

Initialize 7-25

Initialize 8-45

Initialize 9-20

Initialize 9-36

Initialize 9-42

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

A-3



APPENDIX A

Alphabetical List of Functions

Initializing 8-20
Initializing 8-38
Initializing 8-46
InitialSize 8-20

Initial Size 8-38

Initial Size 8-46

InV ecAccessor 6-20
InvertedA ccessor 6-20
IsDoclndexed 5-40
IsDoclndexed 5-57
IsHit 6-40
IslnitializationValid 6-25
|sOpen 9-21

|sOpen 9-36

|sOpen 9-40

IsWritable 9-21
IsWritable 9-36
IsWritable 9-41
LessThan 10-16
LessThan 5-27
LessThan 5-62
LessThan 7-29
LessThan 8-23
LessThan 8-40
LessThanNonVirtual 7-30
Lock 9-30
MakeHFSStorage 9-45
Makelterator 10-22
Makelterator 10-23
MakeT okenStream 7-26
MakeTokenStream 7-45
MaybeFlushBuffer 9-42
Merge 5-41

Merge 5-57

MergeHits 6-41

Next 10-18

Next 5-30

Normalize 6-49

Open 10-24

Open 5-41

Open 5-49

Open 5-57

Open 7-27

Open 8-45

Open 9-21

Open 9-36

Open 9-42

Opening 8-20
Opening 8-38
Opening 8-46
operator delete 4-11
operator delete 4-12
operator new 4-11
operator new 4-12
PositionEstimate 10-24
Purge 10-25

Put 10-25

RankedA ccessor 6-20
RankedProgressFn 6-53
RankedSearch 6-33
RankedSearch 6-34
RankedSearch 6-41
RankedSearch 6-42
RankedSearch 6-53
RankedSearchBoolean 6-34
Read 9-22

Read 9-43

ReadBuffer 9-24
ReadByte 9-24
ReadUInt32 9-25
Remove 10-26
RemoveNamedBlock 9-37
RenameDoc 5-41
RenameDoc 5-58
Restore 10-28

Restore 5-27

Restore 5-62

Restore 5-67

Restore 7-30

Restore 8-24

Restore 8-30

Restore 8-40
Restoring 10-31
Restoring 8-25
Restoring 8-41
SetAccessorType 6-25

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



APPENDIX A

Alphabetical List of Functions

SetBuffer 7-41 SetVectorBlocklD 5-66
SetBufferPos 7-41 SetV olumeCount 8-20
SetBytesForUpdate 5-59 SetVolumel nfos 8-21
SetCharStream 7-20 SetVolumeName 8-31
SetComponents 5-65 SetVolumeRefID 8-24
SetComponents 6-50 SetVolumeRefNum 8-31
SetCreationDate 8-31 SetVolumeRefNum 8-38
SetDirlD 8-24 ShortWordFilter.h 7-16

SetDirlndex 8-35 Similarity 6-50
SetDocument 5-27 Store 10-30
SetDocument 6-29 Store 5-27
SetDocument 6-31 Store 5-62
SetDocumentCount 5-62 Store 5-67
SetDocumentL ength 5-65 Store 7-30
SetDocumentL ength 6-50 Store 8-24
SetEndChar 7-41 Store 8-31
SetEOF 9-21 Store 8-41
SetEOF 9-43 Storelnitialization 6-26
SetFileName 8-24 StoreSize 10-29
SetFlushProgressData 5-58 StoreSize 5-27
SetFlushProgressFn 5-58 StoreSize 5-62
SetFlushProgressFreq 5-58 StoreSize 5-67
SetFRefNum 9-21 StoreSize 7-30
Setlndex 6-29 StoreSize 8-25
Setlndex 6-32 StoreSize 8-31
SetlndexCount 6-26 StoreSize 8-41
Setlndices 6-26 StoreSize 5-29
SetlnvertedRankedQueryMaxTerms 6-36 StoreSize 5-29
SetlnvertedRankedQueryMinTerms 6-36 Sum 6-51
SetMaxDocumentSize 5-42 TermFreq 5-75
SetModDate 8-40 TermID 5-75
SetNextCharlnBuffer 7-41 Text 7-46
SetPercent 6-32 TextLen 7-46
SetPreferredAnalysis 5-42 TOC_Get 9-37
SetRefNum 8-28 TOC_Remove 9-38
SetRootDirlD 8-38 TOC_Set 9-38
SetScore 6-45 TotalSize 10-27
SetStreamBuffer 7-21 Total Space 9-39
SetTerm 5-62 TWVector 6-20
SetTerm 6-46 Unlock 9-30
SetTheDirlD 8-28 Update 5-43
SetTheFileName 8-28 Update 8-45

SetTheVolumeRefNum 8-28

UpdateSize 8-21

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

A-5



APPENDIX A

Alphabetical List of Functions

UpdateSize 8-39
UpdateSize 8-47
Updating 8-21
Updating 8-39
Updating 8-47
VAAI 6-54
VAIV 6-54
VANI 6-54
VASU 7-48
VCHE 8-51
VCHYV 8-51
VCID 8-51
VectorAccessor 6-21
VIAI 5-79
VIAO5-79
VIDN 5-79

VIIV 5-79
VINO 5-80
VInt32Read 9-46
VInt32Size 9-46
VInt32Write 9-47
VSAO 9-50
VSBE 10-33
VSBI 9-50
VSDF 9-50
VSEo 9-51

V SEr 9-50

VSIV 9-51

VSNI 9-51
VSNO 9-51
VSNW 9-52
VSPB 9-52
VTSU 7-48
Write 9-22

Write 9-44
WriteBuffer 9-27
WriteByte 9-27
WriteUInt32 9-27

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



APPENDIX A

Alphabetical List of Functions

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97

A-7



T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created

using Adobe Mlustrator . PostScript was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

Confidential — do not redistribute. ©1996, 1997 Apple Computer, Inc. 3/12/97



	Introduction to the Apple Information Access Toolk...
	Some Possible Applications
	RecipeSwap

	How It Was Done
	Indexing Facility
	Search Facility
	Analysis and Filtering
	Storage and Document Type

	Construction with IAT

	Overview of IAT Content
	Facilities of IAT by Category
	Index
	Accessor
	Analysis
	Corpus
	Storable
	Storage


	Designing an Application
	Determining High Level Requirements
	Determining the External Interfaces

	Mapping to IAT Classes
	Internal Task Design
	Recipe Query
	Submit Recipe
	Duplicate Recipe
	Stop Word Maintenance
	Database Creation


	Common Practices in IAT
	Primitive Types
	Globals
	Exceptions
	Exception codes
	Throwing Exceptions

	Memory Allocation
	The Memory Functions
	Base Classes
	IAObject
	IAStruct

	Deletion of Allocated Memory
	IADeleteOnUnwind
	IADeleteArrayOnUnwind
	IADeletePointerArrayOnUnwind



	Index Category
	Choosing an Index Type
	Index Types Currently Available
	Comparison of Searches Available
	Index Size vs. Speed

	Common Operations
	Creating an Index
	Establishing an Existing Index
	Updating an Index
	Iterating Through the Documents in an Index
	Merging Indexes
	Compacting an Index

	Index Class Category Reference
	Header Files in the Index Category
	Class Specifications
	DocInfo
	FreqPosting
	FreqPS
	FreqTerm
	IAIndex
	IAIndexTypes
	InVecIndex
	InvertedIndex
	TermIndex
	TermInfo
	TFComponent
	TFVector
	VectorDocInfo
	VectorIndex

	Class Utilities
	Typedefs
	Extern Data
	Constants
	Index Exceptions and Error Handling


	Accessor Category
	Choosing an Accessor Type
	Query Logic
	Query Analysis
	Common Operations
	Building an Accessor
	Answering Queries
	Answering a Simple Ranked Query
	Answering a Query by Example
	Answering a Boolean Query
	Describing a Document
	Finding Related Words

	Accessor Class Category Reference
	Header Files in the Accessor Category
	Class Specifications
	IAAccessor
	IAHit
	IAProgressReport
	InVecAccessor
	InvertedAccessor
	RankedAccessor
	RankedHit
	RankedProgress
	RankedQueryDoc
	TWComponent
	TWVector
	VectorAccessor

	Typedefs
	Constants
	Accessor Exceptions and Error Handling


	Analysis Category
	Understanding Tokens and Terms
	Understanding Tokenizers
	Understanding Filters
	Existing Filters
	Filter Sequence

	Creating Analysis Subclasses
	Creating a SimpleAnalysis Subclass
	Creating a Subclass of IAAnalysis
	Creating a Subclass of IATokenFilter
	Creating a Subclass of IATerm
	Creating a Text Utility

	Analysis Class Category Reference
	Header Files in the Analysis Class Category
	Class Specifications
	AlphaTokenizer
	DocTextCharStream
	DowncaseFilter
	IAAnalysis
	IATerm
	IAToken
	IATokenFilter
	IATokenStream
	IACharStream
	ShortWordFilter
	SimpleAnalysis
	StringTerm

	Constants
	Exceptions


	Corpus Category
	Introduction
	The HFS Implementation
	HFS Corpus
	HFSTextFolderCorpus

	Common Procedures
	Using a Corpus to Provide Documents
	Creating a New Corpus
	Establishing an Existing Corpus
	Using an HFSCorpus to Locate a Document in HFS

	Creating Corpus Subclasses
	Creating a Subclass of IACorpus
	Creating a Subclass of IADoc
	Creating a Subclass of IADocIterator
	Creating a Subclass of IADocText
	Creating a Subclass of HFSIterator

	Corpus Class Category Reference
	Header Files in the Corpus Category
	Class Specifications
	DirectoryInfo
	HFSCorpus
	HFSDoc
	HFSDocText
	HFSVolumeInfo
	HFSIterator
	HFSTextFolderCorpus
	HFSTextFolderDoc
	IACorpus
	IADoc
	IADocIterator
	IADocText

	Constants
	Exceptions


	Storage Category
	General Storage Logic
	HFS Implementation
	Creating New Storage
	Sample Code to Create Storage

	Opening Existing Storage
	Sample Code for Establishing Existing Storage

	Allocating and Deallocating Blocks of Storage
	Reading and Writing Storage
	Reporting on Storage
	Compacting Storage
	Using the Mutex Facility
	Cloning Store Streams
	Creating Storage Subclasses
	Creating a Storage Construction Utility
	Creating a Subclass of IAStoreStream
	Creating a Subclass of IAMutex

	Storage Class Category Reference
	Header Files in the Storage Class Category
	Class Specifications
	HFSStoreStream
	IAInputBlock
	IAOutputBlock
	IALock
	IAMutex
	IAStorage
	IAStoreStream

	Storage Class Utilities
	Typedefs
	Storage Exceptions and Error Handling


	Storable Category
	Understanding Storables and Ordered Storables
	Creating Subclasses
	Creating a Subclass of IAStorable
	Creating a Subclass of IAOrderedStorable
	Creating a subclass of IAOrderedStorableSet

	Common Operations
	Creating an Ordered Storable Set
	Open an Existing Ordered Storable Set
	Updating an Existing Ordered Storable Set
	Sample Code for Updating an Ordered Storable Set
	Searching and Iterating through an Ordered Storabl...

	Storable Class Category Reference
	Header File
	Class Specifications
	IAOrderedStorable
	IAOrderedStorableIterator
	IAOrderedStorableSet
	IAStorable


	Class Utilities
	Externs
	Exceptions and Error Handling

	Alphabetical List of Functions

